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ABSTRACT

Various studies have considered the risk properties under gquadratic loss, of
estimators of the scale parameter after a preliminary test for exact linear
restrictions on the regression coefficients. This loss function is symmetric
though, arguably, under-estimation of the scale has greater consequences than
over-estimation. In this paper we consider the LINEX loss function, which
allows for an asymmetric penalty. We derive the exact risk of estimators of
the error variance after a pre-test of exact restrictions and we numerically
evaluate the derived expressions. The results are compared with those under
quadratic loss so that the effects of the asymmetry can be ascertained.

Correspondence - Dr. Judith A. Giles, Department of Economics, University of
Canterbury, Christchurch, New Zealand.




Introduction

There is a well-established literature relating to the estimation of the

coefficient vector in the linear regression model after a preliminary test of

the validity of exact linear restrictions on this vector. Useful summaries are
given by Judge and Bock (1978, 1983), for example. More recently, there has
been interest in the estimation of the scale parameter in this model after the
same preliminary test (e.g., Clarke et al. (1987a,b), Ohtani (1988), Gelfand and
Dey (1988a,b), Clarke (1990), Giles (1990, 1991), Giles and Lieberman (1991)).

The literature on pre-test estimation to date centers on risk under
quadratic loss. When estimating the scale parameter of a regression model, a
quadratic loss structure may be unduly restrictive. In particular, the
estimation of this parameter (in the form of either the variance or the standard
deviation of the regression errors) is needed for the construction of "standard
errors”, confidence intervals, and test statistics. Under-estimation of the
scale parameter is, arguably, of greater consequence than its over-estimation.
The former situation results in the reporting of standard errors which are
unduly optimistic with respect to the precision of the coefficient estimates,
and t-statistics which tend to be distorted in favour of “significant" results,
other things equal.  Accordingly, it may be preferable to consider a pre-test
estimator of the regression model’s scale parameter which is based on an
asymmetric loss function.

It is well known that the choice of loss function can af fect estimator
rankings (e.g., Hirano (1973)). Recently, Srivastava and Rao (1990) have
considered the use of the (asymmetric) LINEX loss function (e.g., Varian (1975),
Zellner (1986)) in the context of - estimating the error variance of the normal
linear regression model. This paper combines their analysis with that of Clarke
et al. (1987b) in considering the estimation of this parameter under LINEX loss,

after a pre-test of exact.restrictions on the model’s coeff icients.




Section 2 discusses the model and notation. The risk functions of the
pre-test, the unrestricted, and the restricted estimators of the error. variance
are derived in Section 3; and Section 4 evaluate_:s and discusses these risks in
comparison with their counterparts based on a quadratic loss structure. Some

concluding remarks appear in Section S.

The Estimation Problem

Consider the regression model,
y=X8+u ; u~ N(O.a'zl.r) (1)
where y and u are (Txl); X is (Txk), non-stochastic and of rank k; and B is
(kx1).
Also, consider m (=k) independent linear restrictions on B, given by RB =
r, where R is (mxk) of rank m; r is (mxl1); and both R and r are non-stochastic.

Applying Ordinary Least Squares estimation to (1) yields

A=y
with associated residual vector,

u=y- XB .
Imposing the m restrictions on B and applying Restricted Least Squares

estimation to (1) yields

g* =F + x'x) 'R [R(X'x)_lk’]_l(r-RE),

with associated residual vector,
u* =y - Xg* .
The uniformly most powerful invariant size - « test of
. = . >
HO' RB=r vs H A RB=r

rejects H0 when f > c(a), where




§= [(u"u‘ - W aA 6] [v/m] ,

v=T-k,

cla)
and c(a) satisfies 0-[ dF(m,v) =1 - « where F

denotes the central
(m,v)

F-distribution with m and v degrees of freedom. The statistic f follows this
distribution if Ho is true, and under HA it is distributed as non-central F

(F’(m v-J\)) with these degrees of freedom and non-centrality parameter

A = (r-RB) [R(X’ X)-IR’]_l(r-RB)/Zo-z

The pre-test estimator of B referred to in Section 1 is

B i §>cla
B* ;5 §scla)

and the associated pre-test estimator of 0'2 is

2 s f > cla)

