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ABSTRACT

Various studies have considered the risk properties under Quadratic loss, of
estimators of the scale parameter after a preliminary test for exact linear
restrictions on the regression coefficients. This loss function is symmetric
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1. Introduction

There is a well-established literature relating to the estimation of the

coefficient vector in the linear regression model after a preliminary test of

the validity of exact linear restrictions on this vector. Useful summaries are

given by Judge and Bock (1978, 1983), for example. More recently, there has

been interest in the estimation of the scale parameter in this model after the

same preliminary test (e.g., Clarke et a/. (1987a,b), Ohtani (1988), Gelfand and

Dey (1988a,b), Clarke (1990), Giles (1990, 1991), Giles and Lieberman (1991)).

The literature on pre-test estimation to date centers on risk under

quadratic loss. When estimating the scale parameter of a regression model, a

quadratic loss structure may be unduly restrictive. In particular, the

estimation of this parameter (in the form of either the variance or the standard

deviation of the regression errors) is needed for the construction of "standard

errors", confidence intervals, and test statistics. Under-estimation of the

scale parameter is, arguably, of greater consequence than its over-estimation.

The former situation results in the reporting of standard errors which are

unduly optimistic with respect to the precision of the coefficient estimates,

and t-statistics which tend to be distorted in favour of "significant" results,

other things equal. Accordingly, it may be preferable to consider a pre-test

estimator of the regression model's scale parameter which is based on an

asymmetric loss function.

It is well known that the choice of loss function can affect estimator

rankings (e.g, Hirano (1973)). Recently, Srivastava and Rao (1990) have

considered the use of the (asymmetric) LINEX loss function (ea., Varian (1975),

Zellner (1986)) in the context of estimating the error variance of the normal

linear regression model. This paper combines their analysis with that of Clarke

et at. (1987b) in considering the estimation of this parameter under LINEX loss,

after a pre-test of exact restrictions on the model's coefficients.
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Section 2 discusses the model and notation The risk functions of the

pre-test, the unrestricted, and the restricted estimators of the error variance

are derived in Section 3; and Section 4 evaluates and discusses these risks in

comparison with their counterparts based on a quadratic loss structure. Some

concluding remarks appear in Section 5.

2. The Estimation Problem

Consider the regression model,

y = x13 + u ; u N(0,cr
2
IT) (1)

where y and u are (Tx1); X is (Txk), non-stochastic and of rank k; and /3 is

(kx1).

Also, consider m (k) independent linear restrictions on 13, given by Rt3 =

r, where R is (mxk) of rank m; r is (mx1); and both R and r are non-stochastic.

Applying Ordinary Least Squares estimation to (1) yields

with associated residual vector,

= (xi x)'x'y

u = y - .

Imposing the m restrictions on ft and applying Restricted Least Squares

estimation to (1) yields

g* = + (X' X) IR' [R(X' Xr1R1-1(r-Rifi,

with associated residual vector,

u* = y -

The uniformly most powerful invariant size - a test of

=• 143 r yE HA: 143 * r
HO'

rejects H
o 

when f > c(a), where
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f = [(u.' u* - [vim]

v = T - k,
c(a)

and c(a) satisfies of dF
(m,v) 

= 1 - a, where F
(m, v) 

denotes the central

F-distribution with m and v degrees of freedom. The statistic f follows this

distribution if H
o 

is true, and under HA it is distributed as non-central F

(Fi
m,v; X)

) with these degrees of freedom and non-centrality parameter

= (r-R(3)' [R(X' X)-1R1 
-1(r..143)/20.2

The pre-test estimator of (3 referred to in Section 1 is

I 3*

; f > c(a)

; s c(a)

and the associated pre-test estimator of 0.2 is

=

1 -2
cr ;

c*
2 
; f s c(a)

5 > c(a)

(2)

Clarke et at. (1987a) consider the risk of ir'2, under quadratic loss, when ;2 and

cr*2 are the unrestricted and restricted maximum likelihood estimators of cr2.

This analysis is generalised by Clarke et at. (1987b) to the case where irr2 is

based on component estimators from the families,

;2 = ii/(v+7) (3)

a.*2 = u*/(v+m+3 ) . (4)

Maximum likelihood (ML) component estimators correspond to 7 = k, 3 = k - m;

least squares (LS) component estimators correspond to 7 = 3 = 0; and minimum

Mean Squared Error (MSE) component estimators' correspond to 7 = 3 = 2.

