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Abstract

This paper considers the point optimal tests for AR(l) errors in the

linear regression model. It is shown that these tests have the same limiting

power characteristics as the Durbin-Watson test. The limiting power is zero

or one when the regression has no intercept, but lies strictly between these

values when an intercept is included.
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1. Introduction

Consider the standard linear regression model, with possibly AR(1)

errors:

y = X13 + u

ut = put..1 + ct, I p I < 1, ct N1D(0,cr:), t = 1,...,T

where y and u are (Txl) vectors of observations on the dependent variable and

random disturbances respectively, X is a (TxK) non-stochastic matrix with full

column rank and (3 is a (Kxl) vector of parameters. Let E(uu' ) = V

cr2/(1-p2)0 and denote the Cholesky decomposition of f2 by L(p).

We are interested in those tests of H
o
: p = 0 vs H

A
: p > 0 for which the

test statistics can be written as a ratio of quadratic forms in u,

d = u' Qu/u' Mu

where M = I - X(X' X)X1 is symmetric and idempotent and Q is some other (TxT)

non-stochastic matrix. This specification encompasses two types of tests

which have been shown to have high power in exact comparative studies (e.g.

King (085)).

The first type of test uses OLS residuals only, examples being the

Durbin-Watson (DW) and the alternative Durbin-Watson (ADW) tests (see King

(1981) for discussion of the relative strengths of these tests). For these

tests Q = MAM where A is a first-differencing matrix of a slightly different

form for each test.

Tests of the second type use GLS and OLS residuals and are most powerful

invariant in particular regions of the parameter space. Examples are the I3W

test of Berenblut-Webb (1973) and King's (1985) S(pi) test, where Q =

B-BX(X' BX)X' B' and B is the inverse of the covariance matrix of u, for some

value of p, pl. The I3W test is MPI as p 1 and the S(pi) tests are MPI when

P = Pi.
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It is known that the power of all of these tests can approach zero as p

approaches unity. This has been demonstrated by Kramer and Zeisel (1990).

For the DW test, analytic results prove that this limiting power is always

zero or unity for regressions with no intercept (Kramer (1985)) but lies

strictly between these two values when an intercept is included (Zeisel

(1989)). Extension of these results to the ADW test is trivial as the precise

form of the A matrix is not relevant to either proof. The following section

will show that the same limiting power characteristics apply to the point

optimal tests, S(pi) and BW.

2. Theoretical Discussion

The power of each test considered above can be expressed as

Pr{u' (Q-d*M)u < = Pr{ E A JZJ2. <

where d* is the appropriate critical value, Zi2. — 41) and independent and the

A .'s are the eigenvalues of

W(p) = L' (p)(Q-d*M)L(p).

For the DW and ADW tests Q = MANI and, since MM = M, we have

W(p) = L' (p)M(A-d*I)ML(p).

The result of Kramer (1985) derives from observing that L(1) contains a

column of ones and using MX = 0 to conclude that if X does not contain an

intercept then W(1) # 0 but is of unit rank. There is only one non-zero

eigenvalue of W(1), the sign of which determines whether zero or unity is the

limiting power.

There are two ways of showing that this result also holds for the point

optimal tests. The more direct method employs the following theorem, due to

Evans and King (1985).
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Theorem 1. If Q = 13-13X(X1 13X)-1X1 131 and M = I-X(X' X)-1X' then MQ = QM = Q.

The proof follows directly from the definitions of M and Q. This result

allows the point-optimal test statistic to be written as a Durbin-Watson type

test, with a particular A matrix:

d = u' MQMului Mu.

The power of a point optimal test can now be seen to depend on the eigenvalues

of

W(p) = L' (p)M(Q-d*I)ML(p)

and if the regression has no intercept then W(1) has exactly one non-zero

eigenvalue and the result of Kramer (1985) holds.