'2; f s cla)

Clarke et al. (1987a) consider the risk of 5-2, under quadratic loss, when ;2 and
0'2 are the unrestricted and restricted maximum likelihood estimators of 0-2.
This analysis is generalised by Clarke et al. (1987b) to the case where 5‘2 is

based on component estimators from the f: amilies,

;2 u W/ (v+7) 3)

a-'z = u* u*/(v+m+s) . (4)

Maximum likelihood (ML) component estimators correspond to T=k =k -m
least squares (LS) component estimators correspond to ¥ = & = 0; and minimum
Mean Squared Error (MSE) component estimators1 correspond to ¥ = & = 2.

Srivastava and Rao (1990) derive the risk of ;2 in (2) under LINEX loss.




This loss function is of the form2

L(E) = exp (ag) - ac - 1,
€= (;2-0'2)/0-2 (6)
is the relative estimation error, and the parameter ‘a’ determines the asymmetry
of L(g) about the origin. If ‘a’ is small enough for aj = 0 (j = 3), then L(g)
is approximately quadratic. The risk of 2 is R(;z) = E[L(2)].
The same approach can be taken with respect to the risks of 0‘2 and 3-2.
Defining €* and € analogously to € in (6), and substituting into (5), we can

define R(o-'z) and R(a‘z) under LINEX loss. The derivation of these risk

expressions is considered next.

3. Risk Under LINEX Loss

The risk functions of ;2, 0"2 and 3‘2 are stated in the following result:
Theorem 1

Under the assumptions of Section 2,

27_] -1
vy

v+m+8

(v+m+2i)/2
v+m+3d-2a

a(s-2a) | _ 1
v+m+d




© | li r| ve2i !
A2, o o~2 -a 2a/(v+y) 2
R(o‘)-R(o‘)+e(-}: 1 T/

i
[Za/( V+m+S )] .
[Lu in]}

Pm,v+2i;A :

i!

-a [m(v+1)P - v(m+8-zr)Pm + 2A(v+y)P

m+2;v;A W24 m"“"."ﬂ]/

[(v+1)(v+m+6)] ,

Pm+¢.v+¢:7\ = Pr’[FEmw.vﬁP;A) = (cm(vw)]/ [v(m+¢)]];

$9=012, ..

L’li is a (I1x(i+1)) vector equal to the (i+1)’th row of Pascal’s

Triangle; i =1, 2, ...
L2i is an ((i+1)x1) vector with elements

v+2(i-j) m+2 j+2r
M. = o *% ) r( 22 )

i r[ v J - [ m+2r] Pme2jszr,ve2(i-3;0 ;
z ==

i=0,1 ....i.

The expression in (7) is stated by Srivastava and Rao (1990, p.5). A
proof of Theorem 1 appears in the Appendix. With some tedious manipulations
involving ' repeated use of the Binomial Theorem, it can be verified that (9)
collapses to (7) and (8) respectively, if « > 1 (c - 0) or e >0 ( » w. In
the same way, and using the infinite series expansion of the exponential

function, it can be shown" that (7) - (9) collapse to their quadratic loss




“©r

counterparts if ‘a’ is sufficiently small that third-order and higher terms
are negligible.

Exact numerical evaluations of these risks are discussed in the next
section. Prior to this we derive critical values which result in an extremum of
the pre-test risk function. In particular, we are interested in whether the
results of Ohtani (1988), Gelfand and Dey (1988a), and Giles (1990, 1991) extend
to the LINEX risks. These authors show that under quadratic loss the pre-test

. P P 3
risk function is minimised when™ ¢=0, », or c=c* where

c* = [(m+d-7)v]/[m(vw)) . . (10)

So, c*=1 for the LS components, v/(v+2) for the MSE components, and zero for the
ML components. These studies also show that the pre-test estimator which uses
c=c* strictly dominates the unrestricted estimator. Theorem 2 gives the

critical values which can result in an extremum of the LINEX pre-test risk.