-Srivastava and Rao (1990) derive the risk of cr 
2
 in (2) under LINEX loss.
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This loss function is of the form
2

where

L(‘#) = exp (aZ) - - 1 (5)

- -2 2 2
c = (a. -a. )/cr (6)

is the relative estimation error, and the parameter 'a' determines the asymmetry

of L('-) about the origin. If 'a' is small enough for ai 0 t 3), then L(c"-)

is approximately quadratic. The risk of •;.2 is R(;2) = EIL(Z)].

-2The same approach can be taken with respect to the risks of a.*
2 

and cr .

Defining c* and c analogously to in (6), and substituting into (5), we can

define R(cr*2) and R(O4-2) under LINEX loss. The derivation of these risk

expressions is considered next.

3. Risk Under LINEX Loss

-
The risk functions of ;2, 

a.*2 2 
and cr are stated in the following result:

Theorem 1

Under the assumptions of Section 2,

1 viz
-2 -a1  v+7 

R(o. ) = e
v+7-2a

-1 (7)

co
R(a.*2) 

= E e-(A+a)( Ai

1=0 

(  
Ti v+m+ 8-2a

a(3 -2A) 
v+m+3

(v+m+2i)/2

-1 (8)
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where

co
R(0'-2) = R() + - 

12a/(v+7))1 ri L-1) T e E
i! f(v/2) 1'm,v+2i;A

CO CO 
e XA  -r (2a/(v+m+3))1 + E E -2i)1

r=0 1_1 r: i !

- a 
[m(v+1)Pm+2A v(in+3-2)13m,v+2;A 

+ 2A(v+7)P
m+4,v;AP

Pm+0,v+v;A = Prt(m+0,v+9;A) s

r = 0, 1, 2, ...

cm(v+v))/(v(m+0))1;

(9)

Lii is a (1x(i+1)) vector equal to the (i+l)'th row of Pascal's

Triangle; i= 1, 2, ...

and L2i is an ((i+1)xl) vector with elements

M. -
J

ri v+2(ii) ) m+2j+2r 
1 2  2 j

m2+21 m+2j+2r,v+2(i-j);0 ;
1 2 J

j= 0, 1, .

The expression in (7) is stated by Srivastava and Rao (1990, p.5). A

proof of Theorem 1 appears in the Appendix. With some tedious manipulations

involving repeated use of the Binomial Theorem, it can be verified that (9)

collapses to (7) and (8) respectively, if a 4 1 (c 4 0) or a 4 0 CC 4 co). In

the same way, and using the infinite series expansion of the exponential

function, it can be shown that (7) - (9) collapse to their quadratic loss



counterparts if 'a' is sufficiently small that third-order and higher terms

are negligible.

Exact numerical evaluations of these risks are discussed in the next

section. Prior to this we derive critical values which result in an extremum of

the pre-test risk function. In particular, we are interested in whether the

results of Ohtani (1988), Gelfand and Dey (1988a), and Giles (1990, 1991) extend

to the LINEX risks. These authors show that under quadratic loss the pre-test

risk function is minimised when3 c=0, co, or c=c* where

c* = ((m+d-7)v)/(m(v+7)) . (10)

So, c•=1 for the LS components, v/(v+2) for the MSE components, and zero for the

ML components. These studies also show that the pre-test estimator which uses

c=c* strictly dominates the unrestricted estimator. Theorem 2 gives the

critical values which can result in an extremum of the LINEX pre-test risk.

Theorem 2

Under the assumptions of Section 2,

all(crA2)/ac = 0 when c=0, c=03, or c=c* ,

where c* is defined by (10).

A proof of this theorem is given in the Appendix. So, the values of c which

result in turning points under quadratic loss also result in turning points

under LINEX loss. However, depending on the value of a, c* may maximise the

pre-test risk as well as minimise it. The numerical evaluations, which we now

consider, illustrate this result.

4. Numerical Evaluations

Examples of the LINEX loss function are given in Figure 1 for a=-0.5, -2.0,

and -5.0. Values of a<0 penalise under-estimation of the scale parameter more
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heavily then over-estimation. The quadratic loss functions shown in Figure 1

for comparison are scaled to match the limiting form of LINEX loss. • That is,

= a2i1/2.

These values of a are also used when evaluating the risks in (7) - (9).

