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I. Introduction

The Chow (1960) test for the constancy of the regression coefficient

vector over the sample is one of the most widely used diagnostic tests in

applied econometrics. In its various forms, this test amounts to one of the

validity of particular exact restrictions on the regression coefficients

(e.g., Fisher (1970)).

It is well known that the statistics associated with the various forms of

the Chow test are F-distributed under the null hypothesis of parameter

stability (and non-central F under the alternative hypothesis), provided that

certain conditions are satisfied. The usual assumption of normal errors can

be relaxed to one of spherical symmetry (provided that the errors are

homoscedastic) without affecting the null distributions of these statistics,

but their distributions under the alternative (and hence their power) are

sensitive to this relaxation (e.g., Ullah and Phillips (1986), Giles (1991)).

The assumption of homoscedastic disturbances over the full sample cannot be

relaxed without distorting both the null and alternative distributions of the

test statistics even with normal errors. In the face of heteroscedasticity,

we have a form of the Behrens-Fisher problem.

Several studies have considered the effect of this misspecification of

the model on the Chow test. For example, Toyoda (1974) approximates the

distribution of the test statistic in this case, and Schmidt and Sickles

(1977) provide exact evidence. Other authors have proposed alternative tests

which might be robust to heteroscedasticity or which allow for its presence in

some way. For example Jayatissa (1977) suggests a finite-sample test which

has been criticised by Honda (1982) and others. Watt (1979) proposes an

asymptotic Wald test whose exact distribution is discussed by Ohtani and

Toyoda (1985), and finite-sample bounds for which are described by Ohtani and

Kobayashi (1986). A further test is suggested by Weerahandi (1987).
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MacKinnon (1989) derives heteroscedasticity-robust variants of the Chow test

which have asymptotic validity, but whose finite-sample properties are rather

mixed.

Given its ease of construction, the Chow test continues to be used widely

in favour of the proposed alternatives, even in situations where the

homoscedasticity assumption is unreasonable. Following Schmidt and Sickles

(1977) it is quite straightforward to determine the true (as oppposed to

nominal) size of the Chow test for any specific data matrix and

known actual level of heteroscedasticity, by using the techniques of Imhof

(1961) or Davies (1980). This is somewhat analogous to computing an exact

Durbin-Watson test rather than using the tabulated bounds on the critical

values, and can be undertaken with the SHAZAM package (White et al. (1990)).

However, the size distortion is data-specific, and most applied researchers

(who may not have easy access to software for computing the distribution of

ratios of quadratic forms in normal random vectors) are unlikely to proceed in

this way, even given an estimate of the degree of heteroscedasticity.

Instead, it is common for the Chow test to be applied without allowance

for possible heteroscedasticity despite its well known inadequacy in this

case. Accordingly, for different degrees of heteroscedasticity, it would be

helpful to have bounds on the true critical values for the test (or,

equivalently, bounds on its true size) which are independent of the data

values in the sample. In this paper we use the results of Kiviet (1980) to

construct such bounds. The problem and notation are formalised in the next

section. Section III details the construction of the bounds, and Section IV

reports our results. Some concluding comments appear in Section V.
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II. Model and Notation

Consider a sample of T = T1 + T2 observations and the model

yi = Xifiti + ui ; i = 1,2 (1)

where yi is (Tixl); Xi is (TixK), non-stochastic and of rank K (< Ti); and iiti

is (Kxl); i = 1,2. The same variables enter the model in each sub-sample but

(typically) with different values.

The most common form of the "Chow test" for parameter stability considers

Ho: 1:11 = /12 !E. HA: fli * (12. This may be expressed as a standard test of

linear restrictions by writing (1) as

Y1
( 

Xi 0 g , ui

Y '-:- y = 0' X ga + [U22 2 2

a a X13 + u,

and the null hypothesis as H0:1213 = r, where R = (IK.-IK) and r = 0. The Chow

test statistic is

l T -2K 1 - -1 
I 
-1 -f = (R13-0' IR(X' X) R' (143-r)/e' e,K

where [it = (X' X)-1X' y and e = y -

If u - N(0
'

0r
2
I
T
) then f is F-distributed with K and (T-2K) degrees of

freedom if H
o 

is true, and it is non-central F with these degrees of freedom

and non-centrality parameter 0 = (12/3-r)' ER(X' X)
-1R, 11(R13..r) ._izcr2

under HA. It

is readily verified that under 11_,

where

1 T -2K )
K

f = uul' Ate Mu ,

_
M = I

T 
- X(X' X) /X'

- -A = X(X' X) IR' [R(X' X) /R1]
- 
1R(Xs X

-
) /X'
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and both M and A are idempotent. If u N(007
2
0), for arbitrary positive

definite symmetric n * Lf, then the above distributional results no longer

hold, though (2) is still valid.

