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Abstract

This paper provides exact evaluations of the distribution of the usual
coefficient of determination when the regression model’s errors follow an
AR(1) or MA(1) process. This provides insights into the extent to which
this measure of goodness of fit is ‘distorted by such model
mis-specification.

Address for Correspondence : Professor David E.A. Giles, Department of
Economics, University of Canterbury, Christchurch, NEW ZEALAND.




1. Introduction

This paper provides some preliminary results concerning the exact
distribution of the coefficient of determination in a regression model
which is mis-specified by virtue of the errors being autocorrelated. Both
AR(1) and MA(1) disturbances are considered. These results are obtained
for a range of data sets, and are compared with their counterparts under
serially independent errors. °

This type of model mis-specification induces a shift in the
distribution of Rz, which in turn alters the probability of observing
values of R? in any given range. Information of this type is useful to

applied researchers, as it assists in the interpretation of a calculated R?

value when the presence of serial correlation is suspected.

2. Notation and Theory
Consider the model
.y=XB+u ; u ~ N(0,Q) (1)
where y and u are (nxl); X is (nxk), non-stochastic and of rank k; and B is
(kx1). Generally, it is further assumed that Q = o-zln; so that Ordinary
Least Squares (OLS) provides the best linear unbiased estimator of B.
Then, if the model includes an interceptl, tﬁe coefficient of

determination can be written unambiguously as

where vl is the i'th element of the OLS residual vector,

n
X(X'X)'X'y; y, is the {'th element of y; and y = - I y.

i
1

1
compactly,

R? = y’ (E-M)y/y’Ey,




where M =1 - XXX, E = - i te’, and ¢ is (nx1) ‘with each
element unity.

As Koerts and Abrahamse (1971) show,‘ writing R® as a ratio of
quadratic forms in the Normal raﬁdom vector y (as in (3)) facilitates the
calculation of its cumulative distx;ibution function (cdf). They calculate
the cdf of Rz for two data sets, assuming Q = o-zln,v and for one data set
wi‘xen Q corresponds to AR(1) ex‘rors.2

The c.d.f. of R® is |

F(R®) = Pr.(R%r?)

= Pr.ly’ (GE-M)y = 0] , @)

where q = 1 - 2 As is well known, after some simple manipulations, we

have ..
2 L2
F(R)=Pr.[27\2 50], (5)
j=x"‘ )
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where the Aj’s are the eigenvalues of Q “(qE-M)Q and the Zi are

independent non-central xz variates, each with one degree of freedom, and
with non-centrality ‘parameters given by the squared elements of P'Q'VZXB,
where the columns of P are the eigenvectors cox‘.responding to the Aj's.
Probabilities of the form (5) can be computed. efficiently in various
ways. We have used Davies’ (1980) algorithm in the SHAZAM package (White

et al. (1990)). Having computed F(RZ), numerical differentiation:s\ yields

the probability density function (pdf) of RZ

Design of the Study

Clearly, the distribution of R? depends on X and Q. We have
considered sig data sets, n = 20, 60; and AR(l1) and MA(1) disturbances.
With AR(1) errors u = pu  + €, lpl < 1, € ¥ N(O,wz). With MA(1)

. 4
errors, ut = et + eet v el < 1. The X matrices used are : the annual

"spirits" income and price data of Durbin and Watson (1951); the quarterly




Australian Consumers Price Index and its lag; a Normal (30,4) variable and
a linear trend; a log-Normal (2.23, 19.58) variable and a linear trend; and
the orthogonal regressors (a2+an)/\/§, (a3+an_l)/\/§, where the al’s are the
eigenvectors of the usual "differencing” matrix,5 A.

Similar data sets have been used in other studies associated with

autocorrelation (e.g., Evans (1991)), and a range of characteristics is

covered. The last X matrix above is due to Watson (1955) - it pf‘oduces the
least efficient least squares parameter estimates in the class of
orthogonal regressor matrices.6

Values of 0‘2 = 0.1, 1.0 and various values of p and 6 were considered,
and. the elements of B. were controlled to preclude degenerate distributions.
The SHAZAM code was checked by replicating the results given by Koerts and

Abrahamse (1971, pp.139-140).

4. Results

We concur with previous findings that decreasing o'z - shifts the cdf
(and hence the pdf) of R® to the right with serially independent errors.
That is, the probability of a low R? is decreased. As expected, increasing
n concentrates the pdf of R%.  These effects are illustrated in Figures 1
and 2, with B’ = (0.001, 0.002, 0.001). Both of these results continue to
hold with AR(1) or MA(1) errors.

Except for Watsons X matrix, negative AR(1) errors shift the cdf of R
increasingly to the left, for any n or 0‘2, reflecting a highef‘ probability
of underestimating the proportion of total variation explained by the
model. Depending on the data, positive AR(1) errors have a mixed effect,
contrary to the very limited evidence given by Koerts and Abrahamse (1971,
pp.151-152). In particular, the cdf of R does not necessarily shift to

the right in this case, though there is a tendency for it to do so.




Contrary to certain econometric folk-lore, positive AR(1) errors do not
necessarily introduce a downward bias in the estimation of the error
variance.7 With Watson’s X matrix the cdf of R? shifts increasingly to the
right as the absolute value of p increases.

The results with MA(1) errors are even more mixed. With few
exceptions, negative autocorrelation of this type shifts the cdf of R to
the left. There is no clear pattern regarding such shifts under positive
MA(1) autocorrelation. This highlights the importance of having considered
a range of data sets. Generally, in this case, the shifts in the cdf of R®
are less pronounced than in the corresponding positive AR(1) cases,
especially with positive autocorrelation. These results are illustrated in

Figures 3 and 4, with g = (0.01, 0.02, 0.02), n = 20 and o'z = 0.1.

Conclusions

These results have some interesting implications for diligent
reporters of R. A reasonably large R® value is especially encouraging if
there is evidence of negative autocorrelation in the errors - such
autocorrelation increases the probability of a low R%  On the other hand,

caution is needed in the (likely) presence of positively autocorrelated

errors as the likelihood of a high R? value is then dependent heavily on

the form of the regressor matrix, in an apparently non-systematic way.
Work in progress seeks to identify these dependencies, and to determine any

possible effects due to multicollinear data.
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Footnotes

We are grateful to Judith Giles, Murray Scott, John Small and Jason

Wong for their helpful comments.

If no intercept is included, the value of R2 depends on whether it is
defined as the proportion of “"explained" variation, or one minus the

proportion of "unexplained" variation in the sample.

Cramer (1987) derives expressions for the first two moments of R?

under certain conditions, and Battese and Griffiths (1980) develop
alternative goodness-of-fit measures for the case of a non-scalar
error covariance matrix. .

We have used the method of central differences, with end-point
ad justments.

Each model also includes an intercept, so k = 3 in each case.

The matrix A is tri-diagonal, with 2 on the leading diagonal, except
for the top left and bottom right elements (which are 1), and -1 on
the two leading off-diagonals. The eigenvalues of A are placed in
increasing order to number the eigenvectors. The first eigenvector
has constant elements.

Watson’s X matrix is also knﬁwn to generate extreme situations for the
distributions of other statistics (such as the Durbin-Watson
statistic) which can be written as ratios of quadratic forms in a
Normal vector.

Many text book discussions suggest that this is unambiguously the

case, but Nicholls and Pagan (1977) provide contrary evidence.










