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Abstract

This paper considers regression models which are mis-specified through
the omission of relevant regressors, and investigates some aspects of the
power properties of the Goldfeld-Quandt test for homoscedasticity of the
error variance in such cases. Attention focusses not on the full power
function of the test, but on the locus of powers that emerges when, for a
given departure from the null, different numbers of central observations
are omitted in the construction of the test statistic. A well known rule
of thumb regarding the optimal number of such observations is found to be
questionable, whether the model is mis-specified or not. The form of the
regressor data, and the sample size, are found to be important in governing
these features of the test.

Address for Correspondence : Professor David Giles, Department of
Economics, University of Canterbury, Christchurch, NEW ZEALAND.




INTRODUCTION
The inefficiency of the Ordinary Least Squares (OLS) estimator of the

coefficients in a linear regression model when the disturbances are
heteroscedastic is well known. Also of concern is the inconsistency of the
estimated variance covariance matrix of this estimator, and hence of the
usual  "standard errors". Accordingly,  various tests of the
homoscedasticity of regression errors have been developed. Among the best
known of these tests is that proposed by Goldfeld and Quandt (1965).

The Goldfeld-Quandt (GQ) test assumes some knowledge of the form of
the potential heteroscedasticity, in that the user must order the sample
according to the values of the variable inducing the non-constant error
variance.  Typically, this variable is one of the regressors. The sample
is then split into two parts, and the test statistic is constructed from
the least squares residuals associated with the two sub-sample regressions.
Generally, it is suggested that the power of the test may be improved by
deleting a central group of the ordered observations prior to fitting the
regressions to the remaining two sub-samples. There is a trade-off effect
associated with this refinement : omitting observations reduces the degrees
of freedom, and this tends to reduce the test’s power; but there is a
tendency for power to be increased because of the greater discrimination
between the variances of the two sub-samples.

One question which then arises, is "what is the optimal number of
central observations to omit in order to maximise the power of the GQ
test"? Harvey and Phillips (1974) suggest that this number should be
chosen so that the remaining sub-sample degrees of freedom are
approximately a third of the full available sample. This conclusion is
reached on the basis of exact power calculations and a limited range of

data types, and is consistent with the results of a very limited Monte

Carlo study reported by Goldfeld and Quandt (1965).1




The validity of the GQ test depends on various assumptions, including
the Nox-mality2 and independence of the model’s errors, and the correct
specification of the design matrix. Epps and Epps (1977) consider the
effect on the GQ test of first-order autocorrelation in the errors. They
find that the size and power of the test are quite sensitive to such a
mis-specification of the model, but that this sensitivity can be virtually
eliminated if the test is applied after a Cochrane-Orcutt correction for
autocorrelation, where appropriate. Epps and Epps apply the GQ test
according to the "one third" rule of thumb but their results reveal nothing
about the robustness of the rule to this type of model mis-specif’ ication.3

In this paper we focus on the robustness of this rule of thumb in the
face of a different form of model mis-specification. The omission of
relevant regressors is one of the most important and inevitable forms of
model mis-specification in econometrics. We present exact results based on
a variety of data sets which show that this rule lacks robustness not only
to the omission of relevant regressors from the model, but also to the form
of the inéluded regressors.

In the next section we set up the problem and discuss the theoretical
underpinnings of our analysis. Section 3 describes the situations we have
examined, and the results are presented in section 4. Some concluding

remarks appear in the final section.

NOTATION AND BASIC RESULTS

Suppose that the data-generating process is

y=XB +XB, +€; &~NOY w

where y and € are (nxl); Bi is (kixl); Xi is (nxki), non-stochastic and of
rank ki (i=1,2); and V is (nxn), positive definite and diagonal. Specific
hypothesised forms of V are discussed in the next section.