As the Chow test is a special case of the usual test of h linear

restrictions on ft, the results of Kiviet (1980) can be used to derive bounds

on f when u N(0,cr
2
0). The bounds on f can be used to construct bounds on

its critical value for any chosen significance level, or on the true

significance level of the test constructed by rejecting Ho if f > Fc(a), where

F
c
(a) is the 100a7. critical value based on the (wrongly) assumed FK,T-2K 

null

distribution. All of these bounds depend on T, K and 0, but they are

independent of X.

As noted in the Introduction, the assumption that u N(0,cr2IT) is often

unreasonable when applying the Chow test. A more realistic assumption is that

2
ui 11(0,17.I ), or u N(0,cr210) where 0 = diag.(wi) and

T1

1 1 i = 1, ...,T1

22/ 2 • 
=0 = cr cr • T + 1, ...,T

1 ' 1

As 0 depends on T1 and T
2 

here, these separate values partially determine the

various bounds.

III. Calculation of the Bounds

Recalling the form of f in (2) and applying the principal theorem of

Kiviet (1980, p.354), it follows that under the null hypothesis 

where

T-2K 2 
K 

2
f
L 

= E X.x. E
i=1 1 1 i=2K+1 1 )

f
u

T-2K ( 2

j AT-K+iXi Ai-2KX2i
i=1 i=2K+1

4

(3)

(4)
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2
The 

X 
. are independent central Chi square variates, each with one degree ofi

freedom and AI s A2 s s Xi. are the eigenvalues of 0 . As 0 is diagonal

here, the Ai's are its (appropriately ordered) diagonal elements.

Because (3) and (4) hold only under Ho, it follows that the true 100a%

upper critical value, C(a), of f satisfies CL(a) s C(a) s C
u
(a), where

Pr. (11 CL(a)) = a (5)

Pr. (fu Cu(a)) = a (6)

Using (3) and (4), CL(a) and Cu(a) may be computed by noting they are values

satisfying

and

where

T
Pr. ( E w.x7 s 0) = 1 - a

T
Pr. E s 0) = 1 - a,

i=1 "

X (T-2K )/K i=1 , ..,K

w. = 1 -A C (a) i=21(+ 1 , .,T1 1 L

0 otherwise

1 C (a) i =2K+ 1 ,. .,T1 1-2K u

X (T-2K)/K i=1 , . . ,K
T-K+1

z. = 

0 otherwise

(7)

(8)

The calculation of (7) and (8) is a standard problem. We use a FORTRAN

version of Davies' (1980) algorithm to calculate these probabilities,

searching over CL(a) and Cu(a) to satisfy (7) and (8).

Similarly, the true size (a0) of the test which is constructed by

rejecting Ho if f > F‘c(a), satisfies aL s ao s au, where
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= Pr. FC(a)) (9)

CCU 
Pr. 

u Fc(a))* (10)

Using (3) and (4),

= 1 - Pr. ( lE=1 w7x2i s (11)

a
u 
= 1 - Pr. I E z7x2i s 0) (12)

where the wr s and zli's equal the wi's and zi's respectively, but with F'c(a)

replacing both CL(a) and C(a). Davies' routine facilitates the direct

calculation of aL and au.

The usefulness of the above bounds is that they are independent of the

data - they depend only
' 

on a, K, T
1' 
T
2 

and 0 . Finally, if the errors are

homoscedastic, Xi = 1 for all i. Then recalling the additivity properties of

independent Chi square variates, it follows that f = f = f
u' 

C
L
(a) = Fe(a) =

cu(a), and al. = a = au'

IV. RESULTS

Given the form of CI, the bounds will obviously exhibit certain

symmetries. For example, if T1 = T2, the results for 0 = 0.1 are identical to

those for 0 = 10, etc. Similarly, those for Ti = 10 and T2 = 20 when 0 = 0.1

are identical to those for T
2 
= 10 and T

1 
= 20 when 0 = 10, etc.

Table 1 illustrates the bounds on C(a) and ao for a = 0.05 and the values

of T
1' 
T
2' 

K and 0 considered in Table I of Schmidt and Sickles (1977, p.

