%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/







Department of Economics, University of Canterbury
Christchurch, New Zealand

Discussion Paper No. 9111

September 1991

THE EXACT POWERS OF SOME AUTOCORRELATION
TESTS WHEN THE DISTURBANCES
ARE HETEROSCEDASTIC

John P. Small




THE EXACT POWERS OF SOME AUTOCORRELATION

TESTS WHEN THE DISTURBANCES ARE HETEROSCEDASTIC

John P. Small

Department of Economics, University of Canterbury, Private Bag, Christchurch,

New Zealand.

September 1991

Abstract

This paper considers the exact finite sample powers of five popular tests
for AR(1) disturbances when one of sever.al types of heteroscedasticity is also
presept. Severe 'reductions in power ar.e found, particularly under strong
positive autocorrelation. Factors influencing these power reductions are

identifted analytically and the limiting powers are also considered.




Introduction

In applied econometric work, testing for serial independence of the

regression disturbances is a routine and necessary practice. Such testing can

reveal to the researcher signs of specification error or poor explanatory

performance, as well as information about the appropriate estimation technique
to employ. The general agreement on the importance of detecting
autocorrelation has produced a large literature on the subject1 and has; led to
a variety of tests.

The most widely used such test for the last 40 years has been the bounds
test of Durbin and Watson (1950, 1951) which has two major advantages: it is
easy -to calculate the test statistic and the tabulated bounds are independent
of the data used. The drawbacks of the DW bounds test are the possibility of
inconclusive results and sub-optimal power properties under certain conditions.
Several easily applied alternatives have been suggested which overcome the
inconclusive region difficulties, for example the Sign Change test (Geary
(1970)).

More recently, great improvements in computer technology have avoided the
problem of the inconclusive bounds test by permitting easy application of the
exact DW test and this has refocussed attention on the task of developing tests
which have optimal power properties. The major offerings in this field are
from Berenblut and Webb (1973) and King (1981, 1985), who suggest tests which
are more powerful than the DW test for particular areas of the parameter space.
As well as having powerful tests at our disposél we would ideally use tests
which maintain their power when their underlying assumptions are violated in
some commonly occurring ways. Such problems as departures from normality,
omitted regressors or superfluous regressors should not seriously weaken a test
for autocorrelation (or any test), as these violations are likely to occur and

will typically be unknown to the applied researcher. This paper explores one




such scenario. We use exact techniques to study the power functions of five
tests for autocorrelation when ihey are applied to a model in which the
disturbance variance is heteroscedastic in one of three different ways. This
study extends work by Epps and Epps (1977) and Giles and Small (1991) (both of
which studied the power of the Durbin Watson test when the errors are
heteroscedastic) to include ﬁe Berenblut and Webb (1973) test, the alternative
DW test (King (1981)) and two versions of King’s (1985) point optimal test.

The next section outlines the structure and strengths of each test. Some
theoretical results arising from these models are presented in Section 3, which
is followed by a description of the data used in the numerical evaluations.
Section 5 reports the main findings of the study and Section 6 offers some

concluding comments.

2. The tests
Consider the standard linear regression model
y=X8 +u (1)

where y is a (Txl) vector of observations on the dependent variable, X is a
(Txk) full rank non-stochastic regressor matrix, B is a (kxl) parameter vector

and u is a (Tx1) vector of disturbances following the AR(1) process:

u =pu, +E |p| <1, t=1..,T (2)

We consider tests of Hy : p = 0 against H; : p >0 and H; :p <O

individually, each conducted at the 5% nominal size.
The statistics for each of the tests.considered can be written as a ratio

of quadratic forms in u, the general form of this ratio being

- u’ Qu

= ¥Mu 3

where M =1 - X(X'X)-IX’ and Q is some other nonstochastic (TxT) matrix, the

form of which determines the individual test statistic.




The Durbin Watson (DW) test

This has

Q = MAM where A =

0

The DW test is an approximately Unif ormly.Most Powerful (UMP) test of Ho rp =
0 against H; for all design matrices, the approximation being due to a small
modification made to the density function of the stationary AR(1) error process
by Durbin and Watson (1950). In addition, when the columns of X are linear
combinations of k of the eigenvectors of A, the DW test is an approximately
Uniformly Most Powerful Invariant (UMPI) test against H;. Throughout this
paper invariance is with respect to an affine transformation of the dependent
variable.
(ii) The Berenblut and Webb (BW) test

Berenblut and Webb (1973) propbsed two tests, the first of which used

Q = MBM, where

(o]
2 -1
0 -1 1

This statistic arose from a consideration of a modified form of the density
function of non-stationary first order autoregressive errors. The second test
statistic was arrived at by considering the likelihood ratio test of H0 :p = 0
against Ha : p # 0 (again in the context of a nonstationary AR(1) process), and

replacing the inverse of the covariance matrix of the AR(1) process with B.