The model fitted to the data is




y = xlBl +u, . (2)
so u ~ N(XZBZ,V). For a particular xz, different degrees of model
mis-specifiction arise as BZ varies. When 62 = 0 the fitted model is
correctly specified. ‘

In practice V is unknown. To apply the GQ test we omit c central
observations after the data have been ordered according to hypothesised
increasing values of the diagonal elements of V, leaving two sub-samples
each comprising ¢ observations. The degrees of freedom associated with the
OLS estimator of 81 in (2) are then m = ¢ - kl' for each sub-sample. Let
u; denote the error vector in (2), and let X; j denote the X; matrix, each
over the jth sub-sample (j=1,2). So, the OLS residual vectors associated

with the estimation of (2) over each sub-sample separately are

= - ’ =
= [I xlj(xlj xlj

M, . u,
1§

The GQ test statistic is

- ’ ’
R = (e‘2 ez/el el).

Adapting the approach of Harvey and Phillips (1974, pp.314-315) to our

situation, we have

= ( “2’“12“2]/ [“1' Mu“x]
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are each (2¢x2¢) and idempotent.

By writing R as in (4) it is then expressed as a ratio of quadratic
forms in the same normal random vector, and its distribution is readily
calculated by applying transformations of the type discussed by Koerts and
Abrahamse (1971, pp.81-82), and then using an algorithm such as that of
Imhof (1961) or Davies (1980). In particular, to evaluate the exact power
of the GQ test we need to determine Pr.(R > faIV)’ where fa is the size-a
critical F-value for m and m degrees of freedom. That is, we require

Power (R) = Pr. [u,’,(Mh-MIZ/fa)u. s OIV].

V determines the covariance matrix of u, through u, and u,. If

-1/2

E(u,uy) = V,, say,4 and z = V. "“u,, then

Power (R) = Pr. [z’ (AR S AL TN ]

Applying an appropriate orthogonal transformation to z to diagonalise
V20 e aox 172
Vi, Mlz/fa)v‘ , we have
2L 2

Power(R) = Pr.[ Taw”=s0| V.] ,
i=1

, : . _u* ,
where the Ais are the eigenvalues of [Mll Mlz/fa]v‘ and the w;'s are

independent non-central chi-square random variables, each with one degree

of freedom and non-centrality parameter equal to the square of the i’th

X
diagonal element of P’V;V2 [ X21 ]BZ. P is the orthogonal matrix whose
22

columns are the eigenvectors corresponding to the Ai's. and it satisfies w

= P’z. In this study we evaluate (S) using Davies’ (1980) algorithm.




Note that the power of the GQ test depends not only on V (through v,)
but also on the included and omitted variables over both sub-samples, on
the choice of ¢, and on the value (but not the sign) of BZ' The power is
invariant to the scale5 of the disturbances. Accordingly, in considering
the optimal choice of ¢ in this framework we need to take account of
different regressor matrices and different degrees of misspecification

(values of BZ).

DESIGN OF THE STUDY

For all data matrices considered, kl = 2 and k2 = 1. In each case Xl

includes an intercept variable. We consider two forms of

heteroscedasticity : o-? a x2 and a-z. a Xy (j = 1,...,n), where o-? is the

jr J J
j'th diagonal element of V and le is the j’'th observation on the

non-intercept variable in Xl. This implies two different forms of V (and

V,). It is assumed that the GQ test is applied at the 5% significance

level in determining fon' and sample sizes of n = 20 and n = 69 are

investigated.6

Real and artificial data sets have been chosen to reflect a range of
characteristics and to facilitate some comparisons with other studies which
evaluate the power of the GQ test in correctly specified models. Goldfeld
and Quandt (1965) consider uniformly distributed regressors and n = 30,60
in their Monte Carlo experiments, while Harvey and Phillips (1974) r'eport7
exact results based on uniform and lognormal data with n = 20. Griffiths
and Surekha (1986) also use uniform and lognormal regressors with n =
20, SO in their Monte Carlo study.