The risks are evaluated numerically on a VAX 6340 using FORTRAN code which

incorporates Davies' (1980) algorithm to evaluate the non-central and central F

probabilities and various other algorithms from Press et al. (1986). The

infinite series in (8) and (9) converge rapidly with a convergence tolerance of

10-9. Corresponding results for the risks of ;2, cr*2 and 32 under quadratic

loss are computed in the same way. In this case the formulae of Clarke et a/.

(1987b) are used after scaling by a2/2 for comparability with the LINEX results.

The LINEX risk results are illustrated in Figures 2 - 4, for maximum likelihood,

least squares and minimum MSE component estimators of 172. Table 1 provides a

comparison of the quadratic and LINEX results. In each case we consider v=30,

k=5, and m=3. These results are typical of those we have examined, full details

of which are available on request.

In each case two critical values are considered for the preliminary test of

restrictions - one associated with a 57. significance level, and one which is

"optimal" in some sense. For the LS and MSE components we use c=1 and c=v/(v+2)

respectively for the latter. These are the values of c which result in an

extremum of the pre-test risk function as shown in Theorem 2 above. In the case

of the ML components c'=0, implying that ;2 = ;2. Consequently, for this

estimator we use the "optimal" critical value reported by Giles and Lieberman

(1991) according to the mini-max regret criterion under quadratic loss. For the

case presented in Figure 2 this "optimal" critical value is 2.464, which

corresponds to an 8.2% significance level.

In Figure 2, which illustrates the LINEX risk functions for ML components,

we see that when a = -0.5 the risks are qualitatively the same as those reported

•
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by Clarke et al. (1987a). In particular, the pre-:test estimator can have higher

risk than either of its components, the risk of cr*2 is always smaller than that

- "
of ir

2 
and or

2
 when H

o 
is true, and it is preferable to ignore the prior

information when A > A*, where A* is that value of A for which R(;2) = R(fr*2).

These results continue to hold qualitatively as the loss asymmetry

increases. Quantitatively though, A* increases with an increase in asymmetry,

as does the range over which ;2 has higher risk than either of its components.

Further, the A value for which all(0.-2)/aX = 0 need no longer be greater than A*

if the loss function is asymmetric in the way investigated here. Finally, the

mini-max regret criterion "optimal" critical value varies with a. A detailed

investigation of this issue is beyond the scope of this paper, though the

results suggest that the "optimal" critical value would increase (a decrease)

with increases in the loss asymmetry.

The features discussed for the ML components are also observed for the LS

components in Figure 3. Further, we see that when using the LS components 3:2

may strictly dominate cr-2 - even if c=1 and if Ho is true. In addition, though

A* increases with higher loss asymmetry, the potential risk gain of 0.*2 over 3:2

is relatively small. Then the results suggest, given that A is unknown, that it

may be preferable to always ignore the prior information.

The MSE component risks behave in a very similar fashion to the LS

component risks. In particular, Figure 4b illustrates that using c=v/(v+2) can

both maximise and minimise the pre-test risk. As with the LS components, the

unrestricted estimator can strictly dominate the pre-test estimator and the

relative risk gain of cr*2 over ;2 decreases with higher loss asymmetry.

Finally, Table 1 presents the LINEX risks relative to the corresponding

quadratic risks. In each case we have scaled the results so that effectively

R(;2) = R(0.*2) = R(0.-2) = 1 under quadratic loss. The results illustrate that we
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cannot generalise on whether the risk under LINEX loss is higher or lower than

under quadratic loss.

5. Conclusions

In this paper we have relaxed the conventional assumption, in the

preliminary-test estimation literature, that the loss structure is quadratic.

By adopting a LINEX loss function we are able to see how asymmetric departures

from quadratic loss may affect certain known results. Such asymmetry may be

very relevant in the estimation of the regression scale parameter. We find that

the risk functions for the pre-test, unrestricted, and restricted estimators of

this parameter are robust to mild departures from quadratic loss, at least

qualitatively. However, as the degree of asymmetry increases, these results

change in several important ways.

Accordingly, it is clear that other existing results in the pre-test

literature are unlikely to be robust to major departures from the assumed

quadratic loss structure. Work in progress investigates this matter further.

9



Appendix

Proof of Theorem 1

(i) R(1;2) = E [exp (a(c7.2-cr2)/cr2) - - a'
2 
)/a'
2
 - 1

where c-r2 = ril(v+i).