This gave rise to a statistic using:

Q = B - BX(X'BX) 'xB.




This second test will be referred to as the BW test and was shown by Berenblut
and Webb to possess the optimal power qualities of both the DW test and the
first Berenblut and Webb test. In an empirical evaluation Berenblut and Webb
found that the BW test was more powerful than the DW test at high values of p

for six design matrices.

(iii) The alternative Durbin Watson (ADW) test

Here

Q= MAOM, where Ao =

King (1981) proposed this test and found it to be a Locally Best Invariant
(LBI) test in the neighbourhood of p = 0. In the same .paper King discussed
results from an empirical comparison of the power functions of the DW and ADW
tests, in which the latter generally performed better than the former against

negative autocorrelation and for p < 0.5. -

(iv) The point optimal (S(pl)) tests

This class of tests, due to King (1985), has

Q =zt - 2(p1)-1X[X’Z(p1)-1X] “x'z(pl)“

where z(pl) = —1—2- V(pl) and V(pl) is V with p fixed at some chosen value, Py
l-p1
King showed that this test is most powerful invariant (MPI) when the selected

value for P, is the true value of p. He studied the power of two versions of
the Point Optimal test, P = 0.5 and P = 0.75, and the DW, ADW and BW tests
using a wide range of design matrices. King found that small power increases
occurred whén using ei{her S(0.5) or S(0.75), in preference to DW or ADW, with
large samples of smoothly evolving regressors, and more significant differences

were _épparent in smaller samples. In the case of Watson’s (1955) matrix, the




S(pl) and BW tests had power functions which approached unity for p - 1, in
contrast to the DW and ADW power functions which peaked at p = 0.75 and then

declined.

Theoretical discussion
The power function of each test against H; : p > 0, for a nominal
significance level of 100aZ and its associated critical value, r*(a), can be

found by substituting values of p into the expression
pr{r <r*a) | V= V(p)} . (4)

The analogous expression for testing against H; : p < 0 is Pr{r>r*(a)|V=V(p)}
but the critical values used are different. The structure of each test
statistic which is given by (3), allows the use of the well known
manipulations, in the style of Koerts and Abrahamse (1969), for example, to
write (4) as:

pr{u’ (Q-r*MJu <0 | V= V(P)}

T 2
=pr{ z A.x.so}
j=1 J )

where the Aj's are the eigenvalues of (Q-rfM)V and the xj's are independent
central chi square variates, each with one degree of freedom. The following
lemma from Evans and King (1985) provides a useful unification.
Lemma 1

Ir Q = B - BX(X'BX)"X’'B
and ' M=1- XXX X
then _ QM = MQ = Q so that Q = MQM

The proof follows immediately from the definitions of M and Q. This lemma

enables us to write the BW and S(pl) tests as DW-type tests with a particular A




matrix and so to represent the power of all tests considered as depending on
the eigenvalues of M(A-r*I)MV for some non-stochastic A. The form of (5)
allows computation of the power of each test for any covariance matrix using,
for example, the FQUAD routine from Koerts and Abrahamse (1969) or Davies’
(1980) algorithm. The numerical evaluation§ described below were conducted
using a Fortran version of Davies’ algorithm conta_ifxed in the SHAZAM (White
et_al. (1990)) computer package.

The first practical question which arises is whether to introduce
heteroscedasticity into the ct's or the ut's of (2). In. practice either one,
the other, both or neither of these variables will be heteroscedastic. For the
purposes of a controlled study, however, a choice must be made. It is not
difficult to show (a proof is available on request) that heteroscedastic ct's
imply a different degree of heteroscedasticity in the ut's for each value of p.
Furthermore, the limiting case of p = 1 results in homoscedasticity for the

ut's. For these reasons heteroscedasticity was introduced directly into u. We '

assume, therefore, that € ~ NID(O,a‘z). t L,...,T. The covariance matrix of

a homoscedastic u vector defined by (2) is

2
o
E(u’u) = [—iz]v where V =

1-p

The following forms of heteroscedasticity are considered

_ Ll
var(ut) = th

var(ut) k(1 + 7Zt)




t = 1.2,....’1‘1,...,’[‘
where Zt is a suitable transformation of the value of the jth regressor at time
t, th, and «, ¥ and h are selected constants. The proportionality constant,
k = Vo'i/l-pz, does not influence the power or size of the tests considered and
shall nof concern us further.

