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ABSTRACT

This paper considers the choice of critical value for a pre-test of exact
linear restrictions when estimating the regression error variance. We
calculate the critical value according to a mini-max risk regret criterion and
compare the resulting risk functions with those generated by using the
critical value which minimises the pre-test risk function. The results
suggest that the latter approach is generally preferable.

Address for Correspondence:

Dr Judith A. Giles, Department of Economics, University of Canterbury, Private

Bag, Christchurch, 8001, New Zealand.

* We are grateful to David Giles and John Small for their helpful comments.




1. Introduction and framework.

We consider the estimation of the error variance in the classical linear
regression model y = X8 + e, e~N(0,o-zl.r). after a pre-test of the hypothesis
Ho: RB=r vs. HI: RB#r, where X (Txk), R (mxk), and r (mxl1) are non-stochastic
and X and R are of full rank. The usual test of HO is based on ¥ =

[v(e*’ e*-e’€)/[m(e’e)] ~ F’ , v=T-k, e=y-Xb, b=(X’X)-lX’y, e*=y-Xb®,

(m,v;2)
b*=b+(X’ X) 'R’ [R(X’X) 'R’ 1™(r-Rb) and A=(RB-r)’ [R(X’X) 'R’ I"(RB-r)/20>.

Clarke et al. (1987a) derive the risk (under quadratic loss) of the
pre-test estimator of o® when the component estimators are the unrestricted
and the restricted maximum likelihood (ML) estimators of ¢. Their numerical
evaluations show that none of the estimators considered strictly dominates,
that the pre-test - estimator is never preferred to either of its component
estimators, and that it may have higher risk than that of both the
unrestricted and the restricted estimators.

Clarke et al. (1987b) generalise these results to a family of estimators,
which include the ML, the usual least squares (L), and the minimum mean
squared error (M) estimators. Let ;‘z=;’;/(T+6) be the unrestricted estimator
of ¢ and o-'2=e"c'/(T+7) be the estimator of o> which incorporates the
restrictions. Then the pre-test estimator is ;2 = ;zl(c.m)(y) + c.zllo,c](y)'
where I(.'.)(f’ﬁ is an indicator function with value unity if %e(.,.), zero
otherwise and c is the critical value of the test associated with an «
significance level. They show that the risks under quadratic loss of ;z' o"z,

2 4
and o, relative to o', are

p(;z) = [Zv + (k+6)z]/ [T+6]2
ple*?) = [Z(mmm + (m-k-7+27\)z]/[1‘+1]2

2 - 2 - 2
plc’) =1+ {47\(T+6) (}.Pm+(m+2)l’wa‘z (T+7)P‘°] + v(v+2)(T+y)

- z(rw)ma)(v(r+1)w(a-1)P°2+m('m)on] . m(T+6)2[2vaz+(m#2)P‘°]




+ v(v+2)(8-7)(2T+8+1)P° ‘}/ [(T+7)('r+6)] z

where Pu=Pr. [Fl(mﬂ,v*»j;)\) s (cm(v+j)]/[v(m+i)]].

The L estimators correspond to 8=-k and y=(m-k), the M estimators correspond
to &=(2-k) and y=(m+2-k), while the ML estimators correspond to 3=y=0. We
distinguish these three particular members with appropriate use of the
subscripts L, M, and ML, respectively.

Ohtani (1988) also considers ;;, c-ﬁz. and ;:( His numerical evaluations
show that there exists a family of pre-test estimators which strictly dominate
;:{ and that that which uses c=v/(v+2) (cM say) has the smallest risk of this
family. He proves that this latter pre-test estimator is the Stein (1964)
estimator. Gelfand and Dey (1988), among other things, prove the result
postulated by Ohtani (see also Giles (1990)). So, the minimum risk boundary
results from using a'}:‘z for ke[O,kM] and t;:{|c=cM for 7«>AM. where AM is that
value of A for which p(vﬁ2)=p(;:‘|c=cm).

Giles (1991) shows that there also exists a family of pre-test estimators

L

if e follows any spherically symmetric distribution of the compound normal

which strictly dominate o2 and she proves that a(p(a{)]/ac=0 when c=0, 1 or o,

form. Her numerical evaluations suggest that when ms2 it is preferable to
always pre-test using c=l. So, when using the L estimators with m>2, minimum
risk is achieved by using 01"2 for Ae[O,AL] and ;lz‘|c=l when 7\>7«L, where AL is
the value of A for which p(ol'_z)=p(;z|c=l).

