
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


CNIAW D6e--055/0 it) 121119 .- 91 071

Department of Economic_pA

L,UNIVERSITY OF CANTERBURY

CHRISTCHURCH, NEW ZEALAND

L -NORM CONSISTENCIES OF NONPARAMETRIC

ESTIMATES OF REGRESSION, HETEROSKEDASTICITY

AND VARIANCE OF REGRESSION ESTIMATE

WHEN DISTRIBUTION OF REGRESSOR IS KNOWN

Radhey S. Singh
(University of Guelph)

Discussion Paper

No. 9107



This paper is circulated for discussion and comments. It should not be quoted without

the prior approval of the author. It reflects the views of the author who is responsible for

the facts and accuracy of the data presented. Responsibility for the application of material

to specific cases, however, lies with any user of the paper and no responsibility in such

cases will be attributed to the author or to the University of Canterbury.



Department of Economics, University of Canterbury
Christchurch, New Zealand

Discussion Paper No. 9107

April 1991

L -NORM CONSISTENCIES OF NONPARAMETRIC
ESTIMATES OF REGRESSION, HETEROSKEDASTICITY

AND VARIANCE OF REGRESSION ESTIMATE
WHEN DISTRIBUTION OF REGRESSOR IS KNOWN

Radhey S. Singh



L -NORM CONSISTENCIES OF NONPARAMETRIC ESTIMATES

OF REGRESSION, HETEROSKEDASTICITY

AND VARIANCE OF REGRESSION ESTIMATE

WHEN DISTRIBUTION OF REGRESSOR IS KNOWN1'
2

by

RADIIEY S. SINGH

UNIVERSITY .OF GUELPH

1. Part of the research was carried out during the author's visit to the
Department of Economics, University of Canterbury, Christchurch, New
Zealand. The author thanks David Giles, Alan Woodfield, Judith Giles
and their Department for the invitation to visit and .providing the
research support.

2. The paper is to be presented at the "Symposium on Nonparametric
Statistical Inference and Related Topics" to be held during May 5 - 8,
1991 at Carleton University, Ottawa, Canada.



ABSTRACT

When dealing with heteroskedastic models Y = µ(X) + c in econometrics

and other disciplines, situations often arise (especially with structural

models) where the probability distribution of the ((Rd-valued) regressor

vector X is known, but postulations about the functional form of the

regression µ(x), the heteroskedasticity a'2(x) = var(c I X=x) and the

distribution of the disturbance term c are made. These three postulations

generally lead to misspecification of • the models. This paper, based on a

data set on (Y,X), considers nonparametric kernel estimators µ(x), c3.2(x)

and c/(µ(x)), respectively, of the regression µ(x), the heteroskedasticity

2(x) and the asymptotic variances V(i.i(x)) of the regressicr on estimate ii(x)

for situations where only the probability distribution of X, say A is

known. For an arbitrary subset A in the interior of the support of A and

for 1 p < co, we establish convergences to zero, as the data set gets

large, of the L -norms 11µ-µIIP = E I µ(x)-µ(x) I PdX(x) (with A a Rd for p =
A •..

1), 116.-2-cr2IIP (with A a Rd for p = 1) and II'()-V(µ)11P under certain moment

conditions on Y but with no assumptions on the joint distribution of (Y,X)

or the continuity of µ(x), o'2(x) or the density of X.



1. INTRODUCTION

Let (Y,X) be a R
I 
x l - valued random vector defined on a probability

space (OAP). Then the general heteroskedastic regression model is given

by Y = µ(X) + c. A measurement on response Y at a value x of the regressor

X is the value of the unknown regression p(x) at X = x contaminated with an

unobservable disturbance term c, which is random on (0,B,P) with

conditional mean E(c I X) = 0 and unknown conditional variance Var(c IX) =

cr
2
(X), called the heteroskedasticity of the regression model. Estimations

of the regression function ti(x) = E(Y I X=x) and the heteroskedasticity

function cr2(x) = var(Y I X=x) are invariably handled in various sciences by

postulating a certain fixed model (functional form) for the regression, by

assuming a constant conditional variance, cr
2
(x) B cr.