With xl defined as above and x2 = X,, our data sets are8:

CPI: X, is the weakly seasonal quarterly Australian Consumers Price Index,

and X is its one-period lag.




Spirits: The annual "spirits" income (xl) and price (xzv) data of Durbin and
Watson (1951).

Lognormal: X, is lognormal, generated from N(3,1) data, and X, is a linear
time trend.

Uniform: xl is Uniform (0,20), and x2 is a linear time trend.

Using the methods described in section 2, the exact finite-sample
power of the GQ test is calculated for each data set, sample size and form
of heteroscedasticity, and for various choices of ¢ and Bz. Fixing all of
these characteristics and varying the degree of heteroscedasticityg, one
could generate conventional exact power curves for the GQ test. However, to
focus attention on the effect that the choice of c has on the test’s power,
we fix the degree of heteroscedasticity (through a choice of its form and
of the data set) and generate power locii by varying c. One power locus
corresponds ‘to a “snapshot" across a sequence of conventional power curves
(corresponding to different ¢ values) for a given degree of departure from
the null hypothesis of homoscedasticity. This is essentially the approach
adopted by Harvey and Phillips (1974) for the properly specified model.

Our results are discussed in the next section.

RESULTS

Our results for the case where «r? 3 x?l are summarised in Figures 1 to

S. The results associated with c? 3 le are very similar to these, except
as noted below. Several major points emerge.

First, we see that for the correctly specified models (B2 =0), as m
increases (c decreases) the power of the GQ test generally rises steeply,
reaches a plateau, then falls gradually, The only case in which the power
fails to fall is when n = 69 with the Uniform data set. Harvey and
Phillips (1974, p.312) also report a "flat" range for the optimum power.

The "one third" rule of thumb seems appropriate when n = 20. Then m = 6




seems to maximize the power of the GQ test. In this sense the results in
Figures Sb and 4b are consistent with those in Tables 1 and 2 of Harvey and
Phillips (1974).  Although the values of our maximum powers differ from
theirs, we concur that there is a reduction in maximum power in moving from

cr‘j? o xz. to o‘? « x., though the location of this maximum is unaltered.

Ji it
However, the rule of thumb relating to the choice of c is not supported by
the results when n = 69. Then maximum power occurs around m = 12 (m = 18

for the Spirits data), as opposed to m = 23 as this rule would suggest.

Second, whether the model is correctly specified or not, the

performance of the GQ test is very sensitive to the regressor data. To
some extent, of course, this reflects the different implied degrees of
heteroscedasticity. As is shown in Table 1, ranking the xl data in terms
of the coefficient of variation (cv) in the sample when n = 69 exactly
matches the maximum power rankings for the GQ test. Given the construction
of the tesi. this is expected if the model is correctly specified.
However, it is interesting that this also holds if relevant regressors are
omitted. Griffiths and Surekha (1986, p.225) provide results which accord
with ours for a properly specified model, and also demonstrate that even
for a fixed cv value, the power of the GQ test may vary with the type of
regressor data, ceteris paribus.
Table 1

Effect of Data Variability on Power

X cv Power Ranking*

1

Lagged CPI
Spirits Income
Normal
Lognormal

Uniform

1 = Best




The literature on the power of this test rests heavily on artificial

data sets. Looking at our range of results it is clear that for properly
or mis-specified models, some of the previous results may be rather
misleading in practice. In particular, the maximum powers achieved with
the "Spirits" data set are very disappointing.

Third, when relevant regressors are omitted from the model the power
of the GQ test may rise or fall relative to the properly specified case.
Both the type of data and the sample size play a role in determining the
direction of this shift, as may be seen in Figures 2 and 4. A transition
situation is depicted in Figure 3. Referring back to Table 1, we see that
such a transition is not simply a function of the degree of
heteroscedasticity. = We can conjecture that there exist sample sizes for
which such transitions may occur for the other data sets considered. In
each case, the more misspecified is the model, the greater is the shift in
the power locus from that associated with Bz = 0.