When an intercept is present W(1) = ML(1) = 0 and the covariance matrix

manipulations of Zeisel (1989) show that the limiting power depends only on

the eigenvalues of U' M(A-d*I)MU for the DW (and hence ADW) test, where

U=

Defining i = (1,1,...,1)' and F = [i I 0 + U, Zeisel notes that F is

regular and MF = MU when the model has an intercept. The congruent

transformation U' M(A-d*I)MU = F1 M(A-d*I)MF does not change the number of

positive and negative eigenvalues, by Sylvester's law of inertia. Now, since

F is non-singular, F' M(A-01)MF is a congruent transformation of M(A-01)M,

the eigenvalues of which determine the size of the test. For a non-trivial

test, some eigenvalues of M(A-d*I)M will be positive, some will be negative,

and Sylvester's law of inertia ensures that this is also true of the

eigenvalues of F' M(A-d*I)MF. Thus the limiting power of the DW (and ADW) test

lies strictly between zero and unity.
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This result is readily extended to the point optimal tests by using

Theorem 1 and noting that the particular form of the A matrix is not relevant

to Zeisel's argument.

An alternative derivation of the power of point optimal tests, which

highlights computational issues, is possible by using the following

diagonalisation of M. There exists an orthogonal matrix P such that

PMP' [
I
T-K 

0

0 0

Partition P as

P = P
1

L 2

1
and PP' = P' P = I.

where P
1 

is (T-K) x T and P
2 

is K x T and observe the following consequencs:

P MP' = I
1 1 T-K

P NIP' = 0
2 2

P
1 
P = 0
2

The rows of P are eigenvectors of M, with the rows of P1 corresponding to the

unit eigenvalues and the rows of P2 corresponding to the zero eigenvalues. It

follows that PIM = P1 and P2M = 0, while P' P = I implies that 171 = I - 172.

Post-multiplying by M gives

P'P
1 
= M.

1 (1)

The matrices X and M together span Rn and the row space of M is the

orthogonal complement of the column space of X (Searle, (1982), p.226). This

implies that the rows of P2 are linearly dependent on the columns of X while

the rows of P1 are orthogonal to the columns of X, and we can write

=
PlX 

0

4
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P = XG, (3)2

where G is T x T and nonsingular.

Following King (1980) we use the following result from Rao (1973, p.77).

Lemma 1: If V is (nxn) and positive definite and U and T are (nxk) and

(nx(n-k)) matrices respectively, such that if W = (U:T) then

W' W = WW' = In, then

V-1 - V-1U(U' V-1U)-1U' V-1 = T(T1 VT)-1T1

Lemma 2:

Proof:

d = u' (V-1-V-1X(X' V-1X)
-1x, ,v-i )u/u, Mu = p/(pivp/ ) 

1
u/u' PP1u

Apply Lemma 1 with T = P'1 and u = P2' and use (1) and (3):

d = u' (V-1-V-1X(X' V-1X)-1X1 V-1) u/u1 Mu

= u, (p2, v-ip2)-1
12 
...

V 1)11/111PP1u

= u' (PIVP1 )-1P1u/u' Pill.

We can now use the usual manipulations to see that the power of a point

optimal test depends on the eigenvalues of

W*(p) = 1-1(p)P4(131VPI )-1 - (4)

Using (2) it is clear that if the regression has no intercept then P1L(1) # 0

but r (W*(1)) = 1, so the power is uniquely determined by the only non-zero

eigenvalue.

When an intercept is present, PIF = P
1 
U and the limiting power of a point

optimal test must lie strictly between zero and unity.

A further advantage can be gained from (4). Under n
o 

the rejection

probability depends on the eigenvalues of

P'
1
1(P

1 
VP' )-1 -

1
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However, since 71 = I these are the same as the eigenvalues of

(P
1 
VP' )-1 -

1

or of

(VM)-1 - d*I

This allows a relatively simple method of finding a 100cc% critical value by

solving for d* in

T-K
pr! E .Z2. < d* = cc

J=1 J J

where the A. are the reciprocals of the non-zero eigenvalues of VM and
J

2
X
(1)
.

Furthermore, once a point optimal test statistic has been calculated, an

exact prob-value is easily obtained by this method. This could be included as

an option in a computer package, as SHAZAM (White et al., 1990) does for the

Durbin-Watson Test.

3. Conclusion

It has been shown that the well-known importance of including an

intercept in the regression when using the Durbin-Watson test also applies to

the point optimal tests for autocorrelation. In particular, the limiting

power of the Berenblut-Webb test, which is LMPI as p approaches unity, can be

zero if there is no intercept in the model.
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