Theorem_2
Under the assumptions of Section 2,

c'iR(a'z)/ac = 0 when c=0, c=w, or c=c* ,

where c* is defined by (10).

A proof of this theorem is given in the Appendix. So, the values of c¢ which
result in turning points under quadratic loss also result in turning points
under LINEX loss. However, depending on the value of a, c* may maximise the
pre-test risk as well as minimise it. The numerical evaluations, which we now

consider, illustrate this result.

Numerical Evaluations
Examples of the LINEX loss function are given in Figure 1 for a=-0.5, -2.0,

and -5.0. Values of a<O penalise under-estimation of the scale parameter more




heavily then over-estimation. The quadratic loss functions shown in Figure 1
for comparison are scaled to match the limiting form of LINEX loss. : That is,
L) = a%/2. )

These values of a are also used when evaluating the risks in (7) - (9).
The risks are evaluated numerically on a VAX 6340 using FORTRAN code which
incorporates Davies’ (1980) algorithm to evaluate the non-central and central F

probabilities and various other algorithms from Press et al. (1986). The

infinite series in (8) and (9) converge rapidly with a convergence tolerance of

107°, Corresponding results for the risks of 3:2, ¢‘2, and ¢ under quadratic

loss are computed in the same way. In this case the formulae of Clarke et al.
(1987b) are used after scaling by a%/2 for comparability with the LINEX results.
The LINEX risk results are illustrated in Figures 2 - 4, for maximum likelihood,
least squares and minimum MSE component estimators of ¢2. Table 1 provides a
comparison of the quadratic and LINEX results. In each case we consider v=30,
k=5, and m=3. These results are typical of those we have examined, full details
of which are available on request.

In each case two critical values are considered for the preliminary test of
restrictions - one associated with a 5% significance level, and one which is
"optimal” in some sense. For the LS and MSE components we use c=1 and c=v/(v+2)
respectively for the latter. These are the values of ‘¢ which result in an
extremum of the pre-test risk function as shown in Theorem 2 above. In the case
of the ML components c®=0, implying that ;2 = o Consequently, for this
estimator we use the "optimal" critical value reported by Giles and Lieberman
(1991) according to the mini-max regret criterion under quadratic loss. For the
case presented in Figure 2 this "optimal" critical value is '2.464, which
corresponds to an 8.27% significance level.

In Figure 2, which illustrates the LINEX risk functions for ML components,

we see that when a = -0.5 the risks are qualitatively the same as those reported




by Clarke et al. (1987a). In particular, the pre-test estimator can have higher
risk than either of its components, the risk of o is always smaller than that
of ;2 and ;z when HO is true, and it is greferable to ignore the prior
information when A > A*, where A* is that value of A for which R = R(c*?).

These results continue to hold qualitatively as the loss asymmetry
increases.  Quantitatively though, A* increases with an increase in asymmetry,
as does the range over which ;2 has higher risk than either of its components.
Further, the A value for which 6R(;2)/8A = 0 need no lor_!ger be greater than A*
if the loss function is asymmetric in the way investigated here. Finally, the
mini-max regret criterion "optimal" critical value varies with a. A detailed
investigation of this issue is beyond the scope of this paper, though the
results suggest that the "optimal” critical value would increase (a decrease)
with increases in the loss asymmetry.

The features discussed for the ML components are also observed for the LS
components in Figure 3. Further, we see that when using the LS components o2
may strictly dominate ;2 - even if_ c=1 and if HO is true. In addition, though
A* increases with higher loss asymmetry, the potential risk gain of o*? over of
is relatively small. Then the results suggest, given that A is unknown, that it
may be preferable to always ignore the prior information.

The MSE component risks behave in a very similar fashion to the LS
component risks. In particular, Figure 4b illustrates that using c=v/(v+2) can
both maximise and minimise the pre-test risk. As with the LS components, the
unrestricted estimator can strictly dominate the pre-test estimator and the

relative risk gain of o*? over o2 decreases with higher loss asymmetry.

