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Abstract

We consider the common situation in which the application of the
Durbin-Watson test for serial correlation in the errors of a regression
model is preceded by a preliminary t-test for the significance of one of the
coefficients. The effect of such pre-testing on the size and power of the
Durbin-Watson test is examined in a Monte Carlo experiment.
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I. Introduction

The Durbin-Watson (DW) test for the serial independence of the errors
in a regression model is widely used by applied econometricians. It is
undoubtedly the best known such test, and its properties have been explored
intensively. However, it is frequently applied in contexts which violate
the assumptions which ensure its usual properties. The robustness of the DW
test to certain departures from these assumptions has been explored in
several studies, a useful summary being given by King (1987).

One common but non-standard way in which the DW test is applied is in a
"pre-test” situation. Aspects of this problem have been considered by Judge
and Bock (1978, pp.143-176), Fomby and Guilkey (1978), King and Giles
(1984), Griffiths and Beesley (1984), and Giles and Beattie (1987), all of
whom consider preliminary-test estimators in which the choice between
Ordinary Least Squares (OLS), and some estimator which "corrects" for
autocorrelation, is based on the DW (or some other) test. The DW statistic
is also often used in a pre-test testing (rather than estimation) context.
Nakamura and Nakamura (1978) and King and Giles (1984) consider the effect
of a preliminary test for autocorrelation, using the DW statistic, on the
properties of a subsequent t-test involving one of the coefficients. As
with other pre-test testing situations, size and power distortions occur at
the second testing stage as a consequence of the sequential analysis.

In practice, pre-test testing involving the DW and t-tests usually

proceeds in the opposite order to that described above. The significance of

the regressors is tested, the model is simplified accordingly, and then any

remaining autocorrelation is assessed and perhaps allowed for in the final
choice of estimator. The properties of this pre-test testing strategy have

not been investigated previously. In this paper we compare the (true) size




and power of the DW test after such pre-testing, with its size and power in
the absence of a preliminary t-test.

As in the earlier autocorrelation pre-testing literature, we use Monte
Carlo analysis. The nature of this pre-test problem precludes exact
analytical treatment. The experimental design is outlined in the next
section; Section IIl discusses the results; and Section IV concludes the

paper.
II. The Experiment

The model used in our study is
Ve = Bo * Xy * BpXpy iy
ut=put-1+ct ; 0<p<i1
e, ~ IN(0,6%)
The SHAZAM package (White et al. (1990)) is used to conduct our
experiment. This package incorporates the Normal random number generator

algorithm of Brent (1974). Having generated the A data, the parameters are

estimated by OLS and we test

1 _ 1,
HO.BZ-O vs HA.Bzaeo

using the usual t-test and the appropriate Student-t critical values.  While
this choice of critical valuel is appropriate only if p = 0, it is
consistent with conventional practice in the situation considered here. If
1
HO
estimate the (restricted) model,2

is rejected, the (unrestricted) model (1) is retained. Otherwise, we

Yo = Bo * BiXpe * vy
by OLS.

Next, the (exact) DW test is applied to




Exact critical values (which depend on the exogenous variables and which of
(1) or (2) is being used at this stage) are calculated by Davies’ (1980)
algorithm.

This application of the DW test constitutes a "pre-test testing"

strategy: the model, and hence residuals, used to construct the DW

statistic depends on the outcome of the prior t-test of H(l). The experiment

is replicated 4,000 times and the appropriate rejection proportions are used
to construct empirical measures of the power and true size of the test. The
pre-test DW test (DWP) is also compared with the standard DW test applied
(without pre-testing) to the unrestricted (DWU) and restricted (DWR) models
(1) and (2).

In the latter two cases the DW sizes and powers are calculated exactly3
by the method of Koerts and Abrahamse (1969), using Davies’ (1980)
algorithm. Let the (Tx3) regressor matrix be X = (1.51,5’2). and let X33 be
the third leading diagonal element of (X’X)—l. Then, for the unrestricted
model (1) it is easily shown that these results are independent of A =
B;/(2¢2x33). the non-centrality parameter associated with the t-test of Hcl).
For the restricted model (2), these evaluations depend on A. In this case
the model is misspecified if A # 0 (Bz # 0) and non-central rather than
central, Chi square variates enter the probability calculations. Further
details of this situation are discussed by Giles et al. (1991). In
contrast, including extraneous regressors affects the DW power only through
the data matrix on which the standard calculations are based. If the choice
of the DW critical value reflects the number of regressors actually included
in the model, no size or power distortions arise if some regressors are
extraneous.4

The dependence of the power of the DW test on the data is well known.

