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Abstract

This paper considers the effect of heteroscedastic regression errors on
the size of the Chow test for structural stability. We show that bounds can
be placed on the true size of this test in the light of such misspecification,
and on the true critical value needed to achieve any desired significance
level when using the test under various degrees of heteroscedasticity. These
bounds are data-independent, and some cases are tabulated. An example is
given to illustrate the practical application of the critical value bounds.
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I. Introduction

The Chow (1960) test for the constancy of the regression coefficient
vector over the sample is one of the most widely used diagnostic tests in
applied econometrics. In its various forms, this test amounts to one of the
validity of particular exact restrictions on the regression coefficients
(e.g., Fisher (1970)).

It is well known that the statistics associated with the various forms of
the Chow test are F-distributed under the null  hypothesis of parameter
stability (and non-central F under the alternative hypothesis), provided that
certain conditions are satisfied. The usual assumption of normal errors can
be relaxed to one of spherical symmetry (provided that the errors are
homoscedastic) without affecting the null distributions of these statistics,

but their distributions under the alternative (and hence their power) are

sensitive to this relaxation (e.g., Ullah and Phillips. (1986), Giles (1991)).

The assumption of homoscedastic disturbances over the full sample cannot be
relaxed without distorting both the null and alternative distributions of the
test statistics even with normal errors. In the face of heteroscedasticity,
we have a form of the Behrens-Fisher problem.

Several studies have considered the effect of this misspecification of
the model on the Chow test.  For example, Toyoda (1974) approximates the
distribution of the test statistic in this case, and Schmidt and Sickles
(1977) provide exact evidence. Other authors have proposed alternative tests
which might be robust to heteroscedasticity or which allow for its presence in
some way. For example Jayatissa (1977) suggests a finite-sample test which
has been criticised by Honda (1982) and others. Watt (1979) proposes an
asymptotic Wald test whose exact distribution is discussed by Ohtani and
Toyoda (1985), and finite-sample bounds for which are described by Ohtani and

Kobayashi (1986). A further test is suggested by Weerahandi (1987).




MacKinnon (1989) derives heteroscedasticity-robust variants of the Chow test
which have asymptotic validity, but whose finite-sample properties are rather
mixed. .

Given its ez;se of construction, the Chow test continues to be used widely
in favour of the proposed alternatives, even in situations where the
homoscedasticity assumption is unreasonable. Following Schmidt and Sickles
(1977) it is quite straightforward to determine the true (as oppposed to
nominal) size of the Chow test for any specific data matrix and
known actual level of heteroscedasticity, by using the techniques of Imhof
(1961) or Davies (1980). This is somewhat analogous to computing an exact
Durbin-Watson test rather than using the tabulated bounds on the critical
values, and can be undertaken with the SHAZAM package (White et al. (1990)).
However, the size distortion is data-specific, and most applied researchers
(who may not have easy access to software for computing the distribution of
ratios of quadratic forms in normal random vectors) are unlikely to proceed in
this way, even given an estimate of the degree of heteroscedasticity.

Instead, it is common for the Chow test to be applied without allowance

for possible heteroscedasticity despite its well known inadequacy in this

case. Accordingly, for different degrees of heteroscedasticity, it would be
helpful to have bounds on the true critical values for the test (or,
equivalently, bounds on its true size) which are independent of the data
values in the sample. In this paper we use the results of Kiviet (1980) to
construct such bounds. The problem and notation are formalised in the next
section.  Section III details the construction of the bounds, and Section IV

reports our results. Some concluding comments appear in Section V.




II. Model and Notation

Consider a sample of T = Tl + Tz observations and the model

¥ = X8 + uo i=12 (1)

where ¥; is (Tixl); )(i is (TixK), non-stochastic and of rank K (< Ti); and Bi
is (Kx1); i = 1,2.

The same variables enter the model in each sub-sample but
(typically) with different values.