Finally, Table 1 presents the LINEX risks relative to the corresponding

quadratic risks. In each case we have scaled the results so that effectively

R(G%) = R(ce*?) = R(6?) = 1 under quadratic loss. The results illustrate that we




cannot generalise on whether the risk under LINEX loss is higher or lower than

under quadratic loss.

S.  Conclusions

In this paper we have relaxed the conventional assumption, in the
preliminary-test estimation literature, that the loss structure is quadratic.
By adopting a LINEX loss function we are able to see how asymmetric departures
from quadratic loss may affect certain known results. Such asymmetry may be
very relevant in the estimation of the regression scale parameter. We find that
the risk functions for the pre-test, unrestricted, and restricted estimators of
this parameter are robust to mild departures from quadratic loss, at least
qualitatively. However, as the degree of asymmetry increases, these results

change in several important ways.

Accordingly, it is clear that other existing results in the pre-test

literature are unlikely to be robust to major departures from the assumed

quadratic loss structure. Work in progress investigates this matter further.




Appendix
Proof of Theorem 1

(i) R(;z) = E[exp[a(gz—(rz)/o'z] - a(a:2 - 02)/0'2 -1 ],

where ;2 = v G/(vi-z').

Let z = u’ ~/a'2, which is xﬁ. Then,

E[a(c;z-o-z)/cz] = aE(z)/(v+y) - a

= -ay/(v+y)
E[exp[a(;z-o'z)/o-zl] = or eaz/(vw)-a f(z)dz,

where f(z) = [ZV/Z/I' (v/Z)] 2/ 2

Let t = z(v+y-2a)/(2(v+y)); then

-a v/2 ©
Elexp a(i;z-a-z)/cr2 = & () et /g
v v/2
r 3 (v+y-2a)

v/2
= o2 v+y
[ v+y-2a )

Substituting (A.2) and (A.3) into (A.1) yields (7).

(i) R(e*%) = B[exp[a(o'z-oz)/azl - a(o-‘z-o'z)/o'z-l] - (A.4)

2

where o*~ = u*’ u*/(v+m+35).

Let w = u"u‘/a-z, which is xi+m-h' where the non-centrality parameter (A)

is defined in (2). Then,

E[a(tr'z-o'z)/cz] aE(w)/(v+m+3) - a

a(v+m+22)/(v+m+38) - a




= a(2x-3)/(v+m+3) .

]
E[exp[a(o-‘z-crz) /02]] - OJ’ e:«xw{(wmw)-a‘.(w) dw |

(]
flw) = ¢

[ e-AAi] w(v+m+21)/2-l e-w/z
i=0

i) pvwmezizz l'[(v+m+2i)/2|
Let s = w(v+m+3-2a)/(2(v+m+3)); then

© e-(Ma)A i

i=0 isr[(v+m+2i)/2]z‘”"m*2”’ 2

E [exp (a(rr'z-a'z)/vz]] =

00

eS[2 (v+m+3) v+m+2i)/2-1 ds
x v+m+dé-2a

(v+m+2i)/2 (
] s

e-()ﬁ-a) Al Dmes (v+m+2i)/2
v+im+d8-2a

Substituting (A.S) and (A.6) into (A.4) yields (8).
(iii) RG2) E[exp [a(&z-az)/az] - a6%-c?) /6% - 1]

= E(Ql) - E(QZ) -1

where Q1 = exp{a(&z-o‘z)/a'z] and Q2 = a(t?-z-o-z)/crz.

Now, 2 =52, (*% - 3:2)1(0 c](f) where I ){f) is an indicator
function which is unity if f lies within the subscripted range, zero

,
otherwise, and as w = z + x where x ~ x;.l we have,
H

6% = g2 {(v+m+6)z + [(vw)x - (m+6-1)z]1[0 c](vx/mz)}/




[(v+m+6)(v+1)] . (A.8)

z and x are independent and so using Lemma 1 of Clarke et al. (1987a) we have

E[zllo,c](vx/mz)] = va'Wz;)‘ s

2AP

m+4,v;A .

