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Abstract

This paper considers regression models which are mis-specified through
the omission of relevant regressors, and investigates some aspects of the
power properties of the Goldfeld-Quandt test for homoscedasticity of the
error variance in such cases. Attention focusses not on the full power
function of the test, but on the locus of powers that emerges when, for a
given departure from the null, different numbers of central observations
are omitted in the construction of the test statistic. A well known rule
of thumb regarding the optimal number of such observations is found to be
questionable, whether the model is mis-specified or not. The form of the
regressor data, and the sample size, are found to be important in governing
these features of the test.
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1. INTRODUCTION

The inefficiency of the Ordinary Least Squares (OLS) estimator of the

coefficients in a linear regression model when the disturbances are

heteroscedastic is well known. Also of concern is the inconsistency of the

estimated variance covariance matrix of this estimator, and hence of the

usual "standard errors". Accordingly, various tests of the

homoscedasticity of regression errors have been developed. Among the best

known of these tests is that proposed by Goldfeld and Quandt (1965).

The Goldfeld-Quandt (GQ) test assumes some knowledge of the form of

the potential heteroscedasticity, in that the user must order the sample

according to the values of the variable inducing the non-constant error

variance. Typically, this variable is one of the regressors. The sample

is then split into two parts, and the test statistic is constructed from

the least squares residuals associated with the two sub-sample regressions.

Generally, it is suggested that the power of the test may be improved by

deleting a central group of the ordered observations prior to fitting the

regressions to the remaining two sub-samples. There is a trade-off effect

associated with this refinement : omitting observations reduces the degrees

of freedom, and this tends to reduce the test's power; but there is a

tendency for power to be increased because of the greater discrimination

between the variances of the two sub-samples.

One question which then arises, is "what is the optimal number of

central observations to omit in order to maximise the power of the GQ

test"? Harvey and Phillips (1974) suggest that this number should be

chosen so that the remaining sub-sample degrees of freedom are

approximately a third of the full available sample. This conclusion is

reached on the basis of exact power calculations and a limited range of

data types, and is consistent with the results of a very limited Monte

Carlo study reported by Goldfeld and Quandt (1965).1
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The validity of the GQ test depends on various assumptions, including

the Normality2 and independence of the model's errors, and the correct

specification of the design matrix. Epps and Epps (1977) consider the

effect on the GQ test of first-order autocorrelation in the errors. They

find that the size and power of the test are quite sensitive to such a

mis-specification of the model, but that this sensitivity can be virtually

eliminated if the test is applied after a Cochrane-Orcutt correction for

autocorrelation, where appropriate. Epps and Epps apply the GQ test

according to the "one third" rule of thumb but their results reveal nothing

about the robustness of the rule to this type of model mis-specification.3

In this paper we focus on the robustness of this rule of thumb in the

face of a different form of model mis-specification. The omission of

relevant regressors is one of the most important and inevitable forms of

model mis-specification in econometrics. We present exact results based on

a variety of data sets which show that this rule lacks robustness not only

to the omission of relevant regressors from the model, but also to the form

of the included regressors.

In the next section we set up the problem and discuss the theoretical

underpinnings of our analysis. Section 3 describes the situations we have

examined, and the results are presented in section 4. Some concluding

remarks appear in the final section.

2. NOTATION AND BASIC RESULTS

Suppose that the data-generating process is

y = + X2f32 + c ; c N(0,V) (1)

where y and c are (nxl); f3 i is (kixl); Xi is (nxki), non-stochastic and of

irank k. ( =1,2); and V is (nxn), positive definite and diagonal. Specific

hypothesised forms of V are discussed in the next section.

The model fitted to the data is
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y = + u , (2)

so u N(X
2
13
2'

V). For a particular X2, different degrees of model

mis-specifiction arise as f32 varies. When fic2 = o the fitted model is

correctly specified.

In practice V is unknown. To apply the GQ test we omit c central

observations after the data have been ordered according to hypothesised

increasing values of the diagonal elements of V, leaving two sub-samples

each comprising t observations. The degrees of freedom associated with the

OLS estimator of 131 in (2) are then m = t - kr for each sub-sample. Let

umatrix, each1j 1

over the jth sub-sample (j=1,2). So, the OLS residual vectors associated

with the estimation of (2) over each sub-sample separately are

e. = [I - X .(X .'X .)
-1 

X du.j lj lj lj lj

= M j = 1,2.
1J J

The GQ test statistic is

R = (e21e2/e11e1). (3)

Adapting the approach of Harvey and Phillips (1974, pp.314-315) to our

situation, we have

R = u2' MI2u2)/(u1' Mllud

= M1'20)/ (0' M111.0) (4)



where u*' = u21) is 2tx1) , and

M11 0 = [ 0 0

11
M* = [ 0 0]' 

12 
0 M

12

are each (22x2) and idempotent.