- 2 2Let z = u u/cr , which is xv. Then,

E [a (3:2_cr2 )/a.2] = aE(z)/(v+7) - a

-ar/(v+7)

E [exp (a(Cer°2-cr2)/(rli = oreazi(v+7)-a f(z)dz,

- 
ewhere f(z) = (2/1/2/r(v/2)) 

zy/21 -z/z

Let t = z(v+7-2a)/(2(v+I)); then

e
-a
(v+7)

v/2 co „eir-2 0.2)/(11
E [exp (a 

_ _ 
t
V/ 2-1

dt
r ) (v+7-2a)v/22

e-a v+7
v+i-2a

V/2

Substituting (A.2) and (A.3) into (A.1) yields (7).

(A.1)

(A.2)

(A.3)

(ii) R(a..2) = E [exp (a(cr*2-cr2)/cr2) 
a(0,2_cr2)/0.2..] 

(A.4)

where tr*2 = u 1 u*/(v+m+6).

Let w = u 1 u./cr
2
, which is x

2'
where the non-centrality parameter (A)v+m; A'

is defined in (2). Then,

E[a(tr*2-cr2)/cr2] = aE(w)/(v+m+8) - a

= a(v+m+2A)/(v+m+.3) - a

10



where

= a(2A-3)/(v+m+5) . (A.5)

E[exp(a(cr.2-1,2)/cr2)1 = or eawi(v+m+a)-af(w)dw
co -A

A
 (v+m+2i)/2-1 

e
-w/2

f(w) = E w
i!

2 
(v+m+2i )/21=0 11(v+m+20/2)

Let s = w(v+m+6-2a)/(2(v+m-1-3)); then

(0.. _0.2207.211 E e E [exp

) 1=0 i !r (( p+m+20/2) 2
(v+m+2i)/2

co
-s[ 2( v +m+3 ) 

(v+m+20/2xof 
e s

(v+m+21)/2-1
dsv+m+ 6 -2a 

= Ec° r
i=0

-(A+a) ie 

A ][ "rri+3
i! v+m+6-2a

(v+m+2i)/2

Substituting (A.5) and (A.6) into (A.4) yields (8).

-2 -2 2 2 -2 2 2(iii) R(cr ) = E[exp(a(o. -cr )/cr - a(cr )/cr - 1

where

Now,

= E(Q1) - E(Q2) - 1

((Er2-s2) a6;2-a.2)/0.2a 0 .Q1 = exp and Q2 =

= (3'2 + (e2 

(A.6)

(A.7)

where 
I( ) 

(f) is an indicator.,.
function which is unity if f lies within the subscripted range, zero

otherwise, and as w = z + x where x xf.x we have,

-2 2cr = {(v+m+.3)z + [(v+i)x - (m+.3-7)zirio,ci(vx/mz)1/

11



(A.8)

z and x are independent and so using Lemma 1 of Clarke et at. (1987a) we have

qz110,ci(vx/mz)) = vP
m,v+2;X '

E(xI[0,c1(vx/mz)) = rnPm+2,v;X 
+ 2X1'

m+4,v;X .

Substituting these expressions into (A.8) gives

E(Q2) = - ay/ (v+Y) + a[m(v+Y)Pm+2,v;x

v(m+3-7)
 
1'm,v+2;X 2X(v+T)Pm+41/((v+1)(v+m+6))* (A.9)

Turning now to derive E(Q1) we write

-2
acr

= b
o
z + (b

1
x-b

2z)I(0,c1
(vximz)

2
cr

= Q
3' 

say,

where b
o 
= al(v+7)

' 
b
1 
= a/(v+m+.3)

' 
b
2 
= a(m+43-7)/((v+1)(v+m+3)) and note

that b = b
0 
- b
2
. We desire E(exp(Q

3
))
' 

which we can write, as

E(Q3)
2 

E(Q3)3
E[exp(Q3)1 = 1 + E(Q3) +  2! 3! 

 +

Now, using Lemma 1 of Clarke (1990) we have

v+2n
n p

E iI
(0,c)

(vx/mz)) = 2 
ri 

 m,v+2n •A
rt )

12



and

•

v+2n
1)

= 2
n ( 2  

a) 
e
-X

X
r •

ri ) r=0 r! m+2r,v+2nr P •0 
(A.10)

n co
E (xn2

I[0,c ]
(vx/mz)) = 2 2 E

r=0

m+2n
2
+2r 
)e-Xxr ri

2 
r!  ri m2+2r Pm+2r+2n ,r;0 

(A.11)
2

where nl and n2 are any real values such that n1 > (-v/2) and n2 > (-m,(2).