Finally, returning to the "one third" rule of thumb, we see that not
only is it open to question when the model is properly specified, but when
relevant regressors are omitted it may require adjustment in practice in
either direction. Accordingly, it should be treated very cautiously,
especially considering the likelihood of such a mis-specification of the

model to an unknown degree and with respect to unknown variables.

CONCLUSIONS
Our study abstracts from the possible effects of varying degrees
of multicollinearity among the (included or excluded) regressors.
Harvey and Phillips (1974, p.311) report that such effects are
insignificant with respect to the power properties of the GQ test in
correctly specified models, but whether or not this extends to misspecified

models remains to be investigated. The effects of other types of model




misspecification and forms of heteroscedasticity on the power of the GQ and
related tests are under investigation, as are the consequences of omitting
central observations from the data in an asymmetric way when constructing
the test statistic.

It seems clear that one should question the well known suggestion
that, in applying the GQ test, one should omit central observations to the
extent that the remaining sub-sample degrees of freedom equal a third of
the original number of data points. Further, if the test is applied in the

context of a model from which relevant regressors have been omitted, then

this rule of thumb becomes even more suspect, as does the existing evidence

on the power of the test per se. Standard econometric results rest in part
on the folklore that the fitted model corresponds to the data-generating
process. Once this myth is put to one side many such results need careful

re-appraisal.




FIGURE 1a: POWER LOCII
CPIDATA : n=69

Properly Specified
(Beta2=0)

Misspecified
(Beta2=2)

Misspecified

1 1 L ! 1 1 L L 1 1 1 1

10 12 14 16 18 20 22 24 26 28 30 32
Sub-sample Degrees of Freedom (m)

FIGURE 1b : POWER LOCII
CPIDATA : n=20
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FIGURE 2a : POWER LOCII
SPIRITS DATA : n=69

1 ! I 1 1 1 1 1 ! ! Il 1

10 12 14 16 18 20 22 24 26 28 30 32
Sub-sample Degrees of Freedom (m)

FIGURE 2b : POWER LOCII
SPIRITS DATA : n=20
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FIGURE 3a: POWER LOCII
NORMAL DATA : n=69
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FIGURE 3b : POWER LOCII
NORMAL DATA : n=20
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FIGURE 4a : POWER LOCII
LOGNORMAL DATA : n=69
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FIGURE 4b : POWER LOCII
LOGNORMAL DATA : n=20

Properly Specified
(Beta2=0)

Misspecified
(Beta2=0.01)

Misspecified
(Beta2=0.02)

1 1 1

4 5 6
Sub-sample Degrees of Freedom (m)




FIGURE 5a : POWER LOCII
UNIFORM DATA : n=69
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FIGURE 5b : POWER LOCII
UNIFORM DATA : n=20

Properly Specified
(Beta2=0)
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(Beta2=0.2)
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(Beta2=0.3)
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FOOTNOTES
We are grateful to Merran Evans for supplying the data used in this
study and to Robert Davies for providing FORTRAN code for his AS 155
algofithm. We also thank Judith Giles and John Small for their
helpful comments and suggestions.
See also Goldfeld and Quandt (1972). It is worth noting that this
result has been mis-quoted by some authors. For example, see Johnston
(1984, p.301).
Strictly, only elliptical symmetry of the errors is required. See
King (1979).
This point is under investigation in work in progress.
In this study powers are computed for specific forms of V. These
dictate the forms of V,.
That is, if V = a‘zﬂ. the power is invariant to a'z.
The "Spirits" data set described below comprises 69 observations.
Their study also considers other data and sample sizes and various
numbers of regressors, but they state that those results were similar
to the ones they report.
These data sets are the same as, or derived from, the data used by

Evans (1989).

This could be achieved by varying the coefficient of variation of o-?,

as suggested by Griffiths and Surekha (1986), for example.










