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ABSTRACT

We consider the pre-test estimation of .the parameters of a linear
regression model after a  preliminary-test for exact linear
restrictions when the model is mis-specified through the omission of
relevant regressors and the usual assumption of normal regression
disturbances is widened to a subclass of the family of spherically
symmetric errors. We derive and analyse the exact risk (under
quadratic loss) of a pre-test estimator of the prediction vector and
of the scale parameter.

1. INTRODUCTION

Econometricians inevitably work with false models. So, we should be
investigating the properties of estimators within a mis-specified
regression model, whereas traditionally, pre-test estimators have been
examined within the context of the standard linear regresssion model
assuming normal iid disturbances and a correctly specified design
matrix. There have been exceptions. Ohtani (1983), Mittelhammer
(1984), Giles (1986), and Giles and Clarke (1989) consider the effects
of omitting relevant regressors or including irrelevant ones, or of

proxying unobservable variables, while Giles (1991) derives the exact

risk of the estimators that we consider here assuming spherically




symmetric disturbances, though a correctly specified design matrix.
(See also, Judge et al. (1985) and Miyazaki et al. (1986) who
investigate, via Monte Carlo experiments, the effects of non-normal
regression disturbances on the risks of some related estimators.)

However, departures from the standard regression assumptions are
likely to occur simultaneously. Accordingly, we derive the exact risk
of pre-test estimators of the prediction vector and of the error
variance when the disturbances are spherically symmetric and we have
omitted relevant regressors from the design matrix.

2. THE MODEL FRAMEWORK AND SOME PRELIMINARY RESULTS

Suppose that the process generating a (Txl) vector of observations on

a dependent variable y is
y=XB+Zy +e, (1)

where X and Z are (Txk) and (Txp) full rank matrices of non-stochastic
variables, and B and 7 are (kxl) and (pxl) vectors of unknown
parameters respectively. We assume that the (Txl) vector of
disturbances e is distributed according to the laws of the class of
spherical compound normal distributions (see Kelker (1970) and
Muirhead (1982)) with E(e)=0, and E(ee’)=<r:Lr. This class of
distributions is a subclass of the family of spherically symmetric
distributions which can be expressed as a variance mixture of normal

distributions. That is, we can write
0
f(e) —OJ' fN(e)f(t)dr, (2)

where fN denotes a probability density function (pdf) when
e~N(0,tle). f(r) is the pdf of t and is supported on [0,®). So,

0':=E(1.'2), and the errors are uncorrelated but are dependent:

independence is a feature if and only if the underlying distribution
is normal. Further, the marginal distribution of the errors may have

fatter or thinner tails than that which would result under a normality




. . 2
assumption. We write e SSDN(O,veIT).

One particular example of a distribution which satisfies (2) is
the multivariate Student-t (Mt) distribution. It results when T is an
inverted gamma random variate. If this distribution has a degrees of
freedom parameter v, and scale parameter a~2, then E(‘rz)=va-2/(v-2), and
normality results when v=w. For v<m the marginal distributions have

fatter tails than when v=ow.

Now suppose that the researcher specifies the model
= . . 2
y=XB +u ; u N(O,o-ul.r) (3)

as the data generating process. He proceeds assuming (3) to be
properly specified when in fact u~SSDN(21.0':1T). Note that o':=¢r:. In
addition, we assume that the investigator has (uncertain) extraneous
prior information about the parameters B which he can express as m(<k)
exact linearly independent restrictions RB=r, where R is an (mxk)
known full rank matrix, and r is an (mxl) vector of known

non-stochastic elements.

Under the assumptions of (3) the unrestricted and the restricted
least squares (and maximum likelihood) estimators of B are
respectively, b=S-1X’y and b'=b+S-lR’[RS-lR’ ]-l(r-Rb), where S=(X’X).
Note that b and b* are the MLE’s under the spherical assumption
assuming that Zy=0, but that for model (1) this holds only if X and Z
are orthogonal. Similarly, under (3) the unrestricted least squares

estimator of a'; is ;:=(y-Xb)’(y-Xb)/v and the restricted least squares

estimator of 0‘: is tr;z=(y-Xb')’(y-Xb')/(v+m), where v=(T-k).l

1. The estimators ;: and v;z are the least squares estimators of
o‘z for the wider assumption of e~SSDN. This is not so for the usual

