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ABSTRACT

When dealing with heteroskedastic models Y = u(X) + £ in econometrics
and other disciplines, situations often arise (especially with structural
models) where the probability distribution of the (Rd-valued) regressor
vector X is known, but postulations about the fﬁnctional form of the
regression pu(x), the heteroskedasticity oz(x) = var(e|X=x) and the
distribution of the disturbance term € are made. These three postulations
generally lead to misspecification of " the models. This paper, based on a
data set on (Y,X), considers nonparametric kernel estimators alx), 5‘2(x)
and V(ji(x)), respectively, of the regression p(x), the heteroskedasticity
o-z(x) and the asymptotic variances V(u(x)) of the regrevssion estimate f1(x)
for situations where only the probability distribution of X, say A is
known. For an arbitrary. subset A in the interior of the support of A and

for 1 = p < o, we establish convergences to zero, as the data set gets

large, of the Lp-norms na-piP = _[ Elf(x)-p(x) |PdA(x) (with A = &Y for p =
A

1), ll&z-a‘zllp (with A = th for p = i) and ll\?’(ﬁ)—V(ﬁ)Hp under certain }noment
conditions on Y but with no assumptions on the joint distribution of (Y,X)

or the continuity of u(x), <r2(x) or the density of X.




1. INTRODUCTION

Let (Y,X) be a Rl X IRd - valued random vector defined on a probability
space (Q,B,P). Then the general heféroskedastic regression model is given
by Y = u(X) + €. A measurement on response Y at a value x of the regressor
X is the value of the unknown regression u(x) at X = x contaminated with an
unobservable disturbance term ¢, which is random on (Q,B,P) with
conditional mean E(e|X) = O and unknown conditional variance Var(e|X) =
a‘Z(X), called the heteroskedasticity of the regression model. Estimations
of the regression function u(x) = E(Y|X=x) and the heteroskedasticity
function @2(x) = var(Y|X=x) are invariably handled in various sciences by
postulating a certain fixed model (functional form) for -the regression, by
assuming a  constant conditional variance, o-z(x) = 0‘2 (the
homoskedasticity), for the response variable Y at any value x of the
regressor X and by assuming a knowledge of the functional form of the
distribution of the disturbance term €. However any postulations regarding
the functional form of the regression u(x), the heteroskedasticity a-z(x) or-

the distributions of disturbances € are all questionable, and often lead to

misspecifications of the models, which thereby lead to serious impact on

decisions and plannings.

This problem of misspecification of the models, however, can be
avoided by assuming no specific parametric form for the regression or
heteroskedasticity function; and by estimating them completely
nonparametrically.

Whereas a vast literature on nonparametric estimation of regression p
is at hand, (for example, Watson (1964), Rosenblatt_ (1_969). Schuster
(1972), Schuster and Yakowitz (1979), Noda (1976), Greblicki and Krzyzak

(1980), Hérdle (1984), among others, discussed pointwise consistency; and




Nadarya (1964, 1970), Deheuvels (1974), Hall (1981), Mack and Silverman
(1987), Hirdle and Luckhans (1984) Singh and Ahmad (1987), among others

discussed uniform consistency of nonparametric kernal estimators of

regression), nonparametric estimation of heteroskedasticity function crz(x)

has drawn little attention. Hildreth and Houck (1968), Fraehlich (1973),
Box and Hill (1974), Jobson and Fuller (1980) and Judge et al (1988)
adopted a sort of parametric approach in which they assumed that a‘z(x) has
a known functional form involving a finite number of unknowp parameters.
Fuller and Rao (1978), White (1980), Carroll (1982) and MacKinnon and White
(1985) took a somewhat semi-non-parametric approach in which they assumed
that the regression function p(x) has a known functional form involving a
finite number of unknown parameters, estimated these parameters and then
used the residuals and the estimated variance-covariance of the parameter
estimates to estimate rrz(x) nonparametrically. In the latter works, the
assumed functional form of p(x) is a linear regression. Miller and
Stadtmiiller (1987) considered estimation of a'z(x) with nonstochastic
ordered regressors assuming, among others, that the density of Y and 0'2(x7
satisfy certain order of Lipschitz condition. Singh and Ullah (1985) and
Singh et al. (1987) discussed estimation of o-z(x) under the continuity of
crz(x), the density of X and the joint density of (Y,X) at x.