These three heteroscedastic schemes are intended to represent forms which
are likely to occur in practise. Multiplicative heteroscedasticity (6) has
been considered by several writers, including Haryey (1976) who concentrated on
the estimation of a model with this characteristic. The process is easily

generalised to include dependence on more than one regressor but this study is

restricted to the simple case outlined above. The additive heteroscedasticity

of (7) can represent any situation where the variance of the dependent variable
is assumed to be a linear function of some transformation of the regressors. A
notable special case is the random coefficient model of Hildreth and Houck
(1968).  The third model of var(ut) is likely to arise when .the regression
parameters  exhibit a structural break, and will be refex"red to as Chow
heteroscedasticity after the well-known F tests for this phenomenon.

There is no good reason to assume homoscedasticity when a test for AR(1)
errors is conducted. Heteroséedasticity of the forms (7) and (8), in
particular, are likely to occur in time-series regressions, while testing for
spatial autocorrelation when wusing cross-section data provides another
motivation for this study.

We turn now to the question of the appropriate form of the covariance
matrix of u when both heteroscedasticity and autocorrelation are present.
Giles and Small (1991) assume that the vector of disturbance variances is

substituted into the leading diagonal of V, giving




_ L2
where var(ut) = ko-t. -
This' covariance matrix arises naturally from the Hildreth-Houck random
coefficient. model with AR(1) errors. It can also be derived from a model in
which only the intercept is random and in this context some extra insight is
gained. Suppose that
— ’
Vo = XiBtpy +uy
Yt S PYg e

where u, - N(O.of‘)is the random interceﬁt and g ~ N(0,0'z) is independent of

K, Then vy =g+ u has covariance matrix given by kV* with rrz =(1+ o;/k).

vVt If we let o-: = A (which imposes” homoscedasticity) then V* reflects the

following autoregressive process

u_s* g t =1,.,T, (9)

Aut = ps

in which the first autocofrelation is p/A, while all subsequent ones are p.
Since A > 1 the first autocorrelation is weaker than all others and this
reduces the average power of all tests considered here, irrespective of the
data, as the following theorem shows.
Theorem 1 '

When the autoregressive process is- given by (9) rather than (2), the
average value of the test statistic is increased when testing against H;.
Proof

Let S = M(A-r*I)M and consider the first moment of (r-r*) which is given

by E(u’Su) = tr(svV),




Consider VeE=V +A

where A = diag(A®)

and A* =2 -1>0.

If V* is the true covariance matrix of u then we must compare tr(SV) with

tr(SV*).

tr(SV*) = tr(S(V+A))

T
tr(SV) + Z q..A*
i=1 ii

tr(SV) + A*tr(S)

tr(S) = E(r-r*)
p=0

and we know that E(r) > r*, when testing against H;.
p=0

So tr(S) > 0 and tr(SV*) > tr(SV). #
So, at least on average, the probability of rejecting the null hypothesis
in favour of H; is therefore reduced as A increases. The same argument can be
used to show that when testing against H; the average value of the test
statistic is reduced, with the same power effect, on average.
This result provides the motivation for choosing transformations used in
constructing Zt which constrain crz to a minimum value of unity, while still

t
reflecting the variability of Xj. For (6), Zt = th/min th while (7) has Zt =
(th-mm(xjt))/(max(th)-mm(th)).
The other obvious method of introducing heteroscedasticity is to apply the
back-substitution procedure associated with the AR(l1) process to the
heteroscedastic 'ut's. This, in a sense, assumes that the heteroscedasticity

"came first", and results in the following covariance matrix, neglecting the

scale factor,




Both V* and V** have been used in this study, Which evaluates all powers

,exactly. _

3.1 The Limiting Power

The data dependence of the distribution of r precludes direct analytic
evaluation of the powers of the tests under consideration in almost all cases.
Some results are obtainable, however, at the boundaries of v the parameter space
by examining the limits of the eigenvalues of (5) as p 2> % 1. This technique
was used by Kramer (1985) to prove that, for regressions with no intercept, the
limiting power of the DW test as p > 1 is always zero or unity. A more
involved, but similar, analysis enabled “Zeisel (1989) to show that when an
intercept is present the power of the DW test as p - 1 lies strictly between
these two values. More recently, Small (1991) has generalised both of these
results to the ADW, BW and S(pl) tests.

This section presents’ two further limiting power results which apply when
the disturbances are heteroscedastic in particular ways.