We consider several X matrices:




X1 (CPI Data): X and X, are current and lagged values of the quarterly

Australian Consumers Price Index (seasonally unad justed), commencing

1959(1).

X2 (Uniform/Trend Data): ¥, is uniform over (10,20) and X, Is a linear time
trend.

X3 (Eigenvector Data): X and X, are the eigenvectors corresponding to the
two smallest (non-zero) eigenvalues of thes "differencing matrix", A.

X4 (Watson’s Data): X = (32 + g’l")/ﬁ' %, = (33 + g.r_l)/ﬁ, where the gi's
are the eigenvectors corresponding to the roots of A, sorted in

increasing order.

These, or similar, data sets have been used in other autocorrelation
studies.6 They exhibit a range of characteristics with respect to trend,
collinearity and seasonality, as summarised in Table 1.

TABLE 1.- SAMPLE CORRELATIONS AMONG

REGRESSORS AND WITH TREND (t)

°°'T-‘?51'?52)
corr., (§l.t)

corr.(g_cz.t)

Values of ¢ = BO = Bl =1 and p = 0.0(0.1)0.9 are considered.7 The

value of 82 is varied to determine values of A = 0,0.5,2,10. Non-zero A and
p values measure departures from H(l) and H; on scales used conventionally in
the pre-test literature. Generally, all tests are conducted at a nominal 5%
(e = 0.05) level, though in view of the results of Fomby and Guilkey (1978),

the effect of assigning « = 0.5 for the DW test is also considered.




Generally, T = 20, though the sensitivity of the results to setting T = 60

is explored.

III. Results

The basic results appear in Tables 2 and 3. When p = O the powers are
the true sizes of the three variants of the DW test. In this case, when
A = 0 the true sizes of DWU and DWR equal their nominal sizes (by
construction) so the true size of DWP is also actually 5%. The entries for
DWP in these tables reflect a small degree of sampling error, the extent of
which is easily ascertained by considering the binomial nature of the

empirical rejections. For example, for Xl the reported size of DWP when

A = 0 is 0.055, but its standard error is v0.055(1-0.055)/4000 = 0.0036, so
the reported figure is within two standard errors of 0.05. This is also
true for the other data sets.

For A # 0, Size(DWU) < Size(DWP) < Size(DWR). There is one exception

in the case of Watson’s X matrix, but this is again within sampling error.

As A increases, the restriction Bz = 0 becomes increasingly false, and the

true size of DWR increases monotonically at a rate which is highly
data-dependent. At the same time, the true size of DWP increases and then
decreases, ultimately to the true 57 size of DWU (and therefore to its own
nominal size). This is intuitively plausible - when A is small there is a
reasonable probability that the preliminary t-test will lead to the
restricted model, so DWP is drawn towards DWR. As A increases, the power of
the t-test tends to unity, the restricted model is increasingly rejected,
and DWP tends to DWU. Again, the rate of convergence varies with the form
of X. The greatest size distortion (which is always upwards) for DWP arises
with the eigenvector data (X3), where the true size can be at least three

times as great as the nominal 57%. This is consistent with the results of




King and Giles (1984, pp.41-43) for the converse situation involving the
size of the t-test after a preliminary DW test. Also éonsistent with their
results is the relatively low distortion which arises with the CPI data
(X1). The least size distortion occurs with Watson’s X matrix (X4).
Referring back to Table 1, it is clear that the degree of size distortion
for DWP is not merely a function of the collinearity of the regressors.

The power of the pre-test DW test exhibits the same pattern noted above
for its size as A increases, for the same reason. In some cases (e.g., Xl)
an extreme form of this pattern arises for large p, with a monotonic
decrease in power with increasing A, ceteris paribus. The powers of all
three variants of the DW test increase with p, regardless of the value of A,
as expected. In the case of X4 it is known (King (1985, p.31)) that the
power of the DW test falls for sufficiently large p, at a rate depending on
the values of T and k. Our results confirm that this result still holds
after pre-testing.8

Power comparisons across the three versions of the DW test and/or
across data sets are complicated by the size differences. The values in
Tables 2 and 3 are rejection probabilities. If size differences are
ignored, the apparent powers follow the same ranking noted above for sizes.
At least when A = O it is clear that Power (DWU) < Power(DWP) < Power(DWR),
within sampling error, and the power of the pre-test test is of similar
magnitude to that of the standard DW test applied to the restricted model.
In this same case, comparing across data sets, the power of DWP is virtually
the same for Xl and X2, slightly lower for X3, and lower still for X4.
Again, from Table 1, there seems to be no simple explanation for this

ranking in terms of the degree of trend or collinearity of the regressors.