In most of the literature on the nonparametric estimation of
regression or heteroscedasticity (e.g. the - references cited in the
preceding paragraph), it is invariably assumed, particularly when
discussing consistencies . like weak, strong, mean square or asymptotic
normality that the regression u(x) and heteroskedasticity o‘z(x) (in case of
its estimation) are continuous, and the joint density of (Y,X), the density
of Y and the density of X (and hence the conditional density of Y given X =

x) not only exist but are also continuous. Recently Singh (1989)




considered kernel estimations of u and a'z under no condition on the
distribution of (Y,X) other than that the distribution function of X is
absolutely continuous w.r.t. the Lebsegue measure on IRd so that the
probability density function (pdf) of X exists. He established the weak and
strong consistencies as well as the asymptotic normality of the estimators
u(x) and az(x) only under some appropriate moment conditions on Y. Thus
for his results the joint density of (Y,X), the density of Y or the
conditional density of Y given X need not exist and u(x), trz(x) or the
density of X need not be continuous at x. Under similar weaker conditions
he has also established weak and strong consistencies of the estimates of
the variances of his regression and heteroskedasticity estimators by
establishing similar properties for the estimators of a general function,
namely ur(x) = E(lex=x) for r = 0. .

Greblicki and Krzyzak (1980), Johnston (1982) and Hirdle (1986), among
others considered Watson-Nadaraya type kernel estimators of regression when
the pdf of the regressor X, say ¢, is known. Under the assumption that

¢(x) and p(x) are continuous and EY?

< o, pointwise weak consistency of.
such estimators [i(x) is established by Greblicki and Kryzyzak, while
Johnston and Hirdle obtained results, respectively, on the asymptotic

distribution of the maximal deviation of f(x) from p(x) and an

1
L2(0,1)-normoj Elf(x)-p(x)|dA(x), where A is the probability measure of X.

Considering stituations where the distributions of the regressor vectors
are known is not quite unrealistic. For example, in structural regression
models in econometrics quite often the regression vector is consisted of
endogenous . variables generated from some known functions of exogenous
variables plus independent multivariate normal errors with mean zero and

known variances.




In this note we further look at the situation considered in the
preceding paragraph, i.e. when the pdf of X is known. We estimate the

regression as well as the heteroskedasticity and the variance of the

regression estimator, and examine the Lp-norm (p = 1) consistencies of

these estimators. Weak and strong pointwise consistencies of these
estimators follow from those established in Singh (1989) under weaker
conditions stated in preceding paragraph. However, note that weak or
strong consistency of an estimator does not imply Lp-norml consistency.
Without any continuity assumption on u(-), 0'2(') or the p.d.f. ¢(:) of X,
and without making any assumption on the distribution of (Y,X), the
distribution of Y or the conditional distribution of Y given X, we
establish the convergence to zero, as the sample size gets large, of the
Lp-norm distances, 1 s p < w, of the estimators from theirrespective true
values.

In éection 2, we introduce some notations, give a-.proper definition of
"Lp-norm convergence" considered here and define estimators fzr(x) of the
regression function pr(x) = (EY'IX=x) of Y on X for r = 0, estimators
Gz(x) of the heteroskedasticity o-z(x) and estimators V(i(x)) of the
asymptotic variance of the regression estimate p(x) = ﬁl(x). In Section 3
we establish Lp-norm consistencies of the estimator ﬁr (Theorem 3.1), 5'2
(Theorem 3.2) and V(1) (Theorem 3.3). The paper is concluded with a few

remarks in Section 4.




2. NOTATIONS, DEFINITIONS AND ESTIMATORS

Let IRd denote the d-dimensional Euclidean space with the usual norm
d 2,172

nzll = (z’z)l/2 = (zlzi) for z ="(zl....,zd)’ e &4 Let (Y,X), (Yl.xl).
vey (Yn'xn) be independent identically distributed Rl x le - valued random
vectors defined on a common probability space (Q,B,P). We assume that the
regression p(x) = E(Y[|X) and the heteroskedasticity oz(x) = var(Y|X) are
properly defined and exist a.e.(A), where A is the probability measure of
X. We assume nothing about the joint distribution of (Y,X), the
distribution of Y or the conditional distribution of Y given X. We do
however assume that the probability measure A of X is known and is
dominated by the Lebesgue measure on Rd so that the probability density,
sayA ¢, of X exists and is known. Thus the joint density of (Y,X), the
density of Y or the conditional density of Y given X need not exist and the
functions u(x), cz(x) or ¢(x) need not be continuous. When ¢ is unknown
but the response variable Y is bounded w.p.l, estimators of the regression
and heteroskedasticity functions, which are some retracted versions of
those considered in Singh (1989), have been recently studied by Singh and
Giles (1991) and Ll-norm consistencies (which also imply Lp-norm
consistencies for p = 1 in their case) have been established.