Theorem 2

When var(ut) = kZ‘: and cov(u) is given by V**, the limiting power of all

tests considered as p - 1 is zero or unity unless « = 2, irrespective of the
presence of an intercept.
- Proof'

Under the conditions of Theorem 2, the covariance matrix of u is given by




«
1

oz
(2122) z

r /2
Z (2221)

«

2

/2 /2
z,z,) (Z,Z,)

(z,2)

/2

T

Notice that X}Uz is not in the column space of X unless @« = 2. This implies

that, in general, MV** # 0. Notice also that V** has rank equal to unity so
that M(A-r*I)MV** has only one non-zero eigenvalue. The sign oi‘ this
eigenvalue uniquely determines the power of the test, a positive eigenvalue
implying a limiting power of zero. #

The following corollaries extend this result in two directions.
Corollary 1

The limiting power, as p - 1, of all tests considered when var(ut) is
given by (7) or (8) and cov(u) = V** is also zero or unity.
Proof

When var(ut) is given by (7) then, as p » 1, V** > w’,

where v = (\/1_4-1—2; \/m; c. \/1—4-?_23)’ is not spanned by the column space
of X in general.

When var(ut) is given by (8) and p > 1, V** o5 ww’ where w =
(1,1,...,1,h,h,...,h)’ is also not spanned by the columns of X.

'In both of these cases V** also has unit rank so the limiting power of all

tests are zero or unity. #




Corollary 2

When cov(u) = V** and var(ut) is given by either (6), (7) or (8), the
limiting power of all tests considered is always zero or unity as p - -1.
Proof

If V** 5 v’ as p > 1 with v = pV,eeovp)’ then as p 5 1, V** 5 v’
with v~ = (vl.-vz,v3-v4.....(-I)T'lv ). Now if v is not in the column space of

T
X, then neither is v~ but V** has rank approaching unity as p - -1 under these

conditions. The power must therefore approach zero or unity as p » -1. #
Theorem 3
When var(ut) = k(1+72t) and cov(u) is given by V*, the limiting power of
all tests considered as p - 1 is constant for all ¥ > O, providing an intercept
is present.
Proof
Under the conditions of Theorem 3 we can decompose the covariance matrix
of u as
VE=X 4+ 9A, ’
where £ = ii’ for i = (1,1,...,1)’, A = diag(Zt) and 7 is a scalar.
Let S = M(A-r*I)M and consider the eigenvalues of SV*, being the A which
satisfy
Aw = SV*w , for some non-null vector w
or, Aw = S(Z+yA)w.
Now when an intercept is present, MZ = ST = 0 so that
Aw = 7SAw.

Consider some other non-zero scalar, y*. We can write

Aw = y* (%.] SAw ,

so . A%,w = 7*SAw ,
thus altering the value of 7 scales each eigenvalue by the same factor, which

does not affect the rejection probability. #




Data

Several regressor matrices were used in an empirical study in an attempt
to reveal the effects of data characteristics on the tests’ powers under the
mis-specifications outlined above.

The design matrices used were of two sizes, 60x3 and 20x3,and are
characterised as follows:
X1: A constant and the price and income series from Durbin and Watson’s (1951)

consumption of spirits example.

A constant, the quarterly Australian Consumers Price Index commencing

1959(1), and the same index lagged one period.

-A constant, a linear time trend and observations drawn from the Normal

(30,4) distribution.

A constant, a time trend and observations drawn from the Uniform [0,10]

distribution.

A constant, a time trend and observations drawn from ‘the Lognormal (2.226,

19.58) distributionz.

a;, (a2 + a.r)/ﬁ, (a3+a_r_1)/x’§. where a, ...,ap are the eigenvectors

corresponding to the eigenvalues of A arranged in ascending order. Note

that a, is a constant as it corresponds to the zero root of A.

These design matrices were chosen to represent a range of characteristics.

The slowly evolving X1 matrix is annual data while X2 has a weak seasonal

pattern. Both X1 and X2 have been used in previous studies in. the general
field of autocorrelation testing (e.g. King (1985) and Evans (1991)). Several
previous studies have suggested the use of artificial data of various types.
The lggnormal data, for example, are of tén used to represent cross section data
which are known to be skewed and therefore particularly relevant to scenarios

involving heteroscedasticity. The X6 matrix was shown by Watson (1955) to




produce the most inefficient OLS estimates within the class of orthogonal
matrices.

For each X matrix, one regressor was selected to be the X.j of (6) and (7).
The variables used for this purpose were: Income (XI), CPI (X2), Normal (X3),
Uniform (X4), Lognormal (X5) and (a, + aT)/\’i (X6). The scalars « and 7 were
chosen to give desired values of the ratio.

maximum var(u,)
h = t

minimum var (thI
The degree of heteroscedasticity introduced was controlled in this way with h
being set at six values ranging from 1.0 (which implies homoscedasticity) to
2.5. In the other exact work of this type, Epps and Epps (1977) and Giles and
Small (1991) used the same measurement criterion for heteroscedasticity,
although other measures could be considered, such as the coefficient of
variation.