By writing R as in (4) it is then expressed as a ratio of quadratic

forms in the same normal random vector, and its distribution is readily

calculated by applying transformations of the type discussed by Koerts and

Abrahamse (1971, pp.81-82), and then using an algorithm such as that of

Imhof (1961) or Davies (1980). In particular, to evaluate the exact power

of the GQ test we need to determine Pr. (R > fa I V), where fa is the size-a

critical F-value for m and m degrees of freedom. That is, we require

Power (R) = Pr. [1.1 
1(M*1 -M*12a 

)u
* 
s 0 I* 

V determines the covariance matrix of u. through u1 and u2. If

-1/2
E(t1.1.10 = V., say, and and z = V. u., then

V.1/2(m.1,144,1,2Ifaw.uzz s 0 I v.Power (R) = Pr. [z'

Applying an appropriate orthogonal transformation to z to diagonalise
1/2,-.
( M* /f )V 1/2NI we have* 11 12 a '

2t
Power(R) = Pr. ( E A.w.2 s 0 I V. , (5)

i =1 "

w shere the Ai's are the eigenvalues of IM111-M*12/fa) V. and the w.' are

independent non-central chi-square random variables, each with one degree

of freedom and non-centrality parameter equal to the square of the i'th

V"2 

X,
1..;1/2 4diagonal element of P' 1,14

2' 
P is the orthogonal matrix whoseX

22

columns are the eigenvectors corresponding to the Ai's, and it satisfies w

= P' z. In this study we evaluate (5) using Davies' (1980) algorithm.
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Note that the power of the GQ test depends not only on V (through V.)

but also on the included and omitted variables over both sub-samples, on

the choice of c, and on the value (but not the sign) of 132. The power is

invariant to the scale
5 

of the disturbances. Accordingly, in considering

the optimal choice of c in this framework we need to take account of

different regressor matrices and different degrees of misspecification

(values of g2).

3. DESIGN OF THE STUDY

For all data matrices considered, k1 = 2 and k2 = 1. In each case X1

includes an intercept variable. We consider two forms of

2 2 2 2.
x

heteroscedasticity : cr. a and . a x. (j = 1,...,n), where a'. is thej1' 
cr
j j1

j'th diagonal element of V and x 1 is the j'th observation on the

non-intercept variable in Xi. This implies two different forms of V (and

V.). It is assumed that the GQ test is applied at the 57. significance

level in determining fa, and sample sizes of n = 20 and n = 69 are

investigated.6

Real and artificial data sets have been chosen to reflect a range of

characteristics and to facilitate some comparisons with other studies which

evaluate the power of the GQ test in correctly specified models. Goldfeld

and Quandt (1965) consider uniformly distributed regressors and n = 30,60

in their Monte Carlo experiments, while Harvey and Phillips (1974) report7

exact results based on uniform and lognormal data with n = 20. Griffiths

and Surekha (1986) also use uniform and lognormal regressors with n =

20, 50 in their Monte Carlo study.

With x defined as above and x
2 
= X

2' 
our data sets are

8
:1

CPI: x
2 

is the weakly seasonal quarterly Australian Consumers Price Index,- 

and x1 is its one-period lag.
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Spirits: The annual "spirits" income (x1) and price (x2.) data of Durbin and

Watson (1951).

Lognormal: x1 is lognormal, generated from N(3,1) data, and x2 is a linear

time trend.

Uniform: x1 is Uniform (0,20), and x2 is a linear time trend.

Using the methods described in section 2, the exact finite-sample

power of the GQ test is calculated for each data set, sample size and form

of heteroscedasticity, and for various choices of c and 132. Fixing all of

these characteristics and varying the degree of heteroscedasticity9, one

could generate conventional exact power curves for the GQ test. However, to

focus attention on the effect that the choice of c has on the test's power,

we fix the degree of heteroscedasticity (through a choice of its form and

of the data set) and generate power locii by varying c. One power locus

corresponds to a "snapshot" across a sequence of conventional power curves

(corresponding to different c values) for a given degree of departure from

the null hypothesis of homoscedasticity. This is essentially the approach

adopted by Harvey and Phillips (1974) for the properly specified model.

Our results are discussed in the next section.

4. RESULTS

2 Our results for the case where cr. a x
2
 . are summarised in Figures 1 to

J J1
25. The results associated with o- . a x

1
. are very similar to these, except

J J 

as noted below. Several major points emerge.

First, we see that for the correctly specified models 032 = 0), as m

increases (c decreases) the power of the GQ test generally rises steeply,

reaches a plateau, then falls gradually, The only case in which the power

fails to fall is when n = 69 with the Uniform data set. Harvey and

Phillips (1974, p.312) also report a "flat" range for the optimum power.