1295). Their results provide exact values of a0 for certain specific X

matrices. It can be verified that cc/.. and au in Table 1 bound all of their

reported ao's (and the nominal a = 0.05). Also, for fixed T1, T2 and K, as 0

departs from unity (and Ho becomes increasingly false), the values of (Cu(a) -



TABLE 1.-BOUNDS ON TRUE CRITICAL VALUES AND SIZES OF CHOW TEST WHEN
THE NOMINAL SIGNIFICANCE LEVEL IS 57.

T
1

T
2

0 C
L

C
u

a
u

10 10 2 0.01 0.065 13.134 0.000 0.318
0.1 0.595 9.884 0.000 0.260

1 3.634 3.634 0.050 0.050

25 25 2 0.01 0.062 7.476 0.000 0.250
0.1 0.564 6.583 0.000 0.214

1 3.200 3.200 0.050 0.050

20 30 2 0.01 0.079 10.171 0.000 0.345
0.1 0.687 8.297 0.000 0.287

1 3.200 3.200 0.050 0.050
10 0.478 5.444 0.000 0.160
100 0.050 5.904 0.000 0.181

40 10 2 0.01 0.037 4.151 0.000 0.095
0.1 0.365 4.034 0.000 0.089

1 3.200 3.200 0.050 0.050
10 1.191 16.422 0.001 0.513
100 0.177 33.667 0.000 0.658
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CL(a)) and (a-cr.,) increase, as expected. This is consistent with the results

in Tables 4-6 of Kiviet (1980, pp.356-7) for the general F-test in the case of

AR(1) or MA(1) errors
2
.

The effects on the bounds of varying T1, T2 and K are best seen by

considering Table 1 in con junction with the Appendix tables. The latter

provide bounds on C(0.05) for a range of situations likely to be encountered

in the applied work. In practice, having computed the Chow test statistic, we

require a critical value in order to implement the test. In the face of

possible heteroscedasticity, the Appendix provides bounds on such critical

values.
3

For 0 < 1, increasing T1 (ceteris paribus) leads to decreases in

C (0.05), C
u
(0.05) and their difference. The converse result emerges if 0 >

1. For increasing T2, these results are reversed in general. Exceptions4 can

be seen for C(0.05) for 0 = 10 or 100 in Table A4. Changing the value of K,

ceteris paribus, produces less clear patterns in the results. This is to be

expected as K determines both the numerator and denominator degrees of freedom

of f, and so its effect on Fc(0.05) and the bounds depends on T1 and T2.

The usefulness of Tables Al - A4 is best seen with an example. Gujarati

(1972) discusses
5 

a structural shift in the relationship between unemployment

(UN) and vacancies (VAC) in Great Britain in 1966. Using the quarterly data

given by Gujarati (1988, p.465) we have fitted the model UN i =j3 + f32VACi +
.0 over the periods 1959(2) - 1970(2), 1959(2) - 1966(3) and 1966(4) -

1970(2). The corresponding OLS sums of squared residuals are 2.72600, 0.22581

and 0.35241. As T
1 
= 30
' 
T
2 
= 15 and K = 2, the Chow test statistic takes the

value 76.147. The corresponding 57. tabulated F-value (for 2 and 4 degrees of

freedom) is 3.226, so we would reject the null hypothesis of structural

stability. However, dividing the sub-sample sums of squared residuals by

their respective degrees of freedom, and taking their ratio, gives an estimate
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of 0 = 0.297. This suggests that the regression errors are moderately

heteroscedastic. From Table Al, when 0 = 0.1, CL(0.05) = 0.434 and Cu(0.05) =

4.959. As 76.147 > 4.959 we can reject the null hypothesis when 0.1 < 0 < 1,

given the patterns in the bounds. In this case, the outcome of the test is

not affected by the heteroscedasticity.

V. CONCLUSIONS

While it is widely recognised that the Chow test for structural stability

is invalid in the face of heteroscedastic regression errors, it continues to

be used widely. To compensate for this, our tabulated critical value bounds

should help applied researchers. However, they also illustrate that the

appropriate choice of critical value in this case can be dramatically

different from the assumed one. This highlights the extent to which a

conventional application of the Chow test can be distortive, regardless of the

data matrix, when the errors are heteroscedastic.

These bounds apply only to that form of the test which allows for a

structural shift in the full coefficient vector, and where there are positive

degrees of freedom in each sub-sample. The methods we have described can also

be used if these requirements are relaxed, but this would necessitate a very

extensive set of tables.

