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ABSTRACT

We consider the pre-test estimation of . the parameters of a linear
regression model after a preliminary-test for exact linear
restrictions when the model is mis-specified through the omission of
relevant regressors and the usual assumption of normal regression
disturbances is widened to a subclass of the family of spherically
symmetric errors. We derive and analyse the exact risk (under
quadratic loss) of a pre-test estimator of the prediction vector and
of the scale parameter.

1. INTRODUCTION

Econometricians inevitably work with false models. So, we should be

investigating the properties of estimators within a mis-specified

regression model, whereas traditionally, pre-test estimators have been

examined within the context of the standard linear regresssion model

assuming normal iid disturbances and a correctly specified design

matrix. There have been exceptions. Ohtani (1983), Mittelhammer

(1984), Giles (1986), and Giles and Clarke (1989) consider the effects

of omitting relevant regressors or including irrelevant ones, or of

proxying unobservable variables, while Giles (1991) derives the exact

risk of the estimators that we consider here assuming spherically



symmetric disturbances, though a correctly specified design matrix.

(See also, Judge et at. (1985) and Miyazaki et at. (1986) who

investigate, via Monte Carlo experiments, the effects of non-normal

regression disturbances on the risks of some related estimators.)

However, departures from the standard regression assumptions are

likely to occur simultaneously. Accordingly, we derive the exact risk

of pre-test estimators of the prediction vector and of the error

variance when the disturbances are spherically symmetric and we have

omitted relevant regressors from the design matrix.

2. THE MODEL FRAMEWORK AND SOME PRELIMINARY RESULTS

Suppose that the process generating a (Txl) vector of observations on

a dependent variable y is

y = )(13 + Z7 + e, (1)

where X and Z are (Txk) and (Txp) full rank matrices of non-stochastic

variables, and g and 7 are (kxl) and (pxl) vectors of unknown

parameters respectively. We assume that the (Tx1) vector of

disturbances e is distributed according to the laws of the class of

spherical compound normal distributions (see Kelker (1970) and

Muirhead (1982)) with E(e)=0, and E(ee' )=c2eLr. This class of

distributions is a subclass of the family of spherically symmetric

distributions which can be expressed as a variance mixture of normal

distributions. That is, we can write

f(e) =
O
f° f

N
(e)f(r)dr, (2)

where f
N 

denotes a probability density function (pdf) when

e-N(0,-c2 f(T) is the pdf of T and is supported on [0,03). So,

and the errors are uncorrelated but are dependent:

independence is a feature if and only if the underlying distribution

is normal. Further, the marginal distribution of the errors may have

fatter or thinner tails than that which would result under a normality
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assumption. We write e-SSDN(0,cr2ey.

One particular example of a distribution which satisfies (2) is

the multivariate Student-t (Mt) distribution. It results when r is an

inverted gamma random variate. If this distribution has a degrees of

freedom parameter v, and scale parameter dr2, then E(T
2
)=ycr

2
/(v-2), and

normality results when v=co. For v<co the marginal distributions have

fatter tails than when v=co.

Now suppose that the researcher specifies the model

y = X13 + u U N(0,cr
2

u (3)

as the data generating process. He proceeds assuming (3) to be

properly specified when in fact u-SSDN(Z7,cr2eIT). Note that cr2
=c"
r2 In

u e 
addition, we assume that the investigator has (uncertain) extraneous

prior information about the parameters /3 which he can express as m(<k)

exact linearly independent restrictions R13=r, where R is an (mxk)

known full rank matrix, and r is an (mxl) vector of known

non-stochastic elements.

Under the assumptions of (3) the unrestricted and the restricted

least squares (and maximum likelihood) estimators of 13 are

respectively, b=S-1X' y and b*=b+S-1R' 'Cr-Rb), where S=(X' X).

Note that b and b* are the MLE's under the spherical assumption

assuming that Z7=0, but that for model (1) this holds only if X and Z

are orthogonal. Similarly, under (3) the unrestricted least squares

estimator of CF2 iS 'O:2=(y-X13)' (y-Xb)/v and the restricted least squares

estimator of cr
2 

is cr*
2
=(y-XV)' (y-XV)/(v+m), where v=(T-k).