No size corrections were made to the heteroscedastic power functions. The
reason for this is that the purpose of .this study is to determine the effect of
heteroscedastic disturbances on the power of each test when based on least
squares residuals. If an applied worker knew that the disturbances were
heteroscedastic she would use a GLS type estimator which would account for the
heteroscedasticity and simultaneously return the nominal size of the
autocorrelation test to its true size. This study presumes that the researcher

is ignorant of the complications due to heteroscedasticity.3

Results

It is convenient to discuss the results of the numerical evaluations in

two groups, distinguished by the structure of the mis-specified covariance

matrix.




S.1 Results using V»

This section discusses the results obtained by using the first version of
the mis-specified covariance matrix, V*, introduced above. All figures and
tables referred to are contained in Appendix 1.

The correctly specified (h = 1.0) power functions (e.g., Figures la and b)
are in accord with the findings of previous studies. In the case of X6 and
T = 60 the results are identical to those reported by King (1985). As expected,
the degree of extra power available from selecting the best test, rather than
the worst, varies considerably with the data used. This can be seen by
comparing Figure la, where there is very little difference between the tests,
with'l-‘igure 1b, which is based on different data and shows that large power
gains are available by selecting the best test. When using X4 (Uniform Data)
with T = 20 and p = 0.8, there is only a 2.27% increase in power obtainable by
using the best test (S(0.75)) rather than the weakest test (ADW), as can be
seen from Table 2. The correctly specified power functions for X1, X2 and X3
are almost identical to those of X4 which appear in Figure la. This graph also
confirms that the ADW test is relatively weak for p > 0.6, while the S(0.5),
S(0.75) and BW tests have very similar power functions which, as a group,
dominate the DW and ADW tests over this region. These rankings are reversed,
however, for tests against H;.

Greater differences between the tests are evident when using X5 and X6 in
a correctly specified model. Table 3 is based on a sample size of 20 and shows
that for XS with p = 0.8 and h = 1.0, the strongest test (S(0.75)) has a power
of 0.817, which is almost 67 better than the 0.773 power of the weakest test
(ADW). The same comparison using X6 reveals a massive 887 improvement from
using the best (S(0.75)) rather than the worst test (DW). Figure 1b clearly

illustrates the extreme differences which can arise even in correctly specified

models. As was noted by King (1985), when using Watson’s matrix, the power
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functions of the DW and ADW tests peak at p = 0.7 and then decline as p > 1.4
This is in stark contrast to the S(Pl) and BW tests which have power functions
which are strictly increasing in p, for this matrix.

When heteroscedasticity is introduced there is potential for the true
size of each test to be distorted away from the nominal (here 57) level. It is
obviously more difficult to compare the power functions of two tests (or the
same test in two different models) when one has a higher Type I error
probability than the other. The degree of size distortion encountered in this
study varied with h, the true sizes of all tests in all models falling within
the following ranges: [0.049, 0.052] when h =< 1.2, [0.049, 0.055] for h = L5

and [0.048, 0.058] for h = 2.0. These distortions are small, relative to the

power changes that are induced by increasing h above unity, which allows valid

comparisons of power functions across .tests and across different degrees of
heteroscedasticity.

The effect of introducing a moderate (h = L1.5) degree of
heteroscedasticity can be seen in Tables 1 to 3, in which the sample size is
always 20. Figures 3 and 4 present this information, and power functions for
other values of h, graphically. These figures also include powers for models
with different forms of heteroscedasticity, although the scale of the variances
has been standardised.

The most notable features of Figures 3 and 4 is that while all tests have
homoscedastic power functions which are strictly increasing in p, for these
design matrices, all these power functions are declining in p as p > 1 for all
h > 1 when T = 20. Notice also that the decline in power as h increases is
consistent with the effect predicted by Theorem 1.

f‘igure 4b graphs the power of the S(0.5) test for various degrees of
additive heteroscedasticity with T = 20 and using X4. The effect predicted by

Theorem 3 is clearly evident in this diagram. This data set illustrates the




least severe power reductions encountered as a consequence of
heteroscedasticity. Again, the power differences between the tests for a given
h are relatively small, as can be seen from Table 2.

The effect that sample size has on the power of these tests was noted by
King (1985). Other things constant, a larger sample size increases the power
of each test and reduces the power differences between the tests. In addition,
Figures 3a and b show that the DW test is much more robust to small degrees of
heteroscedasticity when T = 60 than when T = 20. This effect was found to be

common to all tests and all design matrices.

It can be seen from Figures 3 and 4 that the precise form of var(ut) is

not important for the general shape of the mis-specified power functions. The
crucial determinant of the serious power losses evident in these graphs is the
scale of the leading diagonal elements of V®, as suggested by Theorem 1.
Further weight is given to this conclusion by Figure 4a, which plots power
curves for the DW test using X1 with T = 20. In'this figure n represents the
number of non-unity leédlng diagonal elements of V*, all such elements taking a
value of 2.5. The conclusion is that as the average of the diagonal elements
increases, the power of the test falls.