Using (A.10) and (A.11) we have

E[exp (Q3)] = 1 + b
o

r( )
2 

+ E
r1; ) r=0

ri v+2-A r
jeA  [(1)1 0-b  2 r! ) 

r( )

r( m+2+2r )
2 

Pm+2r,v+2;0
+ b

1 rt m+2r 1 Pm+2+2r,v;Oil
2

r( v+4 ) co
e
-A
X
r rib2 b21 

r( v
2
+4 
) + 2

21
b2  2 + Z0 r! Li 1 

o) ri v Pm+2r,v+4;0
ri 

r=0

m+4+2r v+2 m+2+2r
2 j 2 r( 2 2 + b

2  t

m+2r1 Pm+4+4r,v;0 
+ 2b

1 v )r m+2r
r2 2

+231
Pm+2+2r,v+2;011

r v+6
co 

e
-Ar [ r 

jb
3 

v+6
2 2 

+ E   - b3)0 
r=0 rf 0 ri Pm+2r,v+6;0rpn 

13



m +6+2r ) ( v+2 )

2 j 

3b3

m+ 4+2r )

+ b3
1 r m+2r ) Pm+6+2r,v;0 ' 11 2 r 

2 

2
) rl m+2r J m+4+2r,v+2;0

2

✓ v+4 )
3 

r m+2+2r 
t 2 j 2

+3b
1 ri r( m+2r Pm+2+2r,v+4;0 

+

2

) co (2b0)
i 
r( v.;2i12b0) ri

= E     Z  .
Pm,v+2i;A

1=0 1 • ri i=i

co (2b1) co e-Air
+ E   Z  

ii r! L2i)
1=0 r=0

Finally, if I 2a/(v+7)1 < 1 , which is not restrictive in practice, then

(2b•ol r( "2
• 

v/2
2

Z  .
1=0 1 r( v ) v+7-2a[ 11+7

and so

E(Q1) = e-af r  iv/2 (2.b,0) ri
v+7-2a i=1 1-

1

• 12b co

1
+ E  •,
i=1 r=0

e
-A

Ar
r!

v+2i
2

-f1"
m,v+2i;A

L2i) 1 . (A.12)I ii

Substituting (A.9) and (A.12) into (A.7) yields (9).

Proof of Theorem 2

Using the infinite series expansion of the exponential function we write

14



where

R(0...2) . Er a2 
k 
16;2_0.20. 

j 
2)
2 
+ a
3 
f2_cr2)

i 2! 3! 1

= E[
2
-- [((v+m+3)z - (v+m+a)(v+7))2!

2 2
+ ((v+i)x - (m+3-7)z)I10,c1(vx/md /((v+m+3)(v+7))

a
3

+ 5-1- [((v+m+o)z-(v+m+3)(v+i))

3 3
+ ((v+1)x-(m+3-7)+[0,c](vx/mz)1 il(v+m+S)(v+7)) + ..

= E[ A* + ((v+7)x - (m+.3-7)z)(1, 
I[0,c1

(vx/md,

a
2 
2 a

3 
3A* = A + A + ..

A = (v+m+3)z - (v+m+.3)(v+i)

41t, = 
a
2

fr [2. ,̂ +

3
+ 3...:( [l(v.4.7)x_(m+6_1)z)

2 
+ 3A2

+ 3At(v+2)x - (m+3-7)z)1 + ... .

Now 
I(0,c]

(vx/mz) = 
[ 
I
0 i(x) where u = mcz/v, so (A.13) is ,u 

R(3.2) = E A* + E [((v+7)x-(m+13-7)z)4410,u (x)1z x

u
= E

z
[A* + of ((v+7)x-(m+3-2-)z)Of(x)dx1

I
(A.13)

15



2'where f(.) is the density function of a x
m;X 

variate.

So,
-

aR(
2 

cr 
a or(ac = E 

z[ ac • au
(v+i)x-(m+3-29)z)0f(x)dx

= E [zf 1111 - (m+3-7))0*1z v

where 0* = 0 when x = mcz/v.

(A.14) will be zero when c = 0, co and when

(v+i)mciv - (m4-3-7) = 0

i.e. c* =

(A.14)
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Footnotes

* We are grateful to Viren Srivastava for allowing us to refer to Srivastava_

and Rao (1990).