1
e e

1. The estimators ;2 and Cr*2 are the least squares estimators of

cr
2 

for the wider assumption of e-SSD
N
. This is not so for the usual

maximum likelihood (ML) or the minimum mean squared error (M)
estimators though, for the problem examined here, the researcher would
proceed using the usual ML or M estimators. Giles (1990) extends the
results presented here to these other cases.
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The researcher, uncertain of the validity of the restrictions,

undertakes a pre-test of F10:3=0 versus HI:3;e0, where 8=RP-r represents

an (mxl) hypothesis error vector, using the traditional Wald (and

Lagrange Multiplier) test statistic e=(Rb-r)' ERS-1R1 1-1(Rb-r)v/

m(y-Xb)' (y-Xb). When Z7=0 and e-SSDN(0,(7.2eIT) then (F( 
v)
 under Ho

(see King(1979)). However, this property no longer holds if the

design matrix is mis-specified; then VP depends not only on m, v and

the degree of mis-specification but it depends also on the variance

mixing distribution. This is shown by Theorem 1.

Theorem 1. Under the above assumptions,

13) 03 n d •
(0r,,1 (Os's

 

m/2 +r v v/2+s ,m/2+r-1

f(t) = E E
r=0 s=0

Bt -2-+r;-2+s) tv+in() (m+v)/2+r+sm v

x f e-(On+0d)tr
2
11.1 -(r+s),.,

'mat ,
0

(4)

where 0
n
=(A+3)'

-1
(A+3)/2

' 
0
d
=7' Z MZT/2, M=I-X(X' X)

-I
X' ,

A=RS IX' Zr, and B(.;.) is the beta function.

(.03

Proof. f(t)= oj fN(1)f(T)d(t). Now, fN(t) is a doubly non-central F

density with m and v degrees of freedom and non-centrality parameters

A
nt
=O

n
/t
2 

and A
dt 
=0

d 
/t
2 

(see Ohtani (1983) or Mittelhammer (1984)),

and so (4) follows directly.

Clearly, if Ho is true (4) is still not the density function of a

central F random variate (even if the errors are normally

distributed). So, the classical test is invalid if we omit relevant

regressors.
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3. THE RISK FUNCTIONS OF ESTIMATORS OF E(y)

We consider risk under quadratic loss which for an estimator 0* of

is given by p (4) , 151 =E [ (0-01 ' (0,d =tr [cov(09+bias(e)bias(0* )11 ,

which is the trace of the matrix mean squared error.2 Our interest in

this section lies with the estimation of the prediction vector E(y)

after the pre-test of Ho within the mis-specified framework of model

(3). We consider this quantity rather than fit so that our results are

independent of the design matrix. In terms of the g space this is

equivalent to assuming orthonormal regressors.

The pre-test estimator of E(y) is Xb = I
[0,c)

(t)Xb* +

I(c,.)(/)Xb, where c is the critical value of the test associated with

a (nominal) significance level of cc7., and I
[ 

is an indicator
.1

function which is unity if lies within the subscripted range and

zero otherwise. The risks of Xb, Xb' and Xi; are given in Theorem 2.

Theorem 2. Under the above assumptions,

p(E(y),Xb) = kE(T2) + 20d (5)

p (E(y),XV) = (k-m)E(T.) + 2(0+O) (6)

p(E(y),Xbi = kE(T2) + 20, + n
2

2042P_ -P
0 401 

-mt2P20) f(t)dr (7)
" 0

where

= 
 

Pr. 
[F"ni+i 

1cm(v+j)) / (v(m+i))1 , i,j=0,1,2,... . 
'v+j'Ant'Adt)

Proof. See Giles (1990). The proof is similar in form to that

given for Theorem 2 of Giles (1991).

2. So, we require the existence of the first two moments. This
implies that our results are inapplicable, in particular, to
distributions with infinite variance, such as the Cauchy distribution.
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The risk functions depend on the hypothesis error through 3 (and

hence O
n
), on the specification error through A, and so on O

n 
and 0

d'
and on the variance mixing distribution. Equations (5)-(7) collapse

to the expressions derived by Giles (1991) when Z7=0, and to those

derived by Mittelhammer (1984) when e-Is1(0,cr2I1).