2 
(the

homoskedasticity), for the response variable Y at any value x of the

regressor X and by assuming a knowledge of the functional form of the

distribution of the disturbance term c. However any postulations regarding

the functional form of the regression µ(x), the heteroskedasticity c2(x) or

the distributions of disturbances c are all questionable, and often lead to

misspecifications of the models, which thereby lead to serious impact on

decisions and plannings.

This problem of misspecification of the models, however, can be

avoided by assuming no specific parametric form for the regression or

heteroskedasticity function; and by estimating them completely

nonparametrically.

Whereas a vast literature on nonparametric estimation of regression µ

is at hand, (for example, Watson (1964), Rosenblatt (1969), Schuster

(1972), Schuster and Yakowitz (1979). Noda (1976), Greblicki and Krzyzak

(1980), Hardie (1984), among others, discussed pointwise consistency; and
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Nadarya (1964, 1970), Deheuvels (1974), Hall (1981), Mack and Silverman

(1987), Hardie and Luckhans (1984) Singh and Ahmad (1987), among others

discussed uniform consistency of nonparametric kernal estimators of

regression), nonparametric estimation of heteroskedasticity function a'2(x)

has drawn little attention. Hilcireth and Houck (1968), Fraehlich (1973),

Box and Hill (1974), Jobson and Fuller (1980) and Judge et al (1988)

adopted a sort of parametric approach in which they assumed that o2(x) has

a known functional form involving a finite number of unknown parameters.

Fuller and Rao (1978), White (1980), Carroll (1982) and MacKinnon and White

(1985) took a somewhat semi-non-parametric approach in which they assumed

that the regression function µ(x) has a known functional form involving a

finite number of unknown parameters, estimated these parameters and then

used the residuals and the estimated variance-covariance of the parameter

estimates to estimate cr
2
(x) nonparametrically. In the latter works, the

assumed functional form of µ(x) is a linear regression. Miller and

Stadtmilller (1987) considered estimation of a'2(x) with nonstochastic

ordered regressors assuming, among others, that the density of Y and cr2(xi

satisfy certain order of Lipschitz condition. Singh and Ullah (1985) and

Singh et al. (1987) discussed estimation of o'2(x) under the continuity of

cr.
2
(x), the density of X and the joint density of (Y,X) at x.

In most of the literature on the nonparametric estimation of

regression or heteroscedasticity (e.g. the references cited in the

preceding paragraph), it is invariably assumed, particularly when

discussing consistencies like weak, strong, mean square or asymptotic

normality that the regression µ(x) and heteroskedasticity o2(x) (in case of

its estimation) are continuous, and the joint density of (Y,X), the density

of Y and the density of X (and hence the conditional density of Y given X =

x) not only exist but are also continuous. Recently Singh (1989)



considered kernel estimations of µ and cr2 under no condition on the

distribution of (Y,X) other than that the distribution function of X is

absolutely continuous w.r.t. the Lebsegue measure on Rd so that the

probability density function (pdf) of X exists. He established the weak and

strong consistencies as well as the asymptotic normality of the estimators

µ(x) and o2(x) only under some appropriate moment conditions on Y. Thus

for his results the joint density of (Y,X), the density of Y or the

conditional density of Y given X need not exist and µ(x), o2(x) or the

density of X need not be continuous at x. Under similar weaker conditions

he has also established weak and strong consistencies of the estimates of

the variances of his regression and heteroskedasticity estimators by

establishing similar properties for the estimators of a general function,

namely µr(x) = E(Yr I X=x) for r 0.

Greblicki and Krzyzak (1980), Johnston (1982) and Hardie (1986), among

others considered Watson-Nadaraya type kernel estimators of regression when

the pdf of the regressor X, say 0, is known. Under the assumption that

0(x) and µ(x) are continuous and EY2 < CO, pointwise weak consistency of

such estimators µ(x) is established by Greblicki and Kryzyzak, while

Johnston and Hardie obtained results, respectively, on the asymptotic

distribution of the maximal deviation of ii(x) from µ(x) and an
1

L
2
(0,1)-norm0f E I µ(x)-µ(x) I dA(x), where A is the probability measure of X.