The most common form of the "Chow test" for parameter stability considers
HO: B1 = Bz vs. HA: [31 * BZ' This may be expressed as a standard test of
linear restrictions by writing (1) as

L][ o)) ()

and the null hypothesis as HO:RB =r, where R = (IK,-IK) an

test statistic is

f= [T,“f" (RA-r) [ROX* X) 'R T (RB-r) e’ e,

where 8 = (X’X)_lx’y and e

=y - Xﬁ.
If u ~ N(O.«rzl.r) then f is F-distributed with K and (T-2K) degrees of

freedom if Ho is true, and it is non-central F with these degrees of freedom

and non-centrality parameter ¢ = (Rﬁ-r)’[R(X’X)_lR’ ]-I(RB-I‘)/2H‘2 under H,. It

is readily verified that

A
under H_O ,

f = [ T;(ZK ] u’ Aw/u’Mu ,

- ryy-lys
I.r X(X’'X) X

= X(x’x)"'R* [R(x'X)“R']"R(x' X




and both M and A are idempotent. If u ~ N(O.c‘zﬂ), for arbitrary positive
definite symmetric Q = IT' then the above distributional results no longer
hold, though (2) is still valid. »

As the Chow test is a special case of the usual test of h linear
restrictions on B, the results of Kiviet (1980) can be used to derive bounds
on f when u ~ N(O,a‘zﬂ). The bounds on f can be used to construct bounds on
its critical value for any chosen significance level, or on the true
significance level of the test constructed by rejecting Ho if £ > Fcla), where
F(a) is the 100a% critical value based on the (wrongly) assumed F

K, T-2K
distribution. All of these bounds depend on T, K and , but they are

null

independent of X.
As noted in the Introduction, the assumption that u ~ N(O,G‘ZIT) is often

unreasonable when applying the Chow test. A more realistic assumption is that

u ~ N(O.c'?l.r]. or u ~ N(O.a‘%ﬂ) where Q = diag.(wi) and
1

As Q depends on ’I‘l and ’I‘2 here, these separate values partially determine the

various bounds.

III. Calculation of the Bounds
Recalling the form of f in (2) and applying the principal theorem of
Kiviet (1980, p.354), it follows that under the null hypothesis fL s f s fu,
where

(3)




The x% are independent central Chi square variates, each with one degree of

freedom and 7\1 s Az s ... S )Lr are the eigenvalues of Q . As Q is diagonal

here, the Ai’s are its (appropriately ordered) diagonal eiements.
Because (3) and (4) hold only under Ho. it follows that the true 100aZ

upper critical value, C(a), of f satisfies CL(a) S Cla) = Cu(a), where
Pr. [fL = CL(a)] =

Pr. [f‘u = Cu(a)] . (6)

Using (3) and (4), CL(cL) and Cu(a) may be computed by noting they are values
satisfying
T 2
Pr.[ Zwy. s 0]
. it
i=1

T . 2
Pr.[ }:zixi 50]

i=1

Al(T—ZK)/K i=1,...,K
-hl CL(a) i=2K+1,..,T

0 otherwise

AT_K”(T-ZK)/K i=1,...,K

-Al-zx Cu(a) i=2K+1,...,T

0 otherwise
The calculation of (7) and (8) is a standard problem. We use a FORTRAN

version of Davies’ (1980) algorithm to calculate these probabilities,

searching over CL(a) and Cu(a) to satisfy (7) and (8).

Similarly, the true size (ao) of the test which is constructed by

C
rejecting HO if £ > F (a), satisfies o s % F au, where




o = Pr. [fL = F°(a)]

c
@, = Pr.(fu zF (a)].
Using (3) and (4),
T .2
= - *
o 1 - Pr. [lzl wixi =< 0]

T 2
z zz’xi < O) (12)

@ =1-Pr.[
u i=1

where the w?'s and z;'s equal the wi‘s and zi's respectively, but with Fo(a)
replacing both CL(a) and Cu(a). Davies’ routine facilitates the direct
calculation of o4 and o

The usefulness of the above bounds is that they are independent of the
data - they depend onlyl on a, K, Tl’ TZ and 6 . Finally, if the errors are
homoscedastic, J\i = 1 for all i. Then recalling the additivity properties of
independent Chi square variates, it follows that fL =f = fu’ CL(a) = Fc(a) =
Cu(a), and o =a=a.