All real-valued functions on Rd in this paper carrying an argument x
(explicitly or implicitly) are only defined a.e. A, i.e. on the support of
the pdf ¢. Also all convergences of sequences (in n) of functions carrying
an argument x (explicitly or implicitly) are only a.e. A.

For r = 0, define

(X)) = E(Y]X=x)

(so that ul(x) = u(x)). In the heteroscedastic model Y = pu(X) + e, with




E(e]X) = 0, the regression function is pu(x) = E(Y|X=x) = (pl(x), according

to our notation) and the heteroskedasticity function is
2 2
¢(x) = var(e|X=x) = E(e“|X=x),

which can be expressed as o'z(x) = uz(x) - u.i(x).»

Define \llr = pr¢ so that

¥.(x)
(2.1) pr(x) m .

Notice that ;l:o = ¢.

Let K be an arbitrary Borel-measurable function on IRd with

[ K(uldu = 1. Let (hn) be a sequence of positive real numbers such that
d }
R

hn » 0 as n 9 w Define

X.-x
4 ) = (mpdhl i
(2.2) _ $.(x) = (nh7) z‘J.‘=1Y§x[ A ]
and

d(x) = ni:o(x).

Throughout this papér, the notation (a)B will stand for -B, a or B
depending on whether a < -B, |a] s Bor a > B.

In view of our knowledge of ¢, nonparametric kernel estimate of ur(x)

”r(X)
For estimation of 0'2, we assume that |E(Y|X)] = B w.p.l for some B < w.
We estimate cz(x) by

(2.4) ) = fiy(x) = (ExNZ, where i = Gy -




, ~ . - 2200 N 2

Estimators Br(X) = {wr(x)/¢(x)) for pr(x) and 87(x) = (Bz(x) (81(x)))
for c?‘(x) are considered in Singh (1989). Only under some moment
conditions on Y and the existence of @, it has been established there that

the asymptotic variance of the regression estimate El(x) = 8(x), up to the

order o[(nhg)_ll. is given by

2 2
~ _ (ndi-l 07(x)JK
(2.5) v(e(x)) = (nhn) 2

where J'KZ = I Kz(x)dx ,
le
(see also Singh and Ullah (1985), Singh et al (1987). It follows from the

same arguments that the asymptotic variances of the regression estimates
ﬁ(x) and (x) = le(x) are the same as given in (2.5). Thus we estimate
V(p(x)) by

~2 2
o0a _ ndi-1 o(x)JK

(2.6) V(u(x)) = (nhn) 2

where 62(x) is as given in (2.4).

Notice that Bl(x) = zx;:lewnj(X) and oz(x) = 2?=1Y§an(x), where
WnJ.(x) = (K((XJ. x)/hn))IZJ.:lK((XJ. x)/hn)l , are well known Nadaraya-Watson
type kernel estimators of the regressions of Y and Yz on X, respectively.
Therefore ;j(x) = (YJ. - El(x)) are the nonparametric kernel estimators of

o X200 w2 5 (w2 .
the residuals eJ.(x) and 8°(x) = (92(x) (le)) = 2?=1(Yj 81(x)) an(x) is
the Nadaraya-Watson type kernel estimator of the regression of the square
of the residuals (Yj-sl(x” on X, which is a natural way to estimate a'z(x)
= E(c2|X=x) = var(e|X=x).

Throughout this paper, let

d
A S R such that ess-inf(w.r.t.?\)xeAé(x) > 0.




Definition:
For a real valued statistic 6%*(x) = 6'((Y1,X1),....(Yn,Xn);x) defined

for x € IRCl and for p = 1, we say 6* is Lp-norm consistent estimator of a

real valued function 6(x) on IRd if

e*-gnP = J‘ Ele'(x)—e(x)lpdk(x) > oasn - o
A

We remark that Lp-norm convergence of the type (2.8) over a subset A
of IRcl satisfying condition similar to (2.7), has been used as a standard
by several authors for examining a global consistency of a regression
estimate, see Section 4, for example.