Giles (1990) proves that a[p(;:“‘)]/ac=0 when c=0 or o, so that the
pre-test estimator never dominates either of its component estimators when

using the ML estimators. This result supports the numerical findings of

Clarke et al. (1987a). So, the minimum risk boundary when using the ML

2
L

the value of A for which p(o'“‘z)=p(;;l_).

. . ~2
estimators arises from using 4 for Ae[O,AML] and ML for »AML' where A is

ML

So, given that pre-test estimators are routinely used, that A is usually




unknown and that there exists no dominating estimator (except when m=2 when
using the L estimators), we need to ask what choice of test size will bring.
the pre-test risk as close as possible to the minimum risk boundary. The
answer to this will depend, among other things, on the chosen optimality
criterion. Two such criteria are those suggested by Brook (1976) and Toyoda
and Wallace (1976). These two studies consider the "optimal" critical value
for the conditional mean forecast problem after a pre-test for exact linear
restrictions. Here we obtain the critical values according to the Brook
(1976) mini-max regret criterion when using the ML, L, and M estimators. We
then compare the pre-test risk functions that result from using the "optimal®
critical value from the mini-max regret criterion and the critical value which

minimises the pre-test risk.

2. Optimal critical values

2y 2 ~2 a2y s 2 c2y
Let regML-p(O'ML) mm(p(a'ﬁl_). p(o'ML)]. regL—p(crL) mm(p(ci ), p(a‘L|c l)].

(2 2 “2, _ L ,,U . .
regM—p(a-M) mm[,::(c:'M ) p(o'Mlc-cM)]. Let Ai (Ai) be the value of As)\i (>7«i)

L U

such that reg; is a maximum and let di (d.) be the corresponding value of

i
reg;, i=ML, L, M. Given that increasing c decreases d[i' but increases dli", the
mini-max regret procedure is to find the critical value cI such that d‘ij = dli‘,
and both regrets are simultaneously minimised, i=ML, L, M.

Optimal critical values, c;, are reported in Table 1 for several values
of m, v and k. We also give the significance level, az, associated with each
c!l. and the significance levels o9 and o which correspond to c=l and c=c\pr
respectively. We calculated these values using a FORTRAN program written by
the authors and executed on a VAX8350. We used Davies’ (1980) algorithm to
evaluate the non-central F probabilities. As noted above, this analysis is

irrelevant when using the L estimators and ms2: then a'lz_|c=l strictly

dominates.  Apart from the appropriate value of o, the part of Table 1




corresponding to these cases is accordingly blank.

Regardless of which estimation Aprocedure is used c* is not constant.

This contrasts with Brook’s general finding "(and that 61‘ Toyoda and Wallace :
when mz5) that the optimal critical yalue is always close to two in value.
However, for a given m and k and the estimation procedure, c* is relatively
constant as v varies. This implies that «®* decreases as v increases.

The results also illustrate that c® is not similar across the different
estimation procedures, and nor is its possible range. When using the ML
estimators C;AL varies from 1.4 to 7.2 for the cases that we examined. This
implies significance levels ranging from near 0% to over 357, with a}:{L
decreasing dramatically with k.

The range of values for ci. however, is much narrower. Here,
cie[l.S,l.S] and ai lies between 187 and 30% - much higher than the commonly
used sizes of 1% and 57. This concurs with the results of Brook (1976) and
Toyoda and Wallace (1976), for instance. As expected, cl'_ is greater that 1,
because the optimality criterion will result in a pre-test which selects the
restricted estimator more often than the criterion of simply minimising the
pre-test risk function. So, a.E < o .

The results for the M estimators are similiar to those just discussed for
the L estimators. For the cases examined, ch“ varies from 1.3 to 2.7 and aﬁ
ranges from 8% to 35%; again higher than the commonly used levels. “h.d is

significantly less than O which is typically greater than 307%.

3. Risk comparisons.

We have calculated the optimal critical values according to the mini-max
regret criterion and we have discussed the critical values which result in a
minimum of the pre-test risk f unction. We know that the pre-test estimator

based on the latter approach strictly dominates, or is equivalent to (for the




ML case), the unrestricted estimator. We used this feature in our ‘formation
of the mini-max regret cntemon The. question then arises of the rxsk
dxf ference between ther%_riép pre-test eatm.%tor.,“wfxgures 1, 2, and 3 present
typical risk results.