IV. RESULTS

Given the form of Q, the bounds will obviously exhibit certain
symmetries. For example, if Tl = Tz, the results for 8 = 0.1 are identical to
those for 6 = 10, etc. Similarly, those for 'l'l
= 10 and 'l‘1 = 20 when 6 = 10, etc.

= 10 and Tz = 20 when 6 = 0.1
are identical to those for T2

Table 1 illustrates the bounds on C(a) and o for a = 0.05 and the values
of Tl' T,, K and 6 considered in Table I of Schmidt and Sickles (1977, p.

1295). Their results provide exact values of «, for certain specific X

(0]
matrices. It can be verified that o and o in Table 1 bound all of their
reported ao's (and the nominal « = 0.05). Also, for fixed Tl' T2 and K, as 6

departs from unity (and Ho becomes increasingly false), the values of (Cu(a) -




TABLE 1.-BOUNDS ON TRUE CRITICAL VALUES AND SIZES OF CHOW TEST WHEN
THE NOMINAL SIGNIFICANCE LEVEL IS S%




CL(ez)) and. (au-aL) increase, as expected. This is consistent with the results
in Tables 4-6 of Kiviet (1980, pp.356-7) for the general F-test in the case of
AR(1) or MA(1) errorsz.

The effects on the bounds of varying Tl' T2 and K are best seen by
considering Table 1 in conjunction with the Appendix tables. The latter
provide bounds on C(0.05) for a range of situations likely to be encountered
in the applied work. In practice, having computed the Chow test statistic, we
require a critical value in order to implement the test. In the face of
possible heteroscedasticity, the Appendix provides bounds on such critical
values.3

For 8 < 1, increasing T, (ceteris paribus) leads to decreases in

1
CL(O.OS), Cu(0.0S) and their difference. The converse result emerges if 8 >

1.  For increasing '1'2, these results are reversed in general. Exceptions4 can

be seen for Cu(O‘OS) for 8 = 10 or 100 in Table A4. Changing the value of K,
ceteris paribus, produces less clear patterns in the results. This is to be
expected as K determines both the numerator and denominator degrees of freedom
of f, and so its effect on FC(O.OS) and the bounds depends on 'I‘l and T2.

The usefulness of Tables Al - A4 is best seen with an example. Gujarati
(1972) dis;cussess a structural shift in the relationship between unemployment
(UN) and vacancies (VAC) in Great Britain in 1966. Using the quarterly data
given by Gujarati (1988, p.465) we have fitted the model UNi = Bl + BZVACi +
u; over the periods 1959(2) - 1970(2), 1959(2) - 1966(3) and 1966(4) -
1970(2). The corresponding OLS sums of squared residuals are 2.72600, 0.22581
and 0.35241. As T, = 30, T,

1 2
value 76.147. The corresponding 5% tabulated F-value (for 2 and 4 degrees of

= 1S and K = 2, the Chow test statistic takes the

freedom) is 3.226, so we would reject the null hypothesis of structural
stability. However, dividing the sub-sample sums of squared residuals by

their respective degrees of freedom, and taking their ratio, gives an estimate




~

e = 0.297. This suggests that the regression errors are moderately

heteroscedastic. From Table Al, when 6 = 0.1, CL(O.OS) = 0.434 and Cu(0.0S)

4.959. As 76.147 > 4.959 we can reject the null hypothesis when 0.1 < 68 < 1],
given the patterns in the bounds. In this case, the outcome of the test is

not affected by the heteroscedasticity.

V. CONCLUSIONS

While it is widely recognised that the Chow test for structural stability
is invalid in the face of heteroscedastic regression errors, it continues to
be used widely. To compensate for this, our tabulated critical value bounds
should help applied researchers. However, they also illustrate that the
appropriate choice of critical value in this case can be dramatically
different from the assumed one. This highlights the extent to which a
conventional application of the Chow test can be distortive, regardless of the
data matrix, when the errors are heteroscedastic.