The ranking of the tests on the basis of . their powers can change as a
result of increasing h above unity. For example Table 1 shows that for Xl and
h 1.0 the limiting power of the BW test is superior to all others while when
h 1.5 this test has the lowest limiting power (recall that BW is LMPI as p -
1). Comparisons such as this are potentially dangerous however, as they divert
attention from the major effect of this form of heteroscedasticity and can giv.e

false confidence in the strength of one particular test.
5.2 Results using Vax

In this section we consider the power functions when the true covariance

matrix is V**. For these models, Appendix 2 provides selected graphs and
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tabulated power values, all of which are based on a sample size of 20. In
Table 4 heteroscedasticity is of the form given by (6).
When the covariances between individual disturbances reflect their

heteroscedasticity the true covariance matrix is given by V**.  The scale of

the disturbance variances is irrelevant in this case, as it affects all

elements of the covariance matrix and can therefore be factored out. Another
way of looking at this is to note that there is no implied mis-specification of
the AR(1) process, in contrast to the V* case considered above.

The effect of this type of _mis-specification on the sizes of the tests
considered is minimal. The true sizes of all tests over almost all models were
found to be identical to their nominal sizes to two decimal places. The
exceptions to this were minor, with true sizes falling in the range (0.0S6,
0.060) for high values of the heteroscedasticity parameter when the data was X2
and X6 (recall that all tests had a nominal size of 0.050).

Disregarding, for now, extremes of the parameter space, the powers of the
tests were generally not sign.ificantly altered by introducing
heteroscedasticity of the form V**. In cases where, for given p, the power of
a test changed by more than % 0.01, it was found that .the data matrix used was
the important factor, rather than the particular test.

These slightly larger deviations from correctly specified power functions
occurred with X1 (for mid-range p > 0), X3 (strongly negative p), X4 (as p -
1), XS (as p » 1) and X6 (mid-range and strongly neg;;c.iv; p and as p 5 1). The
most serious loss of power occurred with X6 when p fell in the range (0.55,1).

It is interesting to note that altho}_xgh the BW, S(0.5) and S(0.75) tests
are not intended for use against H; they have higher power against this
altermative than against H;, for given absolute values of p. As usual, there

is an exception to this statement which is provided by Watson’s data set, X6.




The tables of Appendices 1 and 2 show power values for p = * 1. These
were calculated using the techniques suggested by Krimer and Zeisel (1990). As
shown in Theorem 2, for all tests considered here, when the true covariance
matrix is V** and var(ut) is given by (6), (7) or (8) the limiting power (in
either direction) is always zero or unity. This fact accounts for significant
deviations from correctly specified power functions as p - 1 for X3, X4, X5,
and X6, since the limiting V** power for all tests using these data sets is
zero. Again, the precise form of var(ut) is less important than the structure
of the covariance matrix.

The real data used produced heteroscedastic limiting powers of unity which
provokes speculation as to the reasons for the difference from the artificial
data in this respect.

To summarise this section, it has been found that mis-specification of the
type given by V** has very little effect on the size and power of all tests
studied unless the AR(1) parameter is very large in absolute value. In
particular, the power of all tests approached zero as p - 1 when artificial

data were used.

6. Conclusion

This paper has considered the effect that heteroscedastic errors have on
the power of some tests for AR(1) errors, and has found severe reductions in
power under two different covariance matrix structures and three types of
heteroscedasticity.

When the underlying AR(1) process is altered by the introduction of

heteroscedasticity of the V* type, the power of each test is lower (for all b)

the greater is the scale of the disturbances, irrespective of the particular

scheme for var(ut).




The second heteroscedastic covariance matrix used, V**, allows the AR(1)
process to dominate, with the covariance terms reflecting the
heteroscedasticity. In this case the most notable effect is on the limiting

power as p - % 1. Independently of the presence of an intercept, the limiting

power of each test considered is either zero or one under these conditions,

when various forms of heteroscedasticity contaminate the error process. The
clear conclusion arising from this paper is that thex:; is no guarantee that the
popular tests for AR(1) disturbances studied have any significant power when
"there is heteroscedasticity present. Furthermore, it has been shown that in
many such cases the probability of detecting autocorrelation declines as the

autocorrelation gets stronger, and the consequences of ignoring it get more

severe.




This paper reports on work undertaken as part of the author’s Ph.D.
research. The author is indebted to Professor D.E.A. Giles and to Dr J.A.
Giles for their many helpful comments and suggestions. An earlier version
of this paper was presented at the Econometric Society Meeting, Sydney,

1991.