maximum likelihood (ML) or the minimum mean squared error (M)
estimators though, for the problem examined here, the researcher would
proceed using the usual ML or M estimators. Giles (1990) extends the
results presented here to these other cases.
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The researcher, uncertain of the validity of the restrictions,
undertakes a pre-test of H0:6=0 versus HI:G*O, where 8=RB-r represents
an (mxl1) hypothesis error vector, using the traditional Wald (and
Lagrange Multiplier) test statistic {=(Rb-r)’ [RS-IR‘ ]-I(Rb-r)v/
m(y-Xb)’ (y-Xb). When Zy=0 and e~SSDN(O.a-:lT) then "'F(m,v) under Ho
(see King(1979)). However, this property no longer holds if the
design matrix is mis-specified; then f({) depends not only on m, v and
the degree of mis-specification but it depends also on the variance

mixing distribution. This is shown by Theorem 1.

Theorem 1. Under the above assumptions,

(er/r!] [es/s!]mm/2+r yV7/2+s ‘m/2+r-l
® o n d

f(f) = £
r=0 s=0

B[ %‘-H‘;%rs] [v+m;] (m+v)/2+r+s

00 2
x f e_(6n+od)/r [12]_(r+s’f(r)dt , (4)
0

where en=(A+a)'[Rs"R' 1 a+s)12, @ =Y’ Z'MZy/2,  M=I-X(X’ xxe,
A=RS-1X'27, and B(.;.) is the beta function.

00
Proof. f(f)= OI fN({)f('r)d(t). Now, fN(l) is a doubly non-central F
density with m and v degrees of freedom and non-centrality parameters
A =6 /1% and A =0 /t° (see Ohtani (1983) or Mittelhammer (1984)),
nt n dr d

and so (4) follows directly.

Clearly, if Ho is true (4) is still not the density function of a
central F random variate (even if the errors are normally
distributed). So, the classical test is invalid if we omit relevant

regressors.




3. THE RISK FUNCTIONS OF ESTIMATORS OF E(y)

We consider risk under quadratic loss which for an estimator ¢* of ¢
is given by p(¢,¢']=E[[¢-¢']’ [¢-¢'}]=tr[cov(¢‘)+bias(¢‘)bias(¢')’],
which is the trace of the matrix mean squared error. Our interest in
this section lies with the estimation of the prediction vector E(y)
after the pre-test of Ho within the mis-specified framework of model
(3). We consider this quantity rather than B so that our results are
independent of the design matrix. In terms of the B space this is

equivalent to assuming orthonormal regressors.

The pre-test estimator of E(y) is Xt; = Ilo'c](G)Xb' +
I(c'w)(l)Xb. where c is the critical value of the test associated with
a (nominal) significance level of a%, and I[-.-] is an indicator
function which is unity if { lies within the subscripted range and

zero otherwise. The risks of Xb, Xb* and Xb are given in Theorem 2.
Theorem 2. Under the above assumptions,

(s)

p[t(y).Xb] = kE(<%) + 20 4

P[E(Y).Xb‘] = (k-m)E(x?) + 2(9d+6n) (6)

P{E(Y).Xb] = KE(t%) + 20 d +OI [Zen[ZPZO-P 40] -mtszo] f(T)dt (@)}

where

P, = Pr[Fy
1

(m*i’wj;hm:'hdrf [cm(v+_))] / [v(m+i)]] , 1,j=0,1,2,... .

Proof. See Giles (1990). The proof is similar in form to that
given for Theorem 2 of Giles (1991).

2. So, we require the existence of the first two moments. This
implies that our results are inapplicable, in particular, to
distributions with infinite variance, such as the Cauchy distribution.
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The risk functions depend on the hypothesis error through & (and
hence en), on the specification error through A, and so on en and 6 &
and on the variance mixing distribution. Equations (5)-(7) collapse
to the expressions derived by Giles (1991) when Zy=0, and to those
derived by Mittelhammer (1984) when c~N(0,o-2Lr).