For a real valued function g on IRd we say g € Lp if I Ig(u)Pdu < ©,
le
and for a measure v on Rd. we say g € Lp(v)) if J. Ig(-)lpdv(-) < o. For
d
R

the sake of simplicity in writing, we denote, whenever convenient,

J‘ glu)du by fg and Sg(-)dv(-) by Jgdv. Unless stated otherwise, all
d
R

integrals throughout this paper are taken over the space IRd. For t e IRI.
let K*(t) = ess-sup"u">th(u)l, where the ess-sup is taken with respect to
the Lebergue measure on IRd. (Note that K* € Lp whenever [K(+)| is
nonincreasing in -l and belongs to Lp). Throughout this paper it is
assumed that K and K* belong to Ll n L2, and no further indication of it
will be made in the paper. Unless stated otherwise, all convergences are

w.r.t. n »* o,




3. THE L -NORM CONVERGENCES OF ESTIMATORS

In this section we establish three theorems. Theorem 3.1 establishes

the Lp-norm convergence of ﬁr under certain moment conditions on Y. The

statistics ﬁr are the kernel estimators of B “the regression of Y on X
for r = 0, though only the particular cases of our interest here are with r
=1 and 2. The Lp-norm convergences of 3‘2 and V() are established in

Theorems 3.2 and 3.3 respectively.
Theorem 3.1. Let hn 20, rz0andl1sp<own Then
- p _.d
3.1 Ilpr—prll = o(l) with A, in (2.6), =R for p = 1,

provided for 1 s p s 2, EIYIzr < o and nh:j1 2 «; and for p > 2, there exists

an 0 < 1 < 2 such that with w = 2(p-n)/(2-n), ElY|™V < o, K € Lw and
n'n/Zh:(p-l) > .

Theorem 3.2. Let 1 s p < w, and the conditions of Theorem 3.1 hold forr =
1 and 2. Further let there exist a finite constant B such that |E(YIX)]| =
B w.p.l, and 3‘2 be defined as in (2.4). Then

~2 2“p

e “~0" = o(l) with A, in (2.6), = Rd for p=1

Theorem 3.3. Let 1 s p < «, and the conditions for Theorem 3.2 hold. Let
V(i(x)) be defined as in (2.6) and V(u(x)) stand for the asymptotic

variance of j(x). Then

(nh:)pll\?(ﬁ) - VIR = o(1).




To prove Theorems 3.1, 3.2 and 3.3 we establish first the following

lemmas.
Lemma 3.1 Leth 50,1sp<wandrz0. If EIYI™P < o, then

(3.4) [ #7P01Bd, )4, 00 1PaAGx) = ot1)
Proof.

Our proof involves the following steps. We first prove that
IE@r(x)-Vlr(x)l = o(l1) a.e. A(x). Then we show that the sequ;nce (in n) of
functions ¢-pﬂ(x)IE@r(x)-wr(x)lp = gn(x) a.e. Alx) for some sequence of
functions gn(x) which converges to g(x) as n - « a.e. A(x). We then show
that g € l.1 and then we complete the proof by using generalized denominated
convergence theorem.

Since ((Yl,xl),...,(Yn,Xn)) is a random sample on (Y,X),

- _ d u-x
Eb () = b fx [ T] ¥, (u)du

v

Next note that [ I'/lr(u)ldu = ElY|F < o. Therefore, l[lr € Ll and hence almost
all points u € !Rd are in the Lebsegne set of lﬁr (see, Natansan (1955),
pp255-266 or Wheeden and Zygmund (1977), pp.100-109). Hence, since K* €
Ll’ by Theorem 1.25 of Stein and Weiss (1975), p.13,

: -d u-x d

lim h JK WX )y (wdu =y 0K ae. in x € R

n h r r

n>o n

Hence since JK = 1, we conclude from (3.5) and (3.6) that lE\br(x)-wr(x)l Y

o a.e. A(x).




Next notice that

¢ P Ef (x)-y ()P z"“¢‘P*‘(x){ 1E8,0) 1P+ 1y,_(x) IP}
s zP"¢'p“(x){|hr‘ld J' K { E;ﬁ ] ¥ (WdulP
+ Iwr(x)lp} = gn(x). say.

Notice that from (3.6), gn(x) > 2P quﬂ(x)h{:r(x)lp = g(x), say, a.e. in x
e rY But g € L, since J‘¢-p+l(x)lvlr(x)|p dx s EIYI™P < o, which completes

the proof of the Lemma. o

Lemma 3.2. Letr=0andlspsw. If forl1sps2 EIYIY <w

and nhf: - o, then

(3.7) I ¢'p(x)5|-7;r(x)-i:v“:r(x)|pd7«(x) = o) with A =R% forp =1.
A

Further (3.7) holds for p > 2 if there exists an 0 < n < 2 such that, with
w = 2(p-n)/(2-n), EIYI™ <, K € L, and nn/Zh:ll(p-l) > .