Comparing the risk functions we find that regardless of f(r) the

results discussed by Mittelhammer (1984) for normal errors

qualitatively carry over to the wider case of SSDN errors. First,

when the model is mis-specified the use of prior information (even if

it is correct) does not guarantee a reduction in the risk of

estimating E(y). This arises as 
0
n*0 when Ho is true unless Ad is

simultaneously zero or X and Z are orthogonal. Let

' O
n0
=A' IRS

-1
1Z'

-1
A/2, be the value of O

n 
under the null. Then, if

0n0>mE(T
2
)/2, Xb* has greater risk than Xb even though 3=0.

Similarily, Xb may have higher risk than Xb even if Ho is true.

Secondly, for a given value of On the risk functions of Xb, Xb*,

and Xb are unbounded as -3co.
Cid• 

However, p (E(y),Xb) -p (E(y),XV) is

4

bounded and equal to mE(T2)-20n, while p (E(y),X13*) -4E(y),X+0 when

Od=co, for any fixed value of On. Thirdly, p(E(y),Xb)=p(E(y),X11

within the bounds mE(T2)/45.0n:smE(T2)/2, while p (E(y),Xb)---p(E(y),Xb*)

when O
n
=mE(r

2
)/2. These values of O

n 
are independent of 0

d.

To illustrate the risk functions we have numerically evaluated

them for the special case of Mt disturbances. Then,

pmt(E(y),Xb) = crIkv + 2Xd(v-2))/(v-2)

pmt(E(y),XV) = 0r
2
((k-In)v +

6

(8)

(9)



pmt (E(y),Xb) = 0'
2
(kv-mvP

201
+2A

d
(v-2)+2A

n
(v-2)(2P

202

-P402))/(v-2)

where

co co
=E E

r!s! (1+2(A
n Ad

_ )/11-2+r+s+n-2r=0 s=0 
r v

+n-2)
2

(2A /v) r (2A
d 
/v) s r (Y-Fr+s +n-2)n 2

. 1 .x I
x
( 

1 
-
2
(m+1)+r• -(v+j)+s) ,' 2 i,j,n,=0,1,2,...

(10)

A
n
=0

n
/o-
2
, A

d
=0

d
/o-
2
, and I

x
(.;.) is the incomplete beta function with

x=cm/(v+cm).

We have considered v=10, 16, 20, 30; k=4, 5; m=1, 3; a=0.01,

0.05, 0.30, 0.50, 0.75; v=5, 10, 100, 1000, co; Ane[0,20); and

A
d
e(0,20). The FORTRAN computer programs were executed on a VAX 6230

computer, and subroutines from Press et aL (1986) and Davies (1980)

were used to undertake the evaluations. Figures 1 to 4 present some

typical results. There, we consider risk relative to 0.2 and

parameterise with respect to An and Ad rather than with respect to On

and 0 to eliminate the scale parameter 0.2. Equivalently, the figures

represent the risks of the estimators when 0.2=1. So, we define the

relative risk of an estimator Xt-) of E(y) as R(X13)=4E(y),X11/cr2. Full

details of the results are given in Giles (1990), or are available on

request.

These figures illustrate the features discussed above. They also

show first, that it is never preferable to pre-test. Pre-testing can

be the worst strategy. Secondly, they show that an increase in the

degree of mis-specification of the design matrix causes an upward

shift of the estimator risk functions and thirdly, they show that the

effect of changes in the value of v when variables have been omitted

7



FIGURE 1: Relative risk functions for Xb, Xb, and Xb when T=30, k=5,
m=3, v=5, and
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FIGURE 2 : Relative risk functions for Xb, Xb*, and Xb when T=30, k=5,

m=3, v=5, and Xd=10.
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FIGURE 3 : Relative risk functions for Xb, Xb, and Xb when T=30, k=5,
m=3, v=co, and Xd=0.

12

4

2

•

.........

r

.........

/:;'•

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
n

FIGURE 4 : Relative risk functions for Xb, Xb*, and Xb when T=30, k=5,
m=3, v=co, and Ad=10.
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from the design matrix are the same as those discussed by Giles (1991)

for the properly specified case. In particular, if the marginal

distribution of the errors has fatter tails than under normality then

the risk functions shift upwards, there is an increase in the range

over which we prefer Xb* to Xb, and there is a decrease in the rate at

which the risk of the pre-test estimator approaches that of the

unrestricted estimator.