Comparing the risk functions we find that regardless of f(t) the
results discussed by Mittelhammer (1984) for normal errors

qualitatively carry over to the wider case of SSD,, errors. First,

when the model is mis-specified the use of prior inl;‘ormation (even if
it is correct) does not guarantee a reduction in the risk of
estimating E(y). This arises as en:o when H0 is true unless @ d is
simultaneously zero or X and Z are orthogonal. Let
’ eno=A’[RS-1R' ]—IA/Z. be the value of en under the null.  Then, if
en0>mE(t2)/2. Xb* has greater risk than Xb even though &=0.

Similarily, Xb may have higher risk than Xb even if HO is true.

Secondly, for a given value of On the risk functions of Xb, Xb*,

and Xb are unbounded as 6 et However, p[E(y),Xb]-p[E(y).Xb‘] is

4 -
bounded and equal to mE(rz)-Zen, while p[E(y),Xb']-p[E(y).Xb]=0 when

ed=w, for any fixed value of en. Thirdly, p[E(y).Xb]=p[E(y),X{)]

within the bounds mE(Tz)/450nsmE(12)/2. while p(E(y),Xb]=p[E(Y).Xb‘]

when 9n=mE(1:2)/2. These values of en are independent of 6 e

To illustrate the risk functions we have numerically evaluated

them for the special case of Mt disturbances. Then,
2
th[E(Y).Xb] =0 [kv + ZAd(v-Z)]/(v-Z)

PMt[E(y).Xb'] - o-z[(k—m)v + 200 d+An)(v-2)]/(v-2)




Pyt [E(y).xﬁ] = a-z[kv-mvP

l-|»27« d(v-2)+27\ n(:;—2)(2P20

20 2

-P 402)] /(v-2)

r S v
® [an/v) [ZA d/v] r[§+r+s+n-2]
=z I

r=0 s=0

ijn v _
R

ris! (1+2(7\n+7td)/v] 5

(VS P R
x Ix[ Sm+ider; -2-(V+J)+S] , i,jn,=0,1,2,... ,

A =0 /02. A =0 /cz, and I_(.;.) is the incomplete beta function with
n n d d x

x=cm/(v+cm).

We have considered v=10, 16, 20, 30; k=4, 5; m=l, 3; «=0.01,
0.05, 0.30, 0.50, 0.75; v=5, 10, 100, 1000, o; AnEIO.ZOI; and
A dE[O,ZO]. The FORTRAN computer programs were executed on a VAX 6230
computer, and subroutines from Press et al. (1986} and Davies (1980)
were used to undertake the evaluations. Figures 1 to 4 present some
typical results. There, we consider risk relative to o and
parameterise with respect to An and A d rather than with respect to en
and 6 4 to eliminate the scale parameter o> Equivalently, the figures
represent the risks of the estimators when o=l So, we define the
relative risk of an estimator Xb of E(y) as R(Xb)=p|E(y),Xb|/¢%. Full
details of the results are given in Giles (1990), or are available on

request.

These figures illustrate the features discussed above. They also
show first, that it is never preferable to pre-test. Pre-testing can
be the worst strategy. Secondly, they show that an increase in the
degree of mis-specification of the design matrix causes an upward
shift of the estimator risk functions and thirdly, they show that the
effect of changes in the value of v when variables have been omitted




FIGURE 1 : Relative risk functions for Xb, Xb®*, and XG when T=30, k=5,
m=3, v=5, and Ad=0.

12

Relative Risk

9 10 11 12 13 14

FIGURE 2 : Relative risk functions for Xb, Xb*, and Xb when T=30, k=5,
m=3, v=5, and Ad=10.
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FIGURE 3 : Relative risk functions for Xb, Xb*, and Xb when T=30, k=S5,
m=3, v=w, and A d=0.
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FIGURE 4 : Relative risk functions for Xb, Xb*, and Xb when T=30, k=5,
m=3, v=wo, and Ad=10.
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from the design matrix are the same as those discussed by Giles (1991)
for the properly specified case. In particular, if the marginal
distribution of the errors has fatter tails than under normality then
the risk functions shift upwards, there is an increase in the range
over which we prefer Xb* to Xb, and there is a decrease in the rate at
which the risk of the pre-test estimator approaches that of the

unrestricted estimator.
4. THE RISK FUNCTIONS OF ESTIMATORS OF a'z

In this section we consider the risk, under quadratic loss, of a

. 2 2 . ~2
pre-test estimator of Cor T whose component estimators are a-e and

o-": ‘when model (3) is fitted to the data. We define o-: as o-: =

«2 ~2 . ~2 42 "2
(tloe + I(c'm)(i)oe. The risks of o, o0&, and ¢

o are given in

IIO.CI
Theorem 3.