Proof.

First consider the case 1-s p = 2, By Holder’s inequality
El@r(x)-Eﬁr(x)lp E (varﬁr(x))plz. But since (Yl.Xl). vees (Yn.xn) are
i.i.d.,

b < (w29 e(vx( )

1 h
n

Therefore

p/2

d\P2_ . C b L (-dfu2( u-x
[nhn] EI.00) - By (0)IP = [hn J’K T].er(u)du]

1




The r.h.s. of (3.8) converges to (w2r(x).ﬂ(2)p/2 a.e. .A, since er € Ll by
virtue of the fact that EIler < «» and the arguments used to prove the
convergence of the rhs (3.5) to wr(x)J‘K can be applied. Hence, we conclude

that if nh:i1 - o, then
(3.9) ¢'P*l(x)x-:|$r(x) - I~:-7:x.(x)lp >0

Now for p = 1, the Lhs. of (3.9) is bounded by
20 E]_EIYIK(X -0/ = 20 SIKGuex/m 119 )lde = g (), say,
where 'I'r(x) = E(lerlX=x)¢(x). Again, by the arguments given earlier,
gn(x) > glx) = Z\I/r(x)J" |kl which belongs to L1 since E|Y|" < @. Hence (3.9)
followed by the generalized dominated convergence theorem gives (3.7) for p
=1

For 1 < p = 2, the Lh.s. of (3.7) from (3.8) is bounded by

- - p/2
(nh) P2 J'A ¢Px) [IKZ(U)WZr(x+hnu)du) dAlx)

. -p/2 -p/2 p/2
s [nhﬁ] [oz(A)] [IJ‘Kz(u)wZF(x+hnu)dudx]

- [nhg]'wz [«‘A’]'p/z[[fx?-] - Zr)p/z

by Hdlder’s inequality. The proof of (3.7) for 1 < p = 2 is now complete

. d
since nhn > o,

-

Now we prove (3.11) for p > 2, Let 0 < 9 < 2 and w = 2(p-n)/(2-7).

By Hblder’s inequality,

] (2-n)72 [ /2

(3.10) Elﬁr(x) - l‘quar(x)lp = [El@r(x)-wr(x)lw var((l}r(x)]




Now, since w > 1, Elﬁr(x) - E&r(x)lw is bounded by 2wh;dwEl le‘l(((xl-x)/hn)lW

-d(w-1)
n

2%h times J‘IK(u)Ierw(x+hnu)du and var(q?:r(x)) is bounded by

di=1 _, o 2, d-l .2
(nhn) EIYIK(Xl-x)/hnl = (nhn) JK (u)\I/zr(x+hnu)du. Hence, from (3.10)
and by Holder inequality, the Lh.s. of (3.7) for p > 2 is bounded by

2V h-d(w-l)(Z-'n)/Z( nhs)-n/z =¥ n-n/Zh;d(p-l)

times
n

(2-n)72 n/2
. IA¢'p(x){f|K(u)lwwrw(xmnu)au} {IIK(u)IZWZr(x*rhnu)du} ),

which, again by Hélder Inequality, is bounded by cn.cn’, where

_ (2-m)72
c = { J’A¢ pﬂ(x)fll((u)Iw\lfrw(x-vhnu)dudx}

(2-m)72
s [(a(A))'(p'l)ElerwI IKlw]

n/2
P -p+l 2
¢ = { IAqs (x)J 1K | \le_(x+hnu)dudx}

n

(o n2
s [(a(A)) (p-Dg y2r |x|2] .

" Hence we conclude that the Lh.s. of (3.7) for p > 2 is

o(n-n/Z h-d(p-l)

n ) under the moment condition in Y stated there. Now the

proof of the Lemma is complete. o

Proof of Theorem 3.1

It can be easily seen that

I ) = 1 (IP 5 2PN G0-p 1P + I8, (x)-Eq_()1P)

= 2P POaIED, (-4, (IP + 1§ (x0-ED_(x)1P)




from (2.1) and (2.3). Therefore

llﬁr-prllp = zP"{ JA¢-p(x)IE@r(x)-wr(x)lpdA(x)

+ J' ¢ PEIY (x) - E (:i)lpdx(x)}.
A r r
The proof is complete from Lemmas 3.1 and 3.2.