Considering stituations where the distributions of the regressor vectors

are known is not quite unrealistic. For example, in structural regression

models in econometrics quite often the regression vector is consisted of

endogenous variables generated from some known functions of exogenous

variables plus independent multivariate normal errors with mean zero and

known variances.
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In this note we further look at the situation considered in the

preceding paragraph, i.e. when the pdf of X is known. We estimate the

regression as well as the heteroskedasticity and the variance of the

regression estimator, and examine the L -norm (p 1) consistencies of

these estimators. Weak and strong pointwise consistencies of these

estimators follow from those established in Singh (1989) under weaker

conditions stated in preceding paragraph. However, note that weak or

strong consistency of an estimator does not imply L -norm consistency.

Without any continuity assumption on µ( • ), cr2( • ) or the p.d.f. 15( • ) of X,

and without making any assumption on the distribution of (Y, X), the

distribution of Y or the conditional distribution of Y given X, we

establish the convergence to zero, as the sample size gets large, of the

L -norm distances, 1 s p < co, of the estimators from theirrespective true

values.

In Section 2, we introduce some notations, give a • proper definition of

"L -norm convergence" considered here and define estimators ofof the

regression function cr(x) = (EYr I X=x) of Yr on X for r 0, estimators

-2
cr (x) of the heteroskedasticity cr

2
(x) and estimators (µ(x)) of the

asymptotic variance of the regression estimate µ(x) = Al(x). In Section 3

-2we establish L -norm consistencies of the estimator !Zr (Theorem 3.1), cr

(Theorem 3.2) and "V(µ) (Theorem 3.3). The paper is concluded with a few

remarks in Section 4.
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2. NOTATIONS, DEFINITIONS AND ESTIMATORS

Let R
d 

denote the d-dimensional Euclidean space with the usual norm

= (z, z)1/2 = (Ediz2i.1/211z11 for z = (zr. ,zd)' e Rd. Let (Y,X), (Yidy,

•••, (Yn,Xn) be independent identically distributed R1 x R - valued random

vectors defined on a common probability space (i2,B,P). We assume that the

regression µ(x) = E(Y I X) and the heteroskedasticity c2(x) = var(Y I X) are

properly defined and exist a.e.(A), where A is the probability measure of

X. We assume nothing about the joint distribution of (Y,X), the

distribution of Y or the conditional distribution of Y given X. We do

however assume that the probability measure A of X is known and is

dominated by the Lebesgue measure on R
d 

so that the probability density,

say 0, of X exists and is known. Thus the joint density of (Y,X), the

density of Y or the conditional density of Y given X need not exist and the

functions µ(x), o'
2 
(x)or O(x) need not be continuous. When is unknown

but the response variable Y is bounded w.p.1, estimators of the regression

and heteroskedasticity functions, which are some retracted versions of,

those considered in Singh (1989), have been recently studied by Singh and

Giles (1991) and L1-norm consistencies (which also imply L -norm

consistencies for p 1 in their case) have been established.

All real-valued functions on Rd in this paper carrying an argument x

(explicitly or implicitly) are only defined a.e. A, i.e. on the support of

the pdf 0. Also all convergences of sequences (in n) of functions carrying

an argument x (explicitly or implicitly) are only a.e. A.

For r 0, define

p
r
(x) = E(Y

r
I X=x)

(so that 111(x) = µ(x)). In the heteroscedastic model Y = µ(X) + c. with
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VOX) = 0, the regression function is p(x) = E(YIX=x) = (µ1(x), according

to our notation) and the heteroskedasticity function is

0.
2
(x) = vas(c X=x) = E(c

2 
I X=x),

2which can be expressed as o'2(x) =
2(x) -

Define Or = ;11,0 so that

(2.1)

Notice that 00 = 0.

tir(x) = 7143-ic

Let K be an arbitrary Borel-measurable function on IR
d 

with

I K(u)du = 1. Let (h 
n
) be a sequence of positive real numbers such that

R
d

h
n 
4 0 as n co. Define

(2.2) = (nhd)-le 
1
YrKi LC-12—c

n j= j h
n

and

3(x) = 1710(x).

Throughout this paper, the notation (a)B will stand for -B, a or B

depending on whether a < -B, IaI s B or a > B.