If one test has smaller Type I and Type II error probabilities than a

second test, then the first test unambiguously has the higher power. With




this in mind we see that when A # O, DWP can still be more powerful than the
standard (no pre-test) DW test in certain circumstances. Examples occur
relative to DWR with the CPI data (X1) for A = 0.5 or 2, and small p values;
and with Watson’s data (X4) for p = 0.5, when A = 2, or p = 0.2 when A = 10.
The size orderings generally preclude such conclusions relative to DWU when
A # O in the cases we have studied, but an exception is when A = 10 with
X4. In this case, DWP is more powerful than DWU for all p. Finally, we
have no evidence that the pre-test DW test can have higher power
simultaneously than both the DW test applied to the unrestricted model and
that applied to the restricted model, neither do our results show that DWP
can have the lowest power among the three DW tests considered.

Some illustrative results relating to the effects of altering the

2
(o]

T = 60, the results accord with those described above for T = . Of

sample size or the nominal size of the DW test of H. appear in Table 4. When
course, as the DW test is consistent, its power increases with T. This
holds for DWP as well as for DWU and DWR, as may be seen by comparing the
appropriate entries in Tables 2 and 4. Related to this, the degree of
(upward) size distortion as a result of pre-testing is reduced as T
increases. For example, for X2 in Table 2 the maximum such distortion is

1747, but it is only 927 in Table 4. The pre-test size distortion can also

be reduced by increasing the nominal size of the DW test of H(z). For

example, the 1747 distortion noted above for X2 when « = 0.05 is reduced to

25.47 when a = 0.5,




TABLE 2.-EXACT POWERS OF THE DW TEST
(T = 20; « = 0.05)

X1 : CPI Data
P

0 0.1 0.2 0.3 0.4 0.5 0.6

0.050 0.097 0.171 0.274 0.396 0.523 0.638
0.055 0.106 0.172 0.286 0.411 0.548 0.664
0.050 0.100 0.180 0.291 0.424 0.560 0.681

0.050 0.097 0.171 0.274 0.396 0.523 0.638
0.061 0.114 0.186 0.302 0.423 0.552 0.671
0.062 0.107 0.181 0.293 0.437 0.594 0.736

0.050 0.097 0.171 0.274 0.396 0.523 0.638
0.084 0.132 0.207 0.334¢ 0.429 0.551 0.669
0.098 0.127 0.186 0.299 0.474 0.680 0.852

0.050 0.097 0.171 0.274 0.396 0.523 0.638
0.056 0.102 0.168 0.283 0.391 0.518 0.648
0.270 0.213 0.206 0.324 0.627 0.908 0.993

X2 : Uniform/Trend Data

0.050 0.094 0.164 0.259 0.375 0.498 0.615
0.047 0.099 0.169 0.275 0.402 0.549 0.665
0.050 0.096 0.178 0.291 0.429 0.574 0.706

0.050 0.094 0.164 0.259 0.375 0.498 0.615
0.081 0.139 0.216 0.318 0.442 0.562 0.673
0.086 0.147 0.235 0.349 0.480 0.612 0.730

0.050 0.094 0.164 0.259 0.375 0.498 0.615
0.137 0.203 0.282 0.378 0.487 0.593 0.690
0.213 0.297 0.397 0.505 0.611 0.708 0.791

0.0S0 0.094 0.164 0. 0.375 0.498 0.615
0.064 0.113 0.180 0.405 0.531 0.646
0.795 0.843 0.881 0.928 0.940 0.948

X3 : Figenvector Data

0.258 0.367 0.479
0.281 0.410 0.535
0.297 0.434 0.575

0.258 0.367 0.479
0.334 0.445 0.554
0.369 0.499 0.625

0.258 0.367 0.479
0.395 0.492 0.585
0.552 0.655 0.744

0.258 0.367 0.479
0.288 0.399 0.512
0.946 0.960 0.969




TABLE 3.-EXACT POWERS OF THE DW TEST
(T = 20; « = 0.05)