Proof of Theorem 3.2
Note that

16%(x) - ¢2(x)|P = iy ()4 (x0) = (20170 1P

s zp"{lﬁz(x)-uz(xnp + (2B)P (Iﬁ(x)-p(x)lAB)p}

since |E(YIX)] = |u(X)] < B w.p.l and by definition, p is the retraction of
ﬁl to the interval [-B,B]. Thus proof for (3.2) follows from (3.1) applied

with r =1 and 2. -d

Proof of Theorem 3.3
To prove (3.3), recall from Section 2 that the asymptotic variance of

ax) = ﬁl(x), up to under o:)(nh:j‘)-l is

-1 a'z(x).l'K2

s nd
V(p(x)) = (nhn) _¢(Y)_ .

Therefore, from (2.5)
(ahS/FKB VGG - VGG 5 6760162000700

s (@A ™16%x)-0%x)1
Hence proof for (3.3) follows from (3.2).

14




4. CONCLUDING REMARKS
Note that for p = 1 the integrals in (3.1) and (3.2) are over the
whole space Rd. and for p > 1, the set A in the definition (2.8) could be
any arbitrary subset of the support of ¢ satisfying the restriction (2.7).

We remark that Stone (1982), in consideration of “in probability

convergence" of I l6*(x) - 6(x)|Pdx for a class of regression estimators 6*
A

has used the same restriction (2.7) on A, and Hirdle (1984) in
consideration of some results on mean integrated squared error (i.e. the
case of p=2) of regression estimators i = ﬁl and p* = (JJl/&) have taken A =
(0,1)d with the same restriction (2.7) on A. In consideration of uniform
(over A) weak and strong convergences of B = ('Zl/a)’ A is invariably taken
as a compact subset of the support of ¢ with the restriction (2.7), (e.g.
see Nadaraya (1964, 1965, 1970), Schuster and Yakowitz (1979), Mack and
Sllverman (1981), among others). The condition (2.7) on A is also imposed
in Singh and Ahmad (1987) in consideration of uniform (over A) mean square
consistency of their regression estimator He = (v'}l/&)b, where b is an w.p.f
bound for |Y].

If ¢ is known, it makes sense to consider Nadaraya-Watson type
est‘imator B = ﬁl. utilizing the knowledge of ¢. Greblicki and Krzyzak
(1980), Johnston (1982) and Hirdle (1986) have considered such estimators
as well. Under the assumptions that ¢ and p are continous at x and E(Yz) <
o, Greblicki and Kryyzak established weak consistency of ﬁ at x and
Johnston examined the asymptotic distribution of the maximal deviation of
[(x) from p(x) while ?iélrdle established Lz-norm consistency of i with A =
(o,1).

As indicated earlier, estimations of heteroskedasticity or of

asymptotic variance of the regression estimates under weaker conditions




have drawn little attention in the literature, and certainly none of the
works mentioned in the preceding two paragraphs have discussed such
estimations. Recently Singh (1989) considered estimators Er(x) =
(fﬁr(x)/a(x)) for r 2 0 and Sz(x) - (5§(x)-(51(x))2) respectively for the
rth order regression "r(X) = E(lex=x) and heteroskedasticity o'z(x), and
established weak and strong consistencies, as well as the asymptotic
normality of Er and 52 only under certain moment conditions on Y. Weak and
strong consistencies of the estimator V(sl,(x)) = (nh:)-l(gz(x)/ab(x))mz of
the asymptotic variance V(51(x)) = (nh::)-l(frz(x)/qb(x))J‘K2 of fhe regression
estimate 5l(x) follow inplicitly from his similar results on 5l_ and 32. We
wish to point out that the weak and strong consistencies of ﬁr' 5'2 and V(n)
also follow by the same arguments. However, we note that weak and strong
consistencies do not imply Lp-norm consistency for any p = 1. In this
paper we have established, for 1 <= p < o, the Lp-norm consistencies of ﬁr'
5'2 and V(ﬁ),_ again only under certain moment conditions on Y.

Singh and Giles (1991) considered regression estimator p, = (ﬁllci)b

and heteroskedasticity estimator :r% = ((@2/35) 2 " n%) under the conditionr
: b

that |Y| is bounded w.p. 1 by b, and established the L -norm consistencies
(and hence Lp-norm consistencies for any p = 1, since (p,-pl = b and
lo-%-a'zl s bz). In our estimations of the regression, heteroskedasticity

and the asymptotic variance of the regression estimate though ¢ is assumed

to be known but Y need not be bounded.
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