Figure 1 considers the ML case and shows that though there is a risk gain
in using the pre-test estimator over the unrestricted estimator if A is in the
neighbburhood of Ho. the risk loss from this strategy can be reasonably high
if Ho is sufficiently invalid. Nevertheless, given that A is unknown, this
strategy is preferable to naively imposing the restrictions without testing
their validity. However, though not illustrated in Figure 1, we find that
when m and k are relatively small (for example, m=l1 and k=2) then the
unrestricted estimator strictly dominates the pre-test estimator which uses
C-CB’IL In these situations the A-range over which p(cr‘ %) < p(cML) is
relatively small, and so generally it is better to simply ignore the prior
information and to use the unrestricted estimator (c=0).

Figure 2 considers the L case. We find that generally the mini-max
regret criterion results in a pre-test estimator which is strictly dominated
by the pre-test estimator which uses c=l. The exceptions are for very large
values of m (m>10) and in these cases the region over which the dominance is
reversed is small and the risk loss relatively minor. Consequently, the
results suggest, when using the L estimators, that it is better to pre-test
using c=1 rather than c=ci. -

Finally, Figure 3, considers the M case. Here, there is generally a

small A-range, in the neighbourhood of the null, for which P(;:‘I‘::Cﬁ) <

2y _ . . . 2y . 2y : :
(O'Mlc-cM). The risk gain, however, of using o |c-cM over a'M]c—c:M in this
A-range is minor in comparison to the potential loss when p(cr |c-c') >
p(aMlc-c ). The exceptions occur for very large values of v (say, v>100).

~2 :
Then, p(o-M|c=cM) s p(a-Mlc=ci4). Accordingly, as A is unknown, our results




suggest that it is preferable to pre-test using c=cy, rather than c=c}:( when

employing the M component estimators.

4. Conclusions

The question of the "optimal® choice of test size when estimating o°
arises because A is unobservable and because there is (typically) no strictly
dominating estimator. In this paper we have calculated the optimal critical
value according to a mini-max regret criterion. Our results show, for a given

estimation procedure, that this varies with m, v and k. This contrasts with

the criterion of using the critical value which minimises the pre-test risk

function: c=0 for the ML case, c=1 for the L case, and c=v/(v+2) for the M
case. Not only are the latter values simple to use but our results show that
generally the risk of the pre-test estimator which uses these critical valﬁes
is smaller than that which uses the critical values derived from the mini-max

regret criterion.
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Table 1

Optimal Critical Values and Their Significance Levels

3

VIR A ) M M M

0.355 . 2.450 O. 0.500 0.553
0.233 . 2.428 0. 0.750 0.420
0.202 . . 0.833 0.383
0.169 . . . 0.938 0.341

P e

0.029 . . . 0.833 0.383
0.017 . . . 0.909 0.352
0.013 . . . 0.938 0.341
0.011 . . . 0.962 0.332
0.009 . . . 0.980 0.325

b e bt

0.277 . . . 0.500 0.667
0.114 . 5 . 0.7S0 0.512
0.077 . . 0.833 0.463
0.049 . . 0.909 0.419
0.041 . . . 0.938 0.403
0.034 . . 0.962 0.389
0.029 . . . 0.980 0.379

VSIS SIS

0.134 1. . . . . 0.833 0.506
0.096 1. . . . . 0.909 0.454
0.082 1. . . . . 0.938 0.435
0.070 1. . . . . 0.962 0.418
0.062 1. . . . . 0.980 0.405

3
3
3
3
3

0.056 1. . . . 0.833 0.555

E 0.024 1. . . . 0.909 0.495
3.376 0.016 1. . . 0.938 0.471

3.423 0.010 1. . . 0.962 0.450
3.461 0.006 1. . . . 0.980 0.434

auuunn

20 3.568 0.008 1. E . . . 0.909 0.543
20 3.621 0.003 1. . . . . 0.938 0.514
20 3.668 0.001 1. . . 0.962 0.488
20 3.707 0.000 1. . . 0.980 0.465

32 1.999 0.031 1. . . . . 0.938 0.570
32 2.013 0.020 1. . . . . 0.952 0.550
32 2.036 0.006 1. . 0. . . 0.976 0.514




relative risk

relative risk

relative risk

o
-
©

o
-
o

Fig. L.
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