The Box-Pierce Q statistic is one of several which have been suggested.

This is the exponential of the N(0,1.6) distribution and has a coefficient

_of variation in the population of vI9.58/2.226 = 1.988.

A second, and more pragmatic, reason for not correcting for size is that
the degree of size distortion encountered was negligible, as discussed
below.

The phenomenon of power functions falling as p » 1 has been noted by
several other authors. Recent work on this topic includes Krimer and

Zeisel (1990) and Bartels (1990).
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APPENDIX 1

RESULTS USING

COVARIANCE MATRIX V¥




Table 1

Selected powers using V* with multiplicative heteroscedasticity

(a) Spirits data (X1)

ADW DW $(0.5) 5(0.75) BW
h=1 h=1.5 h=1 h=1.5 h=1 h=1.5 h=1 h=1.5 h=1 h=1.5

1.000 0.766 1.000 0.760 1.000 0.765 1.000 0.766 1.000 0.769
0.943 0.835 0.922 0.808 0.932 0.821 0.926 0.815 0.919 0.809
0.764 0.642 0.737 0.617 0.749 0.628 0.740 0.621 0.727 0.612
0.450 0.368 0.434 0.355 0.441 0.361 0.435 0.357 0.425 0.351
0.177 0.153 0.174 0.150 0.175 0.152 0.173 0.151 0.171 0.149
0.050 0.051 0.050 0.050 0.050 0.051 0.050 0.051  0.050 0.051
0.050 0.049 0.050 0.049 0.050 0.049 0.050 0.049 0.050 0.049
0.177 0.148 0.174 0.147 0.176 0.148 0.175 0.147 0.171 0.143
0.407 0.320 0.405 0.320 0.409 0.322 0.407 0.320 0.398 0.311
0.649 0.501 0.653 0.505 0.656 0.507 0.656 0.506 0.648 0.496
0.810 0.585 0.818 0.596 0.819 0.597 0.821 0.598 0.819 0.590
0.874 0.058 0.883 0.060 0.884 0.059 0.888 0.059 0.892 0.056

(b) CPI data (X2)

0.684 1.000 0.681 1.000
0.742 0.916 0.743 0.905
0.559 0.732 0.562 0.719
0.323 0.435 0.326 0.427
0.141 0.175 0.143 0.173
0.050 0.050 0.051 0.050
0.052 0.050 0.050 0.050
0.142 0.173 0.138 0.172
0.291  0.402 0.288 0.400
0.447 0.647 0.444 0.647
0.507 0.808 0.500 0.810
0.084 0.873 0.069 0.876




Table 2

Selected powers using V* with additive heteroscedasticity

(a) Normal data (X3)

DW S(0.5) S(0.75) BW
h=1.5 h=1 h=1.5 h=1 h=1.5 h=1 h=1.5

0.546 1.000 0.508 1.000 0.491 1.000 0.483
0.611 0.850 0.588 0.831 0.570 0.820 0.560
0.452 0.662 0.443 0.646 0.431 0.637 0.424
0.267 0.399 0.265 0.391 0.260 0.386 0.257
0.124 0.168 0.125 0.166 0.123 0.165 0.122
0.049 0.050 0.049 0.Q50 0.049 0.050 0.048
0.051 0.050 0.051 0.050 0.051 0.050 0.052
0.130 0.172 0.131 0.171 0.131 0.169 0.130
0.264 0.405 0.267 0.403 0.266 0.400 0.265
0.408 0.659 0.412 0.658 0.412 0.656 0.411
0.457 0.824 0.459 0.826 0.461 0.826 0.462
0.055 0.883 0.053 0.885 0.054 0.886 0.056

(b) Uniform data (X4)

0.687 0.680 1.000 0.667 1.000
0.771 0.743 0.921 0.746 0.910
0.580 0.556 0.732 0.559 0.719
0.332 0.321 0.433 0.322 0.425
0.143 0.141 0.174 0.141 0.173
0.050 0.051 0.050.0.051 0.050
0.050 0.049 0.050 0.049 0.050
0.137 0.133 0.173 0.136 0.171
0.285 0.278 0.405 0.286 0.403
0.441 0.438 0.658 0.447 0.658
0.500 0.505 0.824 0.510 0.826
0.049 0.044 0.884 0.048 0.886




Table 3

Selected powers using V* with Chow-type heteroscedasticity

(a) Lognormal data (X5)

ADW DW 5(0.5) §(0.75)
rho h=1 h=1.5 h=1 h=1.5 h=1 h=1.5 h=1 h=1.5 h=1

'