The same approach is not fruitful as a means of bounding the power of the

test. It is easily shown that under the alternative hypothesis, the bounds

are no longer independent of the data, so they are of little value. However,

Kiviet's approach can be used on a wide range of other testing problems of

importance to applied econometricians, and work in progress considers some

other such cases for various forms of model misspecification.
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FOOTNOTES

We are grateful to Judy Giles and John Small for their helpful comments,

and to Robert Davies for supplying the FORTRAN code for his algorithm.

1. As f in (2) is invariant to scale, the bounds are independent of the

2 2separate values of cri and cr2.

2. A glimpse of some bounds for the critical value of the form of the Chow

test considered here, when the errors are AR(1) can be obtained from the

entries for (his) k = 4, h = 2 in Kiviet's Table 5.

3. Corresponding tables of bounds on ao are available from the authors on

request. The ao values reported in Table II of Schmidt and Sickles

(1977, p.1296) lie within the appropriate bounds in our table.

4. Similar exceptions arise for critical value upper bounds reported for the

F-test with ARMA (1,1) errors in Table 7 of Kiviet (1980, p.357).

5. See, also, Gujarati (1988, pp.449-450).
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APPENDIX

Bounds on Chow Test Critical Values
When Errors Are Heteroscedastic

TABLE Al.-NOMINAL SIGNIFICANCE LEVEL = 5%; k = 2

1 0.01 0.1 10 100

T
1

T
2

C
u

C
u

C L C
u C

u

10 10 3.634 0.065 13.134 0.595 9.884 0.595 9.884 0.065 13.134
15 10 3.467 0.051 7.486 0.487 6.624 0.726 11.486 0.084 16.887
20 10 3.369 0.045 5.852 0.436 5.428 0.841 12.802 0.104 20.494
25 10 3.305 0.042 5.085 0.407 4.819 0.943 13.910 0.123 23.967
30 10 3.259 0.040 4.642 0.388 4.453 1.034 14.861 0.141 27.314
35 10 3.226 0.039 4.354 0.375 4.208 1.117 15.690 0.159 30.545
40 10 3.200 0.037 4.151 0.365 4.034 1.191 16.422 0.177 33.667

15 15 3.369 0.063 9.198 0.578 7.718 0.577 7.718 0.063 9.198
20 15 3.305 0.053 6.946 0.505 6.224 0.660 8.698 0.075 10.885
25 15 3.259 0.048 5.887 0.462 5.439 0.737 9.582 0.087 12.547
30 15 3.226 0.045 5.274 0.434 4.959 0.808 10.386 0.098 14.185
35 15 3.200 0.043 4.875 0.414 4.636 0.875 11.121 0.110 15.799
40 15 3.179 0.041 4.595 0.399 4.403 0.937 11.797 0.121 17.390

20 20 3.259 0.061 8.031 0.569 6.963 0.569 6.963 0.061 8.031
25 20 3.226 0.055 6.684 0.514 6.026 0.630 7.652 0.071 9.106
30 20 3.200 0.050 5.904 0.478 5.444 0.687 8.297 0.079 10.171
35 20 3.179 0.047 5.395 0.452 5.048 0.742 8.901 0.087 11.228
40 20 3.162 0.045 5.037 0.433 4.762 0.790 9.469 0.095 12.275

25 25 3.200 0.061 7.476 0.564 6.583 0.564 6.583 0.061 7.476
30 25 3.179 0.056 6.530 0.520 5.909 0.612 7.112 0.068 8.263
35 25 3.162 0.052 5.912 0.488 5.446 0.657 7.616 0.075 9.045
40 25 3.148 0.049 5.478 0.465 5.110 0.701 8.096 0.081 9.822

30 30 3.162 0.061 7.153 0.561 6.355 0.561 6.355 0.061 7.153
35 30 3.148 0.056 6.428 0.524 5.831 0.600 6.784 0.067 7.773
40 30 3.136 0.053 5.918 0.496 5.447 0.638 7.196 0.072 8.390

35 35 3.136 0.061 6.941 0.558 6.203 0.558 6.203 0.061 6.941
40 35 3.126 0.057 6.356 0.527 5.776 0.592 6.563 0.065 7.453

40 40 3.117 0.061 6.792 0.557 6.095 0.557 6.095 0.061 6.792
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TABLE A2.-NOMINAL SIGNIFICANCE LEVEL = 5%; k = 3