X4 : Watson's Data
P

0.2 0.3

0.9

0.386
0.651
0.680

0.386
0.606
0.496

0.386
0.518
0.221

0.386
0.407
0.019




TABLE 4.-EXACT POWERS OF THE DW TEST

X2 : T =60; a = 0.05
P

0.1 0.2 0.3 0.4

0.417 0.694 0.886
0.437 0.716 0.895
0.428 0.711 0.900

0.417 0.694 0.886
0.468 0.727 0.900
0.469 0.739 0.911

0.417 0.694 0.886
0.511 0.753 0.907
0.S81 0.808 0.937

0.417 0.694 0.886
0.441 0.709 oO. 890
0.911 0.968 0.990

X2 : T=20; «a =0.5

0.630 0.743 0.832 0.894 0.985 0.989
0.631 0.759 0.849 0.909 0.988 0.992
0.640 0.761 0.854 0.916 0.994 0.997

0.630 0.743 0.832 0.894 0.985 0.989
0.684 0.789 0.863 0.915 . 0.988 0.992
0.701 0.802 0.877 0.928 0.994 0.997

0.630 0.743 0.832 0.894 0.985 0.989
0.729 0.81S 0.876 0.922 . 0.988 0.992
0.831 0.887 0.928 0.956 . 0.995 0.997

0.630 0.743 0.832 0.894 0.985 0.989
0.633 0.751 0.837 0.900 O. 0.987 0.991
0.994 0.995 0.996 0.997 0.998 0.998




IV. Conclusions

The Durbin-Watson test is often used in a pre-test regression situation
similar to that analysed in this paper. As with the converse problem
considered by King and Giles (1984), the quantitative implications of
pre-test testing can vary considerably with the form of the regressors.
However, several general conclusions can be drawn from our results.

First, the application of a preliminary t-test increases the true size
of the DW test above its nominal level, unless the restriction being tested
holds exactly. The percentage size distortion can be reduced by increasing
the nominal size of the DW test. However, an even greater size inflation
occurs if the (false) restriction is simply imposed without testing, and
then the DW test is applied. There is no distortion in size if the DW test

is applied to the unrestricted model without pre-testing.

Second, the implications of pre-testing for the true power of the DW

test are less easily determined. If the hypothesis being tested by the
t-test is true, then there is a clear DW power advantage in pre-testing
rather than ignoring the restrictio'n. If this hypothesis is false then,
depending on the data and other factors, it is also possible to gain a power
advantage relative to simply imposing the restriction, by pre-testing before
applying the DW test.

Third, if size differences are ignored and one considers the raw
probabilities of correctly rejecting serial independence, the performance of
the pre-test DW test lies between those of the two possible "no pre-test"
strategies. Accordingly, the existing results in the autocorrelation
testing literature provide a useful guide to the likely performance of the
pre-test DW test in various situations.

Further research into this problem would be warranted. Pre-tests of

more general restrictions could be considered, though other results in the

1




pre-test literature lead one to conjecture that the results would be

qualitatively consistent with those reported here. Of greater interest
would be an examination of the effect of using different autocorrelation

tests at the second testing stage.




FOOTNOTES

*We are grateful to Judy Giles and John Small for helpful discussions and

advice.

1

The results of King and Giles (1984) and Griffiths and Beesley (1984)
also support this choice in favour of the (asymptotically justified)
alternative of using the standard Normal critical values.

The same data-generating process, and the same data, apply in (2) as in
(1).

As a check on the accuracy of the Monte Carlo experiment, we also
simulated these powers in tandem with those for the pre-test DW test,

and acceptable results were obtained.

Of course, different results would be obtained if the extraneous

regressors were deleted and the critical value modified accordingly,
but the researcher is unaware that irrelevant regressors are included.

A is a (TxT) tri-diagonal matrix whose leading diagonal elements are 2
except for the top left and bottom right elements, whose values are
unity. The elements of the leading off-diagonals are all -I. The
eigenvector corresponding to the zero root of A has constant elements.
For example, King and Giles (1984), King (1985), and Evans (1989).

Our results are invariant to the choice of o, BO' Bl and [32. See
Breusch (1980) and King and Giles (1984). Values of p > 0.9 are
considered with X4, for reasons discussed below.

Although we do not report results for p > 0.9 for the other data
matrices, we have verified that the powers of all of the DW tests

increase for 0.9 < p < 1.0 in those cases.
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