Theorem 3. Under the above assumptions,
p[o-z, ;-2] = [V(v+2)E(‘t‘)-V2[E(Tz)]2+49 [e +2!-:(12)]]/v2
e’ e d{d

p[«rf,. «r;z] = [(v+m)(v+m+2)£(r‘)-(v+m)2[s(zz)]z+4(en+e B

x [(9n+e d).+‘2E(rz)]]/(v+m)z

~ o .
.p[a‘Z, a-:] . { 0—[ [(v+m)2[v(v+2)r‘+4(v+2)126 d+48;]

+v¥(v+m)? [E(Tz)] 2_2v(v+m)?E(r) (v %420 d)—m(2v+m)

4 2 2 2 4
x [v(v+2)1: P04+4(V+2)6d‘t P06+49dP08] +V [m(m+2)t P40

+2meé d'rsz 4+2ven1:2P 42

2 2 2 4
+4(m+2)enr P60*49np80] +2v [mv-r P22




+4ene dP 4 4] +2mv(v+m)E(r?) [vrzP02+26 dPO 4] -2v3(v+m)E(?)

x [mr2P20+29nP 40]] f (‘I.')d‘l.'}/ [vz(wm)z) . (13)

Proof. See Giles (1990). The proof is similar in form to that
given for Theorem 3 of Giles (1991).

Equations (11)-(13) collapse to the risk functions derived by
Giles (1991) when Zy=0. For any @ & p(oz.;:) is independent of 6.,
and io it is bounded as en-)oo. but it is unbounded as @ d-)oo. Similarly,
p(o':,az) is bounded (by p(a‘i,;:)) as Gn-xn (given ed), but it is
unbounded as 6 i (given Bn). In contrast, p(rr:,o-;z) is unbounded as
either Bn-)oo or 6 e These results concur with those given by Giles
and Clarke (1989) for the omitted variables case with normal errors

and when using the maximum likelihood component estimators of o':.

: . 2~2) 2 L2 2~2 272
The risk differences [p(o-e,cre) p(a'e,o'e )]. [p(o'e.o'e) p(we,o-e)],

2 .2, 272 . .
[p(cre,a'e ) p(ce,o'e)] are unbounded as 6 = given en. For a given

value of 8 & 3 Bn-)ou the differences are unbounded except for

[p(o:,g‘;)-p(az.a‘:)] which is bounded and is equal to =zero. The

results given here as 6 P contrast with those we observed in the

previous section for estimating E(y).

p(cr:.cr:) has a minimum when c=0, 1 or ». Giles (1991) shows this
to be the case when the design matrix is properly specified, and her
proof extends easily to the mis-specified model. So, o': can dominate

both ;-: and 0;2 over some or all of the On range.

As in the previous section, we have numerically evaluated the
risk functions using the same values of the arguments as discussed
there, and the case when the critical value is unity, when the

regression disturbances are Mt. Then,




Put (o':, ;2] =o' [Zvvz(v+v-2)+47\ d(1;-2)(1;-4)[7« d(v-2)+2v]]/

[vz(v-z)z(v-4)]

PMt[o':. n;z = 2¢* [vz(v+m)(v+m+v-2)+2(>«n+h d)(v—z)(v-4)[(>«n+7\ d)(v—2)

+2v]]/[(v—z)z(v-4)(v+m)2] 1s)
th[":' :T:] = 6‘4{2v(v+m)2v2(v+v—2)+27\ d(v-2)(u-4)(v+m)2[(v-Z)?t d+2v]

=-2v(v+m)v(v-4) [mvv [P -2mA d(v-Z)PO 42~1>2v7\n(v—2)P

201'P021] 402]

-m(m+2v)(v-2) (v(v+2)va0 a0*4(v+22 dv(v-4)P061+47\;(v-2)(v-4)P082]

2
OO+4(m+2)7tnv(v-4)P601+47«n(v-2)(v—4)P

w2 (v-2) [m(m+2)va 4

802]