The "one third" rule of thumb seems appropriate when n = 20. Then m = 6
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seems to maximize the power of the GQ test. In this sense the results in

Figures 5b and 4b are consistent with those in Tables 1 and 2 of Harvey and

Phillips (1974). Although the values of our maximum powers differ from

theirs, we concur that there is a reduction in maximum power in moving from

2 2 2
. a x. to CT. a x . , though the location of this maximum is unaltered.
j j1 j j1

However, the rule of thumb relating to the choice of c is not supported by

the results when n = 69. Then maximum power occurs around m = 12 (m = 18

for the Spirits data), as opposed to m = 23 as this rule would suggest.

Second, whether the model is correctly specified or not, the

performance of the GQ test is very sensitive to the regressor data. To

some extent, of course, this reflects the different implied degrees of

heteroscedasticity. As is shown in Table 1, ranking the x1 data in terms

of the coefficient of variation (cv) in the sample when n = 69 exactly

matches the maximum power rankings for the GQ test. Given the construction

of the test, this is expected if the model is correctly specified.

However, it is interesting that this also holds if relevant regressors are

omitted. Griffiths and Surekha (1986, p.225) provide results which accord

with ours for a properly specified model, and also demonstrate that even

for a fixed cv value, the power of the GQ test may vary with the type of

regressor data, ceteris paribus.

Table 1

Effect of Data Variability on Power

Power Ranking*x
l

cv

Lagged CPI 0.205 3

Spirits Income 0.049 5

Normal 0.423 2

Lognormal 0.192 4

Uniform 0.618 1

1 = Best
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The literature on the power of this test rests heavily on artificial

data sets. Looking at our range of results it is clear that for properly

or mis-specified models, some of the previous results may be rather

misleading in practice. In particular, the maximum powers achieved with

the "Spirits" data set are very disappointing.

Third, when relevant regressors are omitted from the model the power

of the GQ test may rise or fall relative to the properly specified case.

Both the type of data and the sample size play a role in determining the

direction of this shift, as may be seen in Figures 2 and 4. A transition

situation is depicted in Figure 3. Referring back to Table 1, we see that

such a transition is not simply a function of the degree of

heteroscedasticity. We can conjecture that there exist sample sizes for

which such transitions may occur for the other data sets considered. In

each case, the more misspecified is the model, the greater is the shift in

the power locus from that associated with /32 = 0.

Finally, returning to the "one third" rule of thumb, we see that not

only is it open to question when the model is properly specified, but when

relevant regressors are omitted it may require adjustment in practice in

either direction. Accordingly, it should be treated very cautiously,

especially considering the likelihood of such a mis-specification of the

model to an unknown degree and with respect to unknown variables.

5. CONCLUSIONS

Our study abstracts from the possible effects of varying degrees

of multicollinearity among the (included or excluded) regressors.

Harvey and Phillips (1974, p.311) report that such effects are

insignificant with respect to the power properties of the GQ test in

correctly specified models, but whether or not this extends to misspecified

models remains to be investigated. The effects of other types of model



misspecification and forms of heteroscedasticity on the power of the GQ and

related tests are under investigation, as are the consequences of omitting

central observations from the data in an asymmetric way when constructing

the test statistic.

It seems clear that one should question the well known suggestion

that, in applying the GQ test, one should omit central observations to the

extent that the remaining sub-sample degrees of freedom equal a third of

the original number of data points. Further, if the test is applied in the

context of a model from which relevant regressors have been omitted, then

this rule of thumb becomes even more suspect, as does the existing evidence

on the power of the test per se. Standard econometric results rest in part

on the folklore that the fitted model corresponds to the data-generating

process. Once this myth is put to one side many such results need careful

re-appraisal.
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FOOTNOTES

• We are grateful to Merran Evans for supplying the data used in this

study and to Robert Davies for providing FORTRAN code for his AS 155

algorithm. We also thank Judith Giles and John Small for their

helpful comments and suggestions.

1. See also Goldfeld and Quandt (1972). It is worth noting that this

result has been mis-quoted by some authors. For example, see Johnston

(1984, p.301).

2. Strictly, only elliptical symmetry of the errors is required. See

King (1979).

3. This point is under investigation in work in progress.

4. In this study powers are computed for specific forms of V. These

dictate the forms of V..

5. That is, if V = cr2f2, the power is invariant to cr2.

6. The "Spirits" data set described below comprises 69 observations.

7. Their study also considers other data and sample sizes and various

numbers of regressors, but they state that those results were similar

to the ones they report.

8. These data sets are the same as, or derived from, the data used by

Evans (1989).

29. This could be achieved by varying the coefficient of variation of cr.,

as suggested by Griffiths and Surekha (1986), for example.
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