In view of our knowledge of 0, nonparametric kernel estimate of µr(x)

is

(2.3) qir(x)
Aro') =

For estimation estimatiop of cr2, we assume that IE(YIX)I s B w.p.1 for some B < co.

We estimate o2(x) by

(2.4) ;;2(x) = A2(x) - (ii(x))2, where it' =

6



Estimators Or(x) = (Or(x)Ab(x)) for pr(x) and C3#2(x) = (g2(x)-(g1(x))2)

for o2(x) are considered in Singh (1989). Only under some moment

conditions on Y and the existence of 0, it has been established there that

the asymptotic variance of the regression estimate 51(x) = ii(x), up to the

order o((nhdn)-1), is given by

(2.5) V(5(x)) = (nhd)-1 (r2(x )IK295( x )

2 where SK = K
2 
(x)dx

R
d

(see also Singh and Ullah (1985), Singh et al (1987). It follows from the

same arguments that the asymptotic variances of the regression estimates

1.1(x) and ii(x) = A1(x) are the same as given in (2.5). Thus we estimate

V(µ(x)) by

(2.6) (µ(x)) = 
crA2(x)SK2

n' OM-Fr-

where 8.2(x) is as given in (2.4).

Notice that 5(x) = En Y.W .(x) and 5
2
(x) = En Y2W .(x), where1 j=1 j nj j=1 j nj

W
nj
(x) = (K((X.-x)/h

n 
))[En

=1 
KUX.-x)/h

n 
))--1, are well known Nadaraya-Watsonj 

type kernel estimators of the regressions of Y and Y
2 

on X, respectively.

Therefore e#.(x) = (Y. - 5 
1
(x)) are the nonparametric kernel estimators ofJ J 

the residuals e (x)and S2(x) = (
2
5 (x)-(

1
5 x))2 = En

1 
(Y
j 
-

1
5 (x))2W 

ni .( 
x) isJ j= 

the Nadaraya-Watson type kernel estimator of the regression of the square

of the residuals (Y.-
I
5 (x)) on X, which is a natural way to estimate o'2(x)J 

2
= E(c I X=x) = var(c I X=x).

Throughout this paper, let

(2.7) A Rd such that ess-inf(w.r.t.X)
xeA 

0(x) > 0.

7



Definition:

For a real valued statistic 0*(x) = 0*((Y
1'X1

),... ,n'Xn);x) defined

for x e R
d 

and for p 1, we say 0* is L -norm consistent estimator of a

real valued function e(x) on R
d 

if

(2.8) 110*-01IP = .1% E10*(X)-0(X)IPCIA(X) o as n 4 03.
A

We remark that L -norm convergence of the type (2.8) over a subset A

of R
d

satisfying condition similar to (2.7), has been used as a standard

by several authors for examining a global consistency of a regression

estimate, see Section 4, for example.

For a real valued function g on R
d 
we say g e L if .1 I g(u) 1 13du < co,

R
d

and for a measure v on R
d
, we say g e L (v)) if Ig(•)1Pdv(•) < 03. For

Rd

the sake of simplicity in writing, we denote, whenever convenient,

g(u)du by fg and fg( • )dv( • ) by fgdv. Unless stated otherwise, all
Rd

R
1
,

integrals throughout this paper are taken over the space Rd. For t e

let K*(t) = ess-sup
II ull >t K(u) I, where the ess-sup is taken with respect to

the Lebergue measure on R
d
. (Note that K* e L whenever I K( • ) I is

nonincreasing in •U and belongs to L). Throughout this paper it is

assumed that K and K* belong to Li n L
2' 

and no further indication of it

will be made in the paper. Unless stated otherwise, all convergences are

w.r.t. n 4 03.

8



3. THE L -NORM CONVERGENCES OF ESTIMATORS

In this section we establish three theorems. Theorem 3.1 establishes
••

the L -norm convergence of A
r 

under certain moment conditions on Y. The

statistics Ar are the kernel estimators of per, the regression of Yr on X

for r a 0, though only the particular cases of our interest here are with r

= 1 and 2. The L -norm convergences of 4;2 and -V4(µ) are established in

Theorems 3.2 and 3.3 respectively.