These bounds apply only to that form of the test which allows for a
structural shift in the full coefficient vector, and where there are positive
degrees of freedom in each sub-sample. The methods we have described can also
be used if these requirements are relaxed, but this would necessitate a very
extensive set of tables.

The same approach is not fruitful as a means of bounding the power of the
test. It is easily shown that under the alternative hypothesis, the bounds
are no longer independent of the data, so they are of little value. However,
Kiviet’'s approach can be used on a wide range of other testing problems of
importance to applied econometricians, and work in progress considers some

other such cases for various forms of model misspecification.




FOOTNOTES

We are grateful to Judy Giles and John Small for their helpful comments,

and to Robert Davies for supplying the FORTRAN code for his algorithm.

As f in (2) is invariant to scale, the bounds are independent of the
2 2

separate values of ) and LY

A glimpse of some bounds for the critical value of the form of the Chow

test considered here, when the errors are AR(l) can be obtained from the

entries for (his) k = 4, h = 2 in Kiviet’s Table 5.

Corresponding tables of bounds on a, are available from the authors on

request. The % values reported in Table II of Schmidt and Sickles
(1977, p.1296) lie within the appropriate bounds in our table.
Similar exceptions arise for critical value upper bounds reported for the

F-test with ARMA (1,1) errors in Table 7 of Kiviet (1980, p.357).

See, also, Gujarati (1988, pp.449-450).
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APPENDIX

Bounds on Chow Test Critical Values
When Errors Are Heteroscedastic

TABLE Al.-NOMINAL SIGNIFICANCE LEVEL = 5%; k

2

0.595
0.726
0.841
0.943
1.034
1.117
1.191

0.577
0.660
0.737
0.808
0.875
0.937

0.569
0.630
0.687
0.742
0.790

0.564
0.612
0.657
0.701

0.561
0.600
0.638

"0.558
0.592

0.557

9.884
11.486
12.802
13.910
14.861
15.690
16.422

7.718
8.698
9.582
10.386
11.121
11.797

6.963
7.652
8.297
8.901
9.469

6.583
7.112
7.616
8.096

6.355
6.784
7.196

6.203
6.563

6.095

13.134
16.887
20.494
23.967
27.314
30.545
33.667

9.198
10.885
12.547
14.185
15.799
17.390

8.031
9.106
10.171
11.228
12.275

7.476
8.263
9.045
9.822

7.153
7.773
8.390

6.941
7.453

6.792




TABLE A2.-NOMINAL SIGNIFICANCE LEVEL = 5%; k = 3




TABLE A3.-NOMINAL SIGNIFICANCE LEVEL = 5%; k = 4

18.127
18.610
19.020
19.367
19.662
19.916
20.138

8.707
9.695
10.535
11.262
11.900
12.465

6.804
7.476
8.088
8.649
9.165

6.039
6.534
6.998
7.435

5.631
6.020
6.391

5.378
5.698

* 5.206

62.560
73.853
82.573
89.669
95.646
100.840
105.339

12.276
14.812
17.266
19.644
21.948
24.183

8.442
9.692
10.924
12.140
13.339

7.165
7.984
8.795
9.600

6.535
7.141
7.444

6.160
6.641

5.911




TABLE A4.-NOMINAL SIGNIFICANCE LEVEL = 5%; k = 5

<

0.033 332.582 332.582
0.029 14.108 290.130
0.027 6.519 271.090
0.026 4.783 260.299
0.025 4.037 253.356
0.025 3.625 248.518
0.025 3.364 244.947

0.038 18.196 18.196
0.034 8.069 22.034
0.031 5.710 25.647
0.030 4.693 29.059
0.028 4.131 32.289
0.028 3.776 35.354

0.040 9.589 9.589
0.036 6.626 11.080
0.034 5.344 12.544
0.032 4.635 13.980
0.031 4.187 15.391

0.041 7.532 7.532
0.038 5.991 8.430
0.035 5.136 : 9.318
0.034 4.595 10.197

0.042 6.633 6.633
0.039 5.635 7.270
0.037 5.003 7.903

0.042 6.131 B 6.131
0.040 5.408 6.624

0.042 5.812 5.812