-1.0 1.000 0.721 1.000 0.712 1.000 0.712 1.000 0.708 1.000
-0.8 0.921 0.766 0.896 0.739 0.894 0.741 0.884 0.731 0.879
0.736 0.577 0.707 0.554 0.705 0.555 0.695 0.547 0.689
0.436 0.335 0.421 0.324 0.420 0.325 0.414 0.322 0.411
0.175 0.147 0.172 0.145 0.172 0.146 0.171 0.145 0.170
0.050 0.053 0.050 0.053 0.050 0.053 0.050 0.053 0.050
0.050 0.051 0.050 0.050 0.050 0.049 0.050 0.049 0.050
0.168 0.135 0.165 0.132 0.167 0.131 0.165 0.129 0.163
0.380 0.272 0.381 0.270 0.392 0.275 0.389 0.272 0.386
0.611 0.411 0.626 0.419 0.644 0.431 0.644 0.431 0.642
0.773°0.459 0.798 0.479 0.814 0.492 0.817 0.495 0.816
0.837 0.090 0.865 0.089 0.877 0.082 0.880 0.081 0.880

(b) Watson’s data (X6)

0.067 0.080 0.000 0.033 0.000
0.328 0.307 0.289 0.214 0.264
0.339 0.318 0.337 0.259 0.314
0.238 0.227 0.260 0.205 0.248
0.124 0.121 0.137 0.117 0.134
0.051 0.051 0.050 0.051 0.050
0.051 0.051 0.050 0.051 0.050
0.123 0.120 0.142 0.120 0.134
0.227 0.221 0.339 0.251 0.327
0.308 0.300 0.604 0.416 0.603
0.278 0.272 0.819 0.518 0.829
0.097 0.097 0.925 0.101 0.935




Figure 1a
Uniform Data; T=20
h=1.0

Figure 1b
Watson's Data; T=20
h=1.0




Figure 2a
Uniform Data; T=20
h=15

Figure 2b
Watson's Data; T=20
h=15

Chow Heteroscedasticity




Figure 3a
CPiData; T = 60
DW Test
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-1

Additive Heteroscedasticity

Figure 3b
CPl Data; T.= 20
DW Test

Additive Heteroscedasticity




Figure 4a
Spirits Data; T = 20
DW Test
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Chow Hetsroscedasticity (h=2.5)

Figure 4b
Uniform Data; T = 20
S(0.5) Test
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Additive Heteroscedasticity
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Table 4

Selected powers using V#* with multiplicative heteroscedasticity

(a) Spirits data (X1)

ADW DW 5(0.5) S(0.75) BW
Rho h=1 h=1.5 h=1 h=1.5 h=1 h=1.5 h=1 h=1.5 h=1 h=1.5

-1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.943 0.942 0.922 0.920 0.932 0.931 0.926 0.925 0.919 0.919
0.764 0.764 0.737 0.734 0.749 0.748 0.740 0.739 0.727 0.728
0.450 0.451 0.434 0.433 0.441 0.441 0.435 0.436 0.425 0.427
,0.177 0.178 0.174 0.174 0.175 0.176 0.173 0.175 0.171 0.173
0.050 0.051 0.050 0.050 0.050 0.051 0.050 0.051 0.050 0.051
0.050 0.049 0.050 0.049 0.050 0.049 0.050 0.049 0.050 0.049
0.177 0.173 0.174 0.171 0.176 0.173 0.175 0.172 0.171 0.167
0.407 0.401 0.405 0.400 0.409 0.403 0.407 0.401 0.398 0.391
0.649 0.643 0.653 0.647 0.656 0.650 0.656 0.650 0.648 0.641
0.810 0.805 0.818 0.813 0.819 0.814 0.821 0.816 0.819 0.813
0.874 1.000 0.883 1.000 0.884 1.000 0.888 1.000 0.892 1.000

(b) Normal data (X3)

1.000 1.000 1.000 1.000 1.000
0.898 0.871 0.850 0.842 0.831
0.702 0.670 0.662 0.653 0.646
0.414 0.395 0.399 0.391 0.391
0.168 0.163 0.168 0.164 0.166
0.049 0.049 0.050 0.049 0.050
0.050 0.051 0.050 0.051 . 0.050
0.172 0.173 0.172 0.174 0.171
0.399 0.401 0.405 0.407 0.403
0.643 0.653 0.659 0.659 0.658
0.806 0.820 0.824 0.824 0.826
0.000 0.000 0.883 0.000 0.885




Figure 5a
Normal Data; T = 20
h=1.0

$(0.75)

Figure 5b
Normal Data; T = 20
h=15

$(0.75)

0.0
-1

Muttiplicative Heteroscedasticity




Figure 6a
‘Spirits Data; T=20
DW Test

Figure 6b
Uniform Data; T=20
ADW Test
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Additive Heteroscedasticity