2 2
+2v-(v-2) [mvv P220+2m?« dv(v-4)P2 41+2v7tnv(v-4)P 421+4Ank d(v-2)

x(v-4)P, 42] }/ ((V-Z)z(v-4)v2(v+m)2]. (16)

. Figures 5 to 8 illustrate a typical case. We have again considered

“risk relative to the" scale parameter, and parameterise with respect to
2

-2 2-2,,4 e
"ftas R(o‘e)=p(o'e,a'e)/o' . These figures highlight the features discussed

An and A,. Here we define the relative risk of an estimator E: of o

so far. They also show that in many situations it is better to use
the ‘unrestricted estimator or the pre-test estimator, even if the
restrictions are valid. We recall that when the model is
mis-specified this case is somewhat more complicated as en is no
longer zero when Ho is true unless 6 d is simultaneously zero or X and

Z are orthogonal.




FIGURE 5 : Relative risk functions for ;:, o-;z. and a': when T=20, k=4,

m=3, v=5, and A d=0'
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FIGURE 6 : Relative risk functions for ;:, 0';2, and 0': when T=20, k=4,

m=3, v=5, and Ad=10.
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FIGURE 7 : Relative risk functions for ;z, a;z. and a'z when T=20, k=4,
=3, v=w, and A ,=0.
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FIGURE 8 : Relative risk functions for ;2, a;z, and o-: when T=20, k=4,
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m=3, v=w, and A ,=10.
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Our numerical evaluations suggest that when e~Mt O,vo-z/(v-Z)IT
it is typically better to always pre-test using c=1 for all feasible v
when A d>O, rather than to impose even valid restrictions. This
finding concurs with that of Giles (1991) when the design matrix is
correctly specified for small values of v, say wv<IS, and for all
values of v when m=l. She found, however, that for higher values of v
and m>1 there exists a range (though sometimes a very small range) in
the neighbourhood of the null over which the restricted estimator has

smaller risk.

We also see from the figures that an increase in A & ceteris
paribus, shifts the risk functions upwards - there is a risk penalty

for mis-specifying the model; it increases the maximum regret of R(a'z)

from that of R(;:); it decreases the rate at which R(c‘:)—)R(;:); and it

increases the }‘n range over which we prefer pre-testing (for all a's)
to imposing the restrictions. When A d=0 and « is small, say 17, there
is a region over which pre-testing has the highest risk. Once we
admit that A 4 can be non-zero then this range decreases and in most
cases even pre-testing with this test size is preferable to imposing

the restrictions without testing their validity.
S. CONCLUDING REMARKS

In this paper we have investigated the risk under quadratic loss of
estimators of the prediction vector and of the error variance in a
model which may have variables omitted from the design matrix and
whose distribution of the errors may be wider than the usual normality
assumption, after a pre-test for exact linear restrictions. We find
that the mis-specification of the distribution of the regression
disturbances has little impact on the qualitative properties of the
risk functions of the estimators of the prediction vector, and that
the results of Mittelhammer (1984) assuming normal errors carry over

to the broader problem that we investigate.




For this estimation problem we have not considered the question
of the choice of an optimal test size. Giles et al. (1990) show in
the normal errors case that the optimal critical values suggested by
Brook (1976), for instance, are no longer valid if we exclude relevant
regressors. They find that then the optimal critical value, according
to the minimax regret criterion used by Brook, depends on the degree

of mis-specification. Further, Giles (1991) shows that the Brook

critical values are no longer valid if the errors are SSDN as opposed

to simply normally distributed even if we have not omitted regressors.
The question of the optimal critical value when we have mis-specified
both the design matrix and the error distribution is a topic of

current research.

Our analysis has shown that mis-specifying the model can have a
substantial impact on the risk functions of the investigated
estimators of the error variance. For instance, if the errors are Mt
then imposing the linear restrictions, even if they are valid, is
rarely the optimal strategy, whether or not the design matrix is
mis-specified. We also find that whether or not the design matrix is
mis-specified it is generally better to pre-test, and if using the
least squares component estimators it is best to use a critical value
of unity. Generally, if the design matrix is mis-specified this
pre-test estimator strictly dominates the other estimators
investigated. = Then the choice of the optimal test size is obvious.
However, the problem of the choice of test size remains for those

cases where we have no strictly dominating estimator.
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