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Abstract

We consider the true size of the Chow Test for the structural
stability of a regression model when the disturbances are autocorrelated.
We show that there may be considerable size distortion in the case of
either AR(1) or MA(l) errors.
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1. Introduction

This paper presents preliminary results which show that the Chow
(1960) test size is not robust to AR(1) or MA(l) autocorrelation in the
regression errors. We provide exact evidence which supports other results
in the case of AR(l) errors, and offers new insights in the MA(l) case.
The Chow test considers shifts in the relationship gegerating the data, so
it- is widely applied with time series data. Ironically, more attention has
been paid to the consequences of having heteroscedastic errors than of
having autocorrelated errors. For example, see MacKinnon (1989) and the
references therein.

The (exact) effects of AR(l) errors on the size of the Chow test have
been considered in a limited way by Consigliere (1981) and Kramer (1989).
Corsi et al. (1982) provide some Monte Carlo evidence and Kiviet’s (1980)
approach can be used to construct bounds on the test’s critical value under
ARMA errors. However, there are no exact results based on realistic data
sets in the AR(1) case, or on the robustness of the Chow test to MA(1)

errors.

2. Notation and Theory

Consider two sub-samples with n, and n, (=n—n1) observations, and the

models

y; = xiBi +u i=12 (1)

where y. and u, are (n;xl1), B. is a (kxl), and X. is (n.xk), of rank k, and
i i i i i i

non-stochastic. Equations (1) may be written as

41 X 0 By Y
y = = + = X*B8* + u.
[ p) ] [ o X By )

Under the null hypothesis, HO: ﬁl = B, = B, we have
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The Chow test rejects H, if f > cla), where f = [(e’e - e* e*)/k]

(0]
/le*’e*/(n-2k)], e* and e are the least squares residuals vectors
for (2) and (3), and c(a) is the critical value for a (nominal) test size
of a. If HO is true and u ~ N(O,o‘zln), f is F-distributed with k and
(n-2k) degrees of freedom, and c(«) is chosen accordingly.

It is well known that if the covarince matrix of u is non-scalar, then
f is not F-distributed under HO. However, the true size of the Chow test

can be calculated by noting that1

Pr. [_f>c(oc)] =1 - Pr. [u’ (dB-M*c(a))u = 0]

where d = (n-2k)/k, B = (M-M*), M = I - X(X'X)7’X’, and M* =
X*(X* X*)X* . If u ~ N(0,Q) then®

o2
Pr.[j‘>c(a)|ﬂ] =1- Pr.[ T Az, s 0]
jep 44

where the Aj’s are the eigenvalues of nl/z[dB - M*‘c(m))ﬂ“2

and the z? are
independent Chi-square variables, each with one degree of freedom. The
true size of the Chow test, in (5), depends on the regressors and the f‘orm3
of Q@ when Q # 0'21. It is readily calculated using Davies’ (1980)

algorithm.

The Study

If the disturbances are AR(1) then u

t-1

, = put_1 + ct, and if they are

MA(1) then u, = £_ + pe

2
¢ ¢ where |p| <1 and € ~ IN(O,crcl. Values of n =

20, 60 and various sample splits were considered with the following




regressor ma\trices:4 X1 comprises the annual "spirits" income and price
data of Durbin and Watson (1951); X2 éomprises the quarterly Australian
Consumers Price Index, and its lag; X3, X4 and X5 each include a linear
time trend and (respectively) a Normal (30,4), log-Normal (2.23, 19.58) and

Uniform (0,10) regressor; X6 comprises the orthogonal regressors (a2 +

an)/\/§ and (a3+an_1)/\/2, where the a’s are the eigenvectors of the usual

"differencing"” matrixs, A. Test sizes of 1%, 5% and 107 were considered.
All computations were undertaken with Davies’ routine in the SHAZAM
package (White et al. (1990)) on a VAX 6340. Our code was verified by

replicating Consigliere’s (1981, p.130) results for her linear trend model.

