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ABSTRACT

In this paper we consider the power function of the classical F test for
linear restrictions on the coefficients in a linear regression model with
spherically symmetric disturbances when proxies are used in the place of
unobservable regressors. We numerically evaluate the power function assuming
multivariate Student-t (Mt) regression disturbances in a simple univariate
regression model. Our results show the effects on the power function of the
degrees of freedom of the Mt distribution and of the correlation between the
omitted and the proxy variable.
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1. Introduction

Frequently, in applied regression analysis using economic data, we
cannot observe some of the variables suggested by our economic theory. Then,
the researcher must decide whether to omit the unobservable variables or to
replace them by proxies. Within the errors-in-variables framework, and
assuming only one unobservable variable, McCallum (1972) and Wickens (1972)
show that the use of a proxy variable leads to smaller asymptotic bias than
omitting the problem variable. Barnow (1976) shows that this result may not
be generally applicable if there is more than one unobservable variable; we
may be better to delete the unobservable variable. In terms of mean squared
error, this latter finding is supported by the studies of Aigner (1974),
Frost (1979), 'Kinal and Lahiri (1981), Ohtani (1981), and Srivastava and
Madhuliea (1990). In particular, Srivastava and Madhuliea (1990) show that
we should always exclude the unobservable variables, rather than proxy them,
acccording to a mean squared error matrix criterion.

These studies concentrate on the effects on the properties of the
parameter estimates when proxy variables are used. Relatively little
research considers the corresponding implications for hypothesis testing.

Exceptions include Ohtani (1985), Kakimoto and Ohtani (1985), and Ohtani

(1987). This research assumes that the disturbance term follows a normal

distribution. However, there is a wide body of literature which suggests
that some economic data series (in particular, financial data), may be
generated by processes which exhibit more kurtosis than the normal
distribution. [See, for example, Mandelbrot (1963), Fama (1965), Blattberg
and Gonedes (1974), Praetz (1972), Praetz and Wilson (1978), Lau et al.
(1990), Rainbow and Praetz (1986) and Hall et al. (1989).

This has obvious implications for the distribution of the regression

disturbance term, and accordingly there has been increasing interest in the




sampling properties of estimators and test statistics for non-normally

distributed disturbances. One alternative assumption to normality is the

wider one of spherical symmetry.1 Many studies have investigated linear

regression models with spherically symmetric disturbances including Thomas
(1970), Zellner (1976), King (1979), Ullah and Zinde-Walsh (1984, 1985),
Judge et al. (1985), Sutradhar and Ali (1986), Ullah and Phillips (1986),
Andrews and Phillips (1987), Zinde-Walsh and Ullah (1987), Singh (1988),
Sutradhar (1988), Giles (1990a,b,c), and Ohtani (1990).2

The extension to this broader family of distributions is easily
motivated by some of the aforementioned empirical studies. Further, the
probability density functions (pdf’s) of a sub-class of this family of
distributions can be written as a variance mixture of normal distributions
(we denote this sub-class of families as SSDN). This implies that each
individual error term may be normally distributed but that their Jjoint
distribution is non-normal if the variance is itself a random variable. The
multivariate-t (Mt) distribution is one member of this family of
distributions (which includes normality as a further special case), and it
arises if the variance mixing distribution is the inverted gamma
distribution. Then the marginal distributions are univariate Student-t and
they may have thicker tails than under normality.

In particular, assuming a correctly specified regression model Thomas
(1970) derives the non-null distribution of the classical F test for linear
restrictions on the regression coefficients and shows that it depends on the
specifc form of the SSD. King (1979) shows that this