4. THE RISK FUNCTIONS OF ESTIMATORS OF cr
2

In this section we consider the risk, under quadratic loss, of a

pre-test estimator of cre2, cr-e2, whose component estimators are PO-2e and

2 ^ 
IT* when model (3) is fitted to the data. We define 

cr2 
e 

as (r
e 
=e

2 -2 -2 2 ..'2I (f)cr* + I
() e e

(f)cr. The risks of a. cr* and are given inco.
[0,c] e e' e ' 

cr

Theorem 3.

Theorem 3. Under the above assumptions,

2, Cr = IV(V+2)E(T4)_v2 [E(T2)] 2
e e +41gl

d 
[Ci
d
+2E(T2)] ) /v2

-2

p
1I
cr2 , = ((v+m)(v+m+2)E(T4)-(v+m)2 [E(1 24-4(e e en+ed)

x [(On+0 )+2E(t2)1)/(v+m)2

= or F+m)2(v(v+2)T4+4(v+2)T2Od+40d2)

+v2(v+m)2 ). (E(T2.) 2_
2v(v+m)2E(T2)(rr2+20d)-m(2v+m)

x lv(v+2)-r4PO4+4(v+2)0
c1T2P06+49d2P08) 

+v2 (m(m+2)T4P40

+4(m+2)0
n
1-2P

60 n
+402P

SO 
) +2v2 (mIrr4P22+2mO

d
T2P

24
+2v0

n
T2P

42

(cre' (re
2 ^2)

10

(12)



+40 0 P +2mv(v+m)E(T2) -2v2(v+m)E(T2)n d 44 (vT2P02+2ecIP04)

x (mr2P20+20nP40)1f(r)d-c1+2(v+m)1 (13)

Proof. See Giles (1990). The proof is similar in form to that

given for Theorem 3 of Giles (1991).

Equations (11)-(13) collapse to the risk functions derived by
•••2Giles (1991) when Z7=0. For any Od, p(cr

2
e,cre) is independent of On,

and so it is bounded as O
n
-xo, but it is unbounded as 0

d 
-o'. Similarly,

p(cre2,;e2) is bounded (bi p(cr e2,3:e2)) as On-)03 (given Od), but it is
2 2unbounded as Od4co (given On). In contrast, p(cre,cr: ) is unbounded as

either 0
n
4co or 0ceco. These results concur with those given by Giles

and Clarke (1989) for the omitted variables case with normal errors

and when using the maximum likelihood component estimators of cr2e.

lp (cr2,fc 2)-p(r2,(7*2) .e e c e e ) 
(purz222The risk differences ))

e e
(p(0.2,a..2)...p(0.2;2))

e e e e 
are unbounded as 0 

d
403, given O

n
. For a given

value of O
d' 

as 0
n 
ccthe differences are unbounded except for

(pur2e,3:2e)..p(cr2e,cr":
)
)

which is bounded and is equal to zero. The

results given here as Oeco contrast with those we observed in the

previous section for estimating E(y).

p(cre2;e2) has a minimum when c=0, 1 or co. Giles (1991) shows this

to be the case when the design matrix is properly specified, and her

proof extends easily to the mis-specified model. So, cr.: can dominate

both C1:2 and cr*2 over some or all of the O
n 

range.

As in the previous section, we have numerically evaluated the

risk functions using the same values of the arguments as discussed

there, and the case when the critical value is unity, when the

regression disturbances are Mt. Then,
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P Mt
( 

e' 
O'se2) = o-4 (2vv2(v+v-2)+4Xd(v-2)(v-4)

(v2(v-2)2(v-4)) (14)

p mt(cr2e, cr:2) = 2 
2
(2)+2(A+A)(v-2)(v-4) [(Xn+Xd)(v-2)

(15)

pmt 147e2, ;e2) = cr4f2v(v+m)2v2(v+v-2)+2Ad(v-2)(v-4)(v+m)2 [(v-2)Xd+2v1

-2v(v+m)v(v-4) [mvv -2mXd(v-2)P
042 

+2vA 
n 
(v(13201-P02d -2)13402]