4. Results

Our results with AR(1) errors accord with those in earlier studies -
the size of the Chow test is distorted when the errors are autocorrelated.
Generally, we find that the true size of the test is greater (less) than
its nominal size for p > 0 (< 0), as shown in Figures 1 and 2. As most of
our regressors are positively autocorrelated, this is consistent with the
analytical results of Corsi et al. (1982) for a singie regressor model. (An
exception6 is with X6 - in that case the true size exceeds the nominal size
regardless of the sign of p.) The size distortion can be substantial,
especially if p > 0.

With a nominal test size of 5% for p = 0.9 the true size ranges from
30% - 607 (507% - 80%) for n=20 (60) with our data. The increase in size
distortion as n increases reflects the consistency of the test, even in the
presence of model misspecification. Generally, the greater the imbalance
in the sample split, the less the size distortion, especially for large n.
Similar results are reported by Consigliere (1981) and Corsi et al. (1982)

in simpler models.




There are no previous results for MA(1) errors. We find that the Chow
test is more robust in this case - the degree of size distortion is 307 -
507 as much as with AR(1) errors and the same data. This reflects the
non-zero elements off the three leading diagonals of Q in the AR(1) case.
Generally, the patterns noted above apply in the MA(l) case, as in
Figures 3 and 4. The only exception is that with MA(1) errors there is
far less difference between the size distortions with n=20 and n=60,
compared with AR(l) errors. The Chow test is more robust to MA(1)

autocorrelation than AR(1) autocorrelation for larger sample sizes.

5. Conclusions

The limited previous evidence on the effects of autocorrelated errors
on the Chow test for structural change relates to simple models,
artificial data, and AR(1) errors. We show that the size of this test is
distorted by such autocorrelation for a range of realistic data sets. A
similar distortion arises if the errors follow an MA(l) process, through
there is (relatively) greater robustness in this case if the sample size is
reasonably large.

In practice, positive autocorrelation of both the errors and the

regressors is likely. Then the Chow test is biased towards rejecting the

null, and the researcher will "detect" structural change when none has
occurred. This will be a severe problem with realistic sample sizes if the
errors follow a positive AR(1) process.

The power of the test will be similarly distorted. Work in progress
considers this, and the effects of ‘“seasonal" autocorrelation in more

detail.




FIGURE 1

CHOW TEST SIZE WITH AR(1) ERRORS
X2 DATA , n=60, nominal size=5%

ni=10, n2=50

N1=20, n2=40

N1=50,n2=10

TRUE SIZE

FIGURE 2

CHOW TEST SIZE WITH AR(1) ERRORS
X2 DATA , n=20, nominal size=5%

Ni=5, n2=15

ni=7,n2=13

Ni=15,n2=5

TRUE SIZE




FIGURE 3

CHOW TEST SIZE WITH MA(1) ERRORS
X3 DATA , n=60, nominal size=5%

TRUE SIZE

FIGURE 4

CHOW TEST SIZE WITH MA(1) ERRORS
X3 DATA , n=20, nominal size=5%

TRUE SIZE

N1=10, N2=50

N1=50, n2=10

M=5,n2=15

Ni=7,n2=13

Ni=15,n2=5
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FOONOTES
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This probability is being calculated under the null, rather than the
alternative, hypothesis, as the same error vector is assumed in (2)
and (3).

The transformations needed to establish (5) are well known. See
Koerts and Abrahamse (1971) for details, and Consigliere (1981) for
their application in this context.

The size of the test is independent of the scale of the errors. "If
the error covariance matrix is scalar then the size is also
independent of the regressors.

In each case, an intercept was included, so k=3. Similar data sets
have been used in related studies by various authors.

A is an (n x n) tri-diagonal matrix with wunit (1,1) and (n,n)
elements, 2 elsewhere on the leading diagonal, and -1 as the leading

off-diagonal elements. The eigenvectors of A correspond to the

eignevectors ordered in terms of increasing size. The first  such

vector has constant elements.

X6 is Watson’s (1955) matrix for k=3, apd it produces the least
efficient least squares parameter estimates in the class of orthogonal
regressor matrices. X6 is known to include extreme results in the
distribution of the Durbin-Watson statistic, and in other testing

situations.