E[xl[o'c](vx/mz)] = ml’m+2'v;k +

Substituting these expressions into (A.8) gives

E(Qz) = - ay/ (v+y) + a[m(v+7)Pm+2’v;A

- v(m+3-7) P + 2A(v+7)P

m,v+2;A /[(V+7)(V+m+6)]. (A.9)

m+4.v;7\]

Turning now to derive E(Ql) we write

boz + (blx_bZZ)I[O,c](VX/mZ)

03. say,

where b0 = a/(v+y), b1 = a/(v+m+3), b2 = a(m+6-7)/[(v+1)(v+m+6)] and note

that b1 = bo - bZ' We desire E(exp(Qa)). which we can write, as

E(Q)®  E(Qy°
E[exp(Q3)] = 1+ EQ) + — + 3t

Now, using Lemma 1 of Clarke (1990) we have

n n
1 1
E[Z I[O,cl(vymZ)] =2




Pm+2r,v+2nl;0 (A.10)

n n (-] ———
2 2
E{x I[o'c](vx/mz)] =2 rfo T Pm+2r+2n2,r;0 (A.11)

where n and n, are any real values such that n, > (-v/2) and n, > (-m/2).

Using (A.10) and (A.11) we have

E[exp (03)] =14+ 2{ bo

] pm+2+2r-,v+2;0] }

m+2r,v+6;0




m+6+2r [ v+2 ] [-m+4+2r
I' 2

m+6+2r,v;0 [ ] l"[ m+2?] Pm+4+2r,v+2;0
2

) o[=2=)
[ m+2r] l:‘m+2+2r,|.’+4;0 *
r 2

Prn,wZi;?\

Finally, if | 2a/(v+7)l < 1, which is not restrictive in practice, then

Pm,v+2i;A

Substituting (A.9) and (A.12) into (A.7) yields (9).

Proof of Theorem 2

Using the infinite series expansion of the exponential function we write




2 2
R(o‘)— [2, [(o-cr)/a'] + = [(o--«r)/c] +]
2
=E g—! [[(v+m+6)z - (v+m+8)(v+7)]

2 2
+ [(v+7)x - (m+3-7)z 1[0 c](vx/mz)] /[(v+m+s)(v+1)]

3
[[(v+m*6)z-(v+m+8)(v+1)]

3 3
+ [(v+7)x—(m+8-7)z]llo c](vx/mz)] /[(v+m+6)(v+7)] + ... ]

= E[ A% + ((wy)x - (m+6~7)z]¢ I[O c](vx/mz)],

A = (v+m+3)z - (V+m+8)(v+y)
[ [(v+7)x-(m+6-7)z]]
2 2
[[(v+7)x-(m+6-7)z] + 3A
+ 3A[(v+7)x - (m+6-1)z]] + ...

Now I(o’c](vx/mz) = I[O,u](X) where u = mcz/v, so (A.13) is

R(S-z) = EZ[A" + Ex[[(v+7)x-(m+6-;r)z]¢Ilo'u](x)]]

u
= EZ[A" + [J [(v+1)x-(m+6-7)z] @f(x)dx]

15




,
where f(.) is the density function of a 7‘:\-7\ variate.

So,

~2 u ’
% = Ez[ ?;- . % 0-[ [(v+7)x-(m+6-7)z]M‘(x)dx]

v

Ez[zf ﬂc—z] [(vﬂ')mc/v - (m+6-7)]¢‘]

where ¢* = & when x = mcz/v.
(A.14) will be zero when ¢ = 0, » and when
(v+y)mc/v - (m+3-7) = 0

c* = [(m#a-w)v] / (m(v+1)].
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Footnotes

We are grateful to Viren Srivastava for allowing us to refer to Srivastava
and Rao (1990).

In this case, 0"‘2 has minimum MSE in the family (4) if RB =r.

Strictly, this is a simplified form of the general LINEX function, LG(E)

(YR

b[exp(az) - (CE/b)-l]. We require C = ab for LG(E) to be a minimum when
= 0. We also set the proportionality factor, b, to unity.