Theorem 3.1. Let h
n 

0, r a 0 and 1 s p < co. Then

(3.1) = o(1) with A, in (2.6), a Rd for p = 1,

provided for 1 s p s 2, EIYI 2r < co and nhnd 4 co; and for p > 2, there exists

an 0 < i < 2 such that with w = 2(p-n)/(2-n), EIY I rw < a, K E Lw and
0/2hd(p-I)

4 co.

Theorem 3.2. Let 1 s p < a, and the conditions of Theorem 3.1 hold for r =

1 and 2. Further let there exist a finite constant B such that lE(Y1X)1 s
-

B w.p.1, and cr 
2 

be defined as in (2.4). Then

(3.2) Ilcr -cr II = o(1) with A, in (2.6), a R
d 
for p = 1.

Theorem 3.3. Let 1 s p < co, and the conditions for Theorem 3.2 hold. Let

''(A(x)) be defined as In (2.6) and V(µ(x)) stand for the asymptotic

variance of µ(x). Then

(3.3) (nhd)PlIV(µ) - V(A)II = o(I).

9



To prove Theorems 3.1, 3.2 and 3.3 we establish first the following

lemmas.

Lemma 3.1 Let h
n 

0, 1 s p < 03 and r O. If EIYIrP < co, then

(3.4) 0-P(x) I Or(x)-1//r(x) I PdX(x) = o(1)

Proof.

Our proof involves the following steps. We first prove that

10r(x)-is1ir(x)1 = o(1) a.e. X(x). Then we show that the sequence (in n) of

functions if)-13+1(x)1E17/r(x)-iiir(x)113 s g1(x) a.e. X(x) for some sequence of

functions g(x) which converges to g(x) as n 4 co a.e. A(x). We then show

that g E L1 and then we complete the proof by using generalized denominated

convergence theorem.

Since {(111,X1),...,(Yn,Xn)) is a random sample on (Y,X),

ux(3.5) Ek(x) = tind or(u)du

Next note that SlOr(u)I du = E I Y 
1r

< co. Therefore, Or e L1 and hence almost

all points u e Rd are in the Lebsegne set of Or (see, Na.tansan (1955),

pp255-266 or Wheeden and Zygmund (1977), pp.100-109). Hence, since K* e

L
1' 

by Theorem 1.25 of Stein and Weiss (1975), p.13,

(3.6) lim h-d K Or(u)du = kti
r
(x).1K a.e. in x E Rd

n4co

Hence since SK = 1, we conclude from (3.5) and (3.6) that lEtbr Jr(x)1 4

o a.e. A(x).

10



Next notice that

ib-P+1(x) Eitir(x)-Vir(x) I P s 2P-10-P+1(x) I ar(x) I P+ iiir(x) I PI

s2t
p-1 -p+1, 

x) 
„ -d
n j

1or(x),P1= gn(x), say.

u-x
Or(u)du I P

Notice that from (3.6), g(x) 4 2P 0-13+1(x) I Vir(x) P = g(x), say, a.e. in x

E Rd. But g e L1 since S95-134-1(x) liitir(x) I Pcix s EIYI rP < co, which completes

the proof of the Lemma. a

Lemma 3.2. Letr Oandlpsoo. If for lsps 
y 12r

E < 03

and nh
d 

co, then

(3.7) 46-1)(x)E I Or(x)-Ek(x) I PdX(x) = o(1) with A a R
d 
for p = 1.

A

Further (3.7) holds for p > 2 if there exists an 0 < j < 2 such that, with

w = 2(p-n)/(2-71), EIYI rw <=, K e L
w 

and n71/211d(P-1) 4 03.

Proof.