-m(m+2v)(v-2) (v(v+2)v2P v+2)A v(v-4)P
061 

+4X2(v-2)(v-4)P
d040+4( 082

2+v
2
(v-2) (m(m+2)v2P400+4(m+2)A v(v-4)P601+4An(v-2)(V-4)13802)

+2v2(v-2) (my2P220+2mAdv(v-4)P241+2vAnv(v-4)P421+4AnAd(v-2)

x(v-4)P
442
) }/ ((v-2)2(v-4)v2(v+m)2) . (16)

Figures 5 to 8 illustrate a typical case. We have again considered

risk relative to the scale parameter, and parameterise with respect to

A
n 

and A
d' 

Here we define the relative risk of an estimator ;2 of cr 2

. as R(j.2)=p(cr2,(7.2)/cr4. These figures highlight the features discussede e e
so far. They also show that in many situations it is better to use

the unrestricted estimator or the pre-test estimator, even if the

restrictions are valid. We recall that when the model is

mis-specified this case is somewhat more complicated as On is no

longer zero when Ho is true unless Od is simultaneously zero or X and

Z are orthogonal.
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FIGURE 5 : Relative risk functions for ;2 o-*2, and crA2 when T=20, k=4,

m=3, v=5, and A
d
=0
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FIGURE 7 : Relative risk functions for ;:2 .2 and cr-2 when T=20, k=4,e' 
(T 
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m=3, v=co, and Ad=0.
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Our numerical evaluations suggest that when e'-Mt (0,vcr2/(v-2)I.r)

it is typically better to always pre-test using c=1 for all feasible v

when Ad>0, rather than to impose even valid restrictions. This

finding concurs with that of Giles (1991) when the design matrix is

correctly specified for small values of v, say v<15, and for all

values of v when m=1. She found, however, that for higher values of v

and m>1 there exists a range (though sometimes a very small range) in

the neighbourhood of the null over which the restricted estimator has

smaller risk.

We also see from the figures that an increase in Ad, ceteris

paribus, shifts the risk functions upwards - there is a risk penalty

for mis-specifying the model; it increases the maximum regret of R(crA2e)

from that of R(c72); it decreases the rate at which R(;2)4R(;2); and ite e e
increases the A

n 
range over which we prefer pre-testing (for all a's)

to imposing the restrictions. When Ad=0 and a is small, say 1%, there

is a region over which pre-testing has the highest risk. Once we

admit that Ad can be non-zero then this range decreases and in most

cases even pre-testing with this test size is preferable to imposing

the restrictions without testing their validity.

5. CONCLUDING REMARKS

In this paper we have investigated the risk under quadratic loss of

estimators of the prediction vector and of the error variance in a

model which may have variables omitted from the design matrix and

whose distribution of the errors may be wider than the usual normality

assumption, after a pre-test for exact linear restrictions. We find

that the mis-specification of the distribution of the regression

disturbances has little impact on the qualitative properties of the

risk functions of the estimators of the prediction vector, and that

the results of Mittelhammer (1984) assuming normal errors carry over

to the broader problem that we investigate.
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4

For this estimation problem we have not considered the question

of the choice of an optimal test size. Giles et at. (1990) show in

the normal errors case that the optimal critical values suggested by

Brook (1976), for instance, are no longer valid if we exclude relevant

regressors. They find that then the optimal critical value, according

to the minimax regret criterion used by Brook, depends on the degree

of mis-specification. Further, Giles (1991) shows that the Brook

critical values are no longer valid if the errors are SSDN as opposed

to simply normally distributed even if we have not omitted regressors.

The question of the optimal critical value when we have mis-specified

both the design matrix and the error distribution is a topic of

current research.

Our analysis has shown that mis-specifying the model can have a

substantial impact on the risk functions of the investigated

estimators of the error variance. For instance, if the errors are Mt

then imposing the linear restrictions, even if they are valid, is

rarely the optimal strategy, whether or not the design matrix is

mis-specified. We also find that whether or not the design matrix is

mis-specified it is generally better to pre-test, and if using the

least squares component estimators it is best to use a critical value

of unity. Generally, if the design matrix is mis-specified this

pre-test estimator strictly dominates the other estimators

investigated. Then the choice of the optimal test size is obvious.

However, the problem of the choice of test size remains for those

cases where we have no strictly dominating estimator.
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