"2 ~2 ., 2 2,
o =0 ifc=0,,and ¢ = ¢* if ¢ = .
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Quadratic LINEX
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Figure 3¢ LINEX risk functions for LS components when a=-5.0
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Figure 4b LINEX risk functions for MSE components when a=-2.0
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TABLE 1 LINEX risks relative to quadratic risks®

R(c*?) R(e?) R(c?)
=-2.0 a=-5.0 a=-2.0 a=-5.0
a=0.05 a=a® «=0.0S a=a®

ML Components
1.2385 1.9693  1.0927 . 1.1248 1.137S 1.8337 1.8591
1.2385 1.9693 0.9801 1.0947 1.1185 2.0611 2.0688
1.2385 1.9693 0.8811 1.0858 1.1188 2.4676 2.3376
1.2385 1.9693  0.8065 1.0896 1.1281 2.9656 2.6539
1.2385 1.9693 0.7541 1.1005 1.1417 3.5362 2.9603
1.2385 1.9693 0.7176 1.1158 1.1570 4.1074 3.2083
1.2385 1.9693 0.6900 1.1329 1.1726 4.6312 3.3910
1.2385 1.9693 0.6680 1.1512 1.1874 5.0708 3.4872
1.2385 1.9693 0.6492 1.1674 1.1992 5.3693  3.5041
1.2385 1.9693 0.6321 1.1831 1.2105 5.5108 3.4364
1.2385 1.9693 0.6163 1.1962 1.2186 5.4974 3.3270

AN SR =)

cwvwo~NoOGn
OOOOOOPO

-

LS Components
0.9782 1.1800 0.9802 .1647 1.0024 1.0385 3.2699 2.9899
.9782 1.1800 0.8744 .8879 0.9498 1.0111 4.2634  2.8060
.9782 1.1800 0.7983 .7008 0.9236 0.9961 5.8596 2.5552
.9782 1.1800 0.7455 0.5851 0.9125 0.9878 7.8780 2.2137
.9782 1.1800 0.7089 0.5133 0.9110 0.9826 10.2016 1.9961
.9782 1.1800 0.6812 0.4668 0.9138 0.9811 12.5679 1.7544
.9782 1.1800 0.6587 0.4340 0.9207 0.9789 14.7212 1.5966
.9782 1.1800 0.6394 0.4085 0.9287 0.9782 16.4851  1.4487
.9782 1.1800 0.6218 0.3875 0.9375 0.9782 17.6193 1.3464
.9782 1.1800 0.6055 0.3694 0.9457 0.9775 18.0608 1.2859
.9782 1.1800 0.5898 0.3533 0.9529 0.9782 17.8058 1.2640

(LR AN SR e
[eNeoNe]

0
0o
0
0
0
0
0

OV NO

-

MSE Components
0 1.1016 1.5346 1.0927 1.4868 1.1154 1.1499 2.0081 1.9948
1 1.1016 1.5346 0.9801 1.1650 1.064S 1.1282 2.1874 1.9222
2 1.1016 1.5346 0.8811 0.9011 1.0390 1.1152 2.5837 1.8391
3 1.1016 1.5346 0.8065 .0.7177 1.0280 1.1090 3.0991 1.7510
4 1.1016 1.5346 0.7541 0.6015 1.0267 1.1062 3.7150 1.6935
S 1.1016 1.5346 0.7176 0.5277 1.0309 1.1043 4.3303 1.657S
6 1.1016 1.5346 0.6900 0.4794 1.0389 1.1026 4.8789 1.6015
7 1.1016 1.5346 0.6680 0.4458 1.0489 1.1017 5.3363 1.5798
8 1.1016 1.5346 0.6492 0.4199 1.0578 1.1025 5.6226 1.5713
9 1.1016 1.5346 0.6321 0.3988 1.0671 1.1016 5.7296 1.5645
0

1 1.1016 1.5346 0.6163 0.3807 1.0751 1.1016 5.6678 1.5412

«*=0.082 for the ML components, 0.406 (c=1) for the LS components, and
0.435 (c=v/{v+2)) for the MSE components.