First consider the case 1

E I Or(x)-Ek(x) I P (varik(x))P/2.

i.i.d.,

Therefore

p s 2. By Holder's inequality

But since (Y
1' 
X
1
)
' 

(Y
n' 
X
n 
) are

var (x) s (nr1 E (YrK 
)) 2

n 1 

(3.8) P/2E I
r
(x) - Ellir(x) IP s (11-d1K2 p_ )021.(u)du)

p/2

11



The r.h.s. of (3.8) converges to (02r(x)rK2)13/2 a.e. A, since 02r E L
1 

by

2rvirtue of the fact that EIYI < CO and the arguments used to prove the

convergence of the rhs (3.5) to iii(x)SK can be applied. Hence, we conclude

that if nh
n 
4 co, then • •

(3.9) 0—P+1(X)E I 17Jr(X) F4Jr(x) I P -> o

Now for p = 1, the 1.h. s. of (3.9) is bounded by

2(nhd)-1En
1

. E1Yr.KUX 
j-x)/hn )1 = 2h-d SIK(u-x)/h g

n
(x), say,n j = j 

where W(x) = E( 1Y1r X=x)0(x). Again, by the arguments given earlier,

gn(x) g(x) = 2,1,
r
(x)51k1 which belongs to L1 since E 1 Y 1 r < co. Hence (3.9)

followed by the generalized dominated convergence theorem gives (3.7) for p

= 1.

For 1 < p s 2, the 1.h.s. of (3.7) from (3.8) is bounded by

p/2
(nhn

d
) 
-p/2 

1A 
-p(x) 

if
K 
2

2r(x+hn
u)du) dA(x)

s (nhdi -13/2 la(A)113/2 U1K2(u)tis2r(x+hnu)dudx)1312n)

-p/2
= (aw) -p/2 (Oki 

p/2

by Holder's inequality. The proof of (3.7) for 1 < p s 2 is now complete

since nh
n 
4 co.

Now we prove (3.11) for p > 2. Let 0 < 7) < 2 and w =

By Holder's inequality,

(3.10)
(2-7)/2 , ,.y/2

El gir(x) - air(x)1P s 1 ilir(x)-Ek(x)11 
(var 

°Pr

(x 

)

12



Now, since w> 1, E I (x) - air(x) I w is bounded by 2wh-rdwE I Yi;K((X1-x)//in) I 'iv

= 2wh-d(w-1) times $ I K(u) witrw
(x+h

n
u)du and var(k(x)) is bounded by

d -1 r d - 2( n hn) E I YiK(Xcx)/hn I
2 
= (nh

1 
n) (u) 2r(x+hnu)du. Hence, from (3.10)

and by Holder inequality, the 1.h.s. of (3.7) for p > 2 is bounded by
2w h-d(w-1)(2-0/2 d -1)/2 w -d(p-1) times(nhn) =2 n n

n 

(2-17)/2{ 7)/2
4.-P(x)If K(u) wii

rw
(x+h

n
u)dul si I K(u) 

2
2r(x+h

n
u)dul dA(x),

A

which, again by Holder Inequality, is bounded by cn.cn' , where

cn = 1 O-
A

+1(x)f I K(u) I wiirw(x+hnu)dudxr")/2

-(p- s ((a(A))
1) 
EIYI

rwf 
IKI

c' = 0-13+1(x)f I K(u)
A

}n/2

r
(x+h

n
u)dudx

7)/2
s ((a(A))

-(p-1)21'
I K

2) 
•

Hence we conclude that the 1. h.s. of (3.7) for p > 2 is

0(n
-77/2 

h
-d(p-1)

) under the moment condition in Y stated there. Now the

proof of the Lemma is complete.

Proof of Theorem 3.1

It can be easily seen that

Ar(x) - µr(x) I P s 2P-1( I Ar(x)-µr(x) IP + 1P}

,

2P-10-P(X)( asr(X)-Or(X) I P + Or(X)-Dk(X) P)

13



from (2.1) and (2.3). Therefore

IlAr-µr1IP s 2P1 0-P(x)Iair(x)-ilir(x)1PdX(x)
A

+ 0-P(x)Elik(x) - air(x)1PdX(x)1.
A

The proof is complete from Lemmas 3.1 and 3.2.

Proof of Theorem 3.2

Note that

-2 2 p -2 2 p
Icr (x) - cr (x)I s 1(µ2(x)-A2(x)) - (pt (x)-µ (x))I

s 211A
2
(x)-µ

2
(x)I1  + (2B)P (Iii(x)-µ(x)IAB)P1

since IE(YIX)I = 1µ(X)I s B w.p.1 and by definition, 'II is the retraction of

to the interval [-B,B). Thus proof for (3.2) follows from (3.1) applied

with r = 1 and 2.

Proof of Theorem 3.3

To prove (3.3), recall from Section 2 that the asymptotic variance of

µ(x) = iii(x), up to under o(nhd)-1 is

V(µ(x)) = (nhd)-1 cr2(x)SK
2

( x ) •

Therefore, from (2.5)

d 2
)1 
- -1 -2 2

(nbrifIC V(µ(x)) - V(Ii(x))1 s (x)Icr (x)-cr (x)I

-1 -2 2
s (a(A)) 10 (x)-cr (x)I

Hence proof for (3.3) follows from (3.2). a
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4. CONCLUDING REMARKS

Note that for p = 1 the integrals in (3.1) and (3.2) are over the

whole space Rd, and for p > 1, the •set A in the definition (2.8) could be

any arbitrary subset of the support of 0 satisfying the restriction (2.7).

We remark that Stone (1982), in consideration of "in probability

convergence" of f I 0*(x) - 0(x)1Pdx for a class of regression estimators 0*
A

has used the same restriction (2.7) on A, and Hardie (1984) in

consideration of some results on mean integrated squared error (i.e. the

case of p=2) of regression estimators jI = and A* = (OA have taken A =

(0,1)d with the same restriction (2.7) on A. In consideration of uniform

(over A) weak and strong convergences of it = (110), A is invariably taken

as a compact subset of the support of 0 with the restriction (2.7), (e.g.

see Nadaraya (1964, 1965, 1970), Schuster and Yakowitz (1979), Mack and

SIlverman (1981), among others). The condition (2.7) on A is also imposed

in Singh and Ahmad (1987) in consideration of uniform (over A) mean square

consistency of their regression estimator A, = 010b, where b is an w•p.i

bound for I Y I .

If 0 is known, it makes sense to consider Nadaraya-Watson type

estimator A = µ1, utilizing the knowledge of 0. Greblicki and Krzyzak

(1980), Johnston (1982) and Hardie (1986) have considered such estimators

as well. Under the assumptions that 0 and µ are continous at x and E(Y2) <

03, Greblicki and Kryyzak established weak consistency of A at x and

Johnston examined the asymptotic distribution of the maximal deviation of

µ(x) from µ(x) while Hardie established L2-norm consistency of µ with A =

(0,1).

As indicated earlier, estimations of heteroskedasticity or of

asymptotic variance of the regression estimates under weaker conditions

15



have drawn little attention in the literature, and certainly none of the

works mentioned in the preceding two paragraphs have discussed such

estimations. Recently Singh (1989) considered estimators 5
r
(x) =

(Ilir(x)fi(x)) for r 0 and e(x) =62(x)-(5 (x))2) respectively for the
2 1

rth order regression pr(x) = E(Yr I X=x) and heteroskedasticity tr2(x), and

established weak and strong consistencies, as well as the asymptotic

normality of O
r 
and g2 only under certain moment conditions on Y. Weak and

strong consistencies of the estimator ii(i51,(x)) = (nhnd)-1(32(x)fi(x)),M2 of

the asymptotic variance V(51(x)) = (nhnd)-16T2(x)/i(x))11C2 of the regression

estimate 01(x)follow inplicitly from his similar results on 0rand Ci2. We

wish to point out that the weak and strong consistencies of µr, c;•2 and if'(µ)

also follow by the same arguments. However, we note that weak and strong

consistencies do not imply Lp-norm consistency for any p 1. In this

paper we have established, for 1 s p < co, the L -norm consistencies of µ
r'

-2
cr and 4(µ), again only under certain moment conditions on Y.

Singh and Giles (1991) considered regression estimator p. = {kik

and heteroskedasticity estimator cr2, = (02AP 2 - p24,) under the condition

that I Y I is bounded w.p. 1 by b, and established the L1-norm consistencies

(and hence L -norm consistencies for any p 1, since (pe.-µ I b and

22
Cr.-Cr S b

2
). In our estimations of the regression, heteroskedasticity

and the asymptotic variance of the regression estimate though is assumed

to be known but Y need not be bounded.
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