0

1 0.01 O. 1 10 100

T
1

T
2

C
L

C
u

C
L

C
u

CL C
u CL C

u

10 10 3.344 0.052 20.713 0.484 12.131 0.484 12.131 0.052 20.71315 10 3.127 0.041 7.973 0.401 6.736 0.607 13.591 0.069 26.79520 10 3.009 0.037 5.668 0.362 5.167 0.713 14.705 0.087 32.36725 10 2.934 0.035 4.738 0.340 4.450 0.807 15.596 0.104 37.50630 10 2.883 0.033 4.239 0.326 4.044 0.890 16.334 0.121 42.27335 10 2.845 0.032 3.929 0.316 3.784 0.964 16.958 0.137 46.71840 10 2.816 0.031 3.718 0.309 3.603 1.032 17.496 0.153 50.879

15 15 3.009 0.052 9.962 0.483 7.853 0.483 7.853 0.052 9.96220 15 2.934 0.045 6.810 0.423 5.954 0.558 8.823 0.063 11.90925 15 2.883 0.041 5.535 0.389 5.049 0.628 9.677 0.073 13.81530 15 2.845 0.038 4.849 0.366 4.524 0.692 10.437 0.083 15.68135 15 2.816 0.036 4.423 0.351 4.184 0.751 11.119 0.094 17.51140 15 2.794 0.035 4.132 0.339 3.945 0.807 11.735 0.104 19.304

20 20 2.883 0.052 7.940 0.481 6.676 0.481 6.676 0.052 7.94025 20 2.845 0.046 6.325 0.435 5.611 0.536 7.340 0.060 9.05830 20 2.816 0.043 5.456 0.405 4.982 0.587 7.954 0.067 10.16435 20 2.794 0.040 4.915 0.384 4.568 0.635 8.524 0.074 11.25740 20 2.776 0.038 4.546 0.368 4.277 0.681 9.055 0.082 12.339

25 25 2.816 0.053 7.110 0.480 6.140 0.480 6.140 0.052 7.11030 25 2.794 0.047 6.060 0.443 5.405 0.522 6.639 0.058 7.88935 25 2.776 0.044 5.405 0.416 4.938 0.563 7.111 0.064 8.66340 25 2.761 0.042 4.958 0.397 4.597 0.602 7.559 0.069 9.431

30 30 2.775 0.052 6.660 0.479 5.835 0.479 5.835 0.052 6.66035 30 2.761 0.048 5.893 0.448 5.295 0.514 6.233 0.057 7.25740 30 2.748 0.045 5.368 0.424 4.908 0.548 6.615 0.061 7.851
35 35 2.748 0.052 6.378 0.478 5.638 0.478 5.638 0.052 6.37840 35 2.737 0.049 5.778 0.451 5.209 0.508 5.970 0.056 6.862
40 40 2.728 0.052 6.185 0.478 5.501 0.478 5.501 0.052 6.185
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TABLE A3.-NOMINAL SIGNIFICANCE LEVEL = 5%; k = 4

0

1 0.01 0.1 10 100

T
1

T
2

CL C
u

CL C
u

CL C
u CL C

u

10 10 3.259 0.041 62.560 0.402 18.127 0.402 18.127 0.041 62.560
15 10 2.965 0.035 9.652 0.339 7.518 0.523 18.610 0.058 73.853
20 10 2.817 0.031 5.-888 0.311 5.237 0.626 19.020 0.071 82.573
25 10 2.728 0.030 4.667 0.295 4.335 0.717 19.367 0.091 89.669
30 10 2.668 0.029 4.071 0.285 3.860 0.796 19.662 0.107 95.646
35 10 2.626 0.028 3.720 0.277 3.569 0.867 19.916 0.122 100.840
40 10 2.594 0.027 3.489 0.272 3.372 0.931 20.138 0.138 105.339

15 15 2.817 0.044 12.276 0.418 8.707 0.418 8.707 0.044 12.276
20 15 2.728 0.039 7.174 0.369 6.062 0.490 9.695 0.054 14.812
25 15 2.668 0.035 5.507 0.341 4.944 0.556 10.535 0.064 17.266
30 15 2.626 0.033 4.693 0.322 4.338 0.617 11.262 0.074 19.644
35 15 2.594 0.032 4.213 0.309 3.962 0.673 11.900 0.083 21.948
40 15 2.570 0.031 3.896 0.300 3.705 0.725 12.465 0.093 24.183