1. In this case, cr*2 has minimum MSE in the family (4) if Riit = r.

2. Strictly, this is a simplified form of the general LINEX function, LG(Z) =

—b(exp(a"c‘) - (CZ/b)-1). We require C = ab for LG(Z) to be a minimum when c

= 0. We also set the proportionality factor, b, to unity.

#' 2 ••.#23. 0'= a- i 2 2f c = 0, and ; = CT* if c = co.

.,,
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TABLE 1 LINEX risks relative to quadratic risks'

A

^'
R(

2
Cr )

a=-2.0 a=-5.0
R(T

92
)

a=-2.0 a=-5.0
R(;!-)
i=-2.0

a=0.05 a=a*

R(;2)
a=-5.0

a=0.05 a=c0

HL Components

0 1.2385 1.9693 1.0927 1.4868 1.1248 1.1375 1.8337 1.8591

1 1.2385 1.9693 0.9801 1.1650 1.0947 1.1185 2.0611 2.0688

2 1.2385 1.9693 0.8811 0.9011 1.0858 1.1188 2.4676 2.3376

3 1.2385 1.9693 0.8065 0.7177 1.0896 1.1281 2.9656 2.6539

4 1.2385 1.9693 0.7541 0.6015 1.1005 1.1417 3.5362 2.9603

5 1.2385 1.9693 0.7176 0.5277 1.1158 1.1570 4.1074 3.2083

6 1.2385 1.9693 0.6900 0.4794 1.1329 1.1726 4.6312 3.3910

7 1.2385 1.9693 0.6680 0.4458 1.1512 1.1874 5.0708 3.4872

8 1.2385 1.9693 0.6492 0.4199 1.1674 1.1992 5.3693 3.5041

9 1.2385 1.9693 0.6321 0.3988 1.1831 1.2105 5.5108 3.4364

10 1.2385 1.9693 0.6163 0.3807 1.1962 1.2186 5.4974 3.3270

LS Components

0 0.9782 1.1800 0.9802 1.1647 1.0024 1.0385 3.2699 2.9899

1 0.9782 1.1800 0.8744 0.8879 0.9498 1.0111 4.2634 2.8060

2 0.9782 1.1800 0.7983 0.7008 0.9236 0.9961 5.8596 2.5552

3 0.9782 1.1800 0.7455 0.5851 0.9125 0.9878 7.8780 2.2137

4 0.9782 1.1800 0.7089 0.5133 0.9110 0.9826 10.2016 1.9961

5 0.9782 1.1800 0.6812 0.4668 0.9138 0.9811 12.5679 1.7544

6 0.9782 1.1800 0.6587 0.4340 0.9207 0.9789 14.7212 1.5966

7 0.9782 1.1800 0.6394 0.4085 0.9287 0.9782 16.4851 1.4487

8 0.9782 1.1800 0.6218 0.3875 0.9375 0.9782 17.6193 1.3464

9 0.9782 1.1800 0.6055 0.3694 0.9457 0.9775 18.0608 1.2859

10 0.9782 1.1800 0.5898 0.3533 0.9529 0.9782 17.8058 1.2640

HSE Components

0 1.1016 1.5346 1.0927 1.4868 1.1154 1.1499 2.0081 1.9948

1 1.1016 1.5346 0.9801 1.1650 1.0645 1.1282 2.1874 1.9222

2 1.1016 1.5346 0.8811 0.9011 1.0390 1.1152 2.5837 1.8391

3 1.1016 1.5346 0.8065 0.7177 1.0280 1.1090 3.0991 1.7510

4 1.1016 1.5346 0.7541 0.6015 1.0267 1.1062 3.7150 1.6935

5 1.1016 1.5346 0.7176 0.5277 1.0309 1.1043 4.3303 1.6575

6 1.1016 1.5346 0.6900 0.4794 1.0389 1.1026 4.8789 1.6015

7 1.1016 1.5346 0.6680 0.4458 1.0489 1.1017 5.3363 1.5798

8 1.1016 1.5346 0.6492 0.4199 1.0578 1.1025 5.6226 1.5713

9 1.1016 1.5346 0.6321 0.3988 1.0671 1.1016 5.7296 1.5645

10 1.1016 1.5346 0.6163 0.3807 1.0751 1.1016 5.6678 1.5412

• e=0.082 for the ML components, 0.406 (c=1) for the LS components, and

0.435 (c=v/(v+2)) for the MSE components.
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