20 20 2.668 0.045 8.442 0.423 6.804 0.423 6.804 0.045 8.442
25 20 2.626 0.041 6.340 0.384 5.510 0.474 7.476 0.052 9.692
30 20 2.594 0.037 5.311 0.359 4.792 0.523 8.088 0.059 10.924
35 20 2.570 0.035 4.703 0.341 4.338 0.568 8.649 0.066 12.140
40 20 2.550 0.034 4.303 0.327 4.026 0.611 9.165 0.073 13.339

25 25 2.594 0.046 7.165 0.426 6.039 0.426 6.039 0.046 7.165
30 25 2.570 0.042 5.924 0.394 5.222 0.465 6.534 0.051 7.984
35 25 2.550 0.039 5.191 0.371 4.699 0.503 6.998 0.056 8.795
40 25 2.534 0.037 4.707 0.354 4.336 0.540 7.435 0.062 9.600

30 30 2.550 0.046 6.535 0.427 5.631 0.427 5.631 0.046 6.535
35 30 2.534 0.043 5.676 0.400 5.045 0.460 6.020 0.051 7.141
40 30 2.520 0.040 5.110 0.379 4.636 0.491 6.391 0.055 7.444

35 35 2.520 0.046 6.160 0.428 5.378 0.428 5.378 0.046 6.160
40 35 2.509 0.043 5.512 0.404 4.925 0.455 5.698 0.050 6.641

40 40 2.499 0.046 5.911 0.429 5.206 0.429 5.206 0.046 5.911
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TABLE A4.-NOMINAL SIGNIFICANCE LEVEL = 5%; k = 5

0

T
1

T
2

1 0.01 0.1 10 100

CL C
u

C
L

C
u

C
L

C
u CL C

u

10 10 3.326 0.033 332.582 0.333 33.258 0.333 33.258 0.033 332.58215 10 2.901 0.029 14.108 0.290 9.292 0.455 29.013 0.049 290.13020 10 2.711 0.027 6.519 0.271 5.587 0.559 27.109 0.065 271.09025 10 2.603 0.026 4.783 0.260 4.377 0.648 26.030 0.081 260.29930 10 2.534 0.025 4.037 0.253 3.797 0.727 25.336 0.096 253.35635 10 2.485 0.025 3.625 0.249 3.460 0.796 24.851 0.111 248.515
40 10 2.449 0.025 3.364 0.245 3.241 0.858 24.495 0.125 244.947

15 15 2.711 0.038 18.196 0.367 10.516 0.367 10.516 0.038 18.19620 15 2.603 0.034 8.069 0.327 6.482 0.438 11.470 0.048 22.03425 15 2.534 0.031 5.710 0.304 5.019 0.502 12.244 0.057 25.64730 15 2.485 0.030 4.693 0.289 4.290 0.561 12.891 0.066 29.05935 15 2.449 0.028 4.131 0.279 3.858 0.615 13.443 0.075 32.28940 15 2.422 0.028 3.776 0.272 3.574 0.665 13.922 0.084 35.354

20 20 2.534 0.040 9.589 0.380 7.266 0.380 7.266 0.040 9.58925 20 2.485 0.036 6.626 0.346 5.608 0.429 7.960 0.046 11.080
30 20 2.449 0.034 5.344 0.324 4.753 0.475 8.581 0.053 12.54435 20 2.422 0.032 4.635 0.309 4.237 0.519 9.141 0.060 13.98040 20 2.400 0.031 4.187 0.297 3.894 0.560 9.649 0.066 15.391

25 25 2.449 0.041 7.532 0.386 6.151 0.386 6.152 0.041 7.53230 25 2.422 0.038 5.991 0.357 5.190 0.424 6.656 0.046 8.43035 25 2.401 0.035 5.136 0.337 4.599 0.460 7.125 0.051 9.31840 25 2.383 0.034 4.595 0.322 4.202 0.495 7.562 0.056 10.197

30 30 2.400 0.042 6.633 0.389 5.602 0.389 5.602 0.042 6.63335 30 2.383 0.039 5.635 0.365 4.946 0.420 5.993 0.046 7.27040 30 2.363 0.037 5.003 0.347 4.499 0.450 6.363 0.050 7.903

35 35 2.368 0.042 6.131 0.392 5.277 0.392 5.277 0.042 6.13140 35 2.356 0.040 5.408 0.370 4.786 0.418 5.594 0.046 6.624

40 40 2.346 0.042 5.812 0.393 5.062 0.393 5.062 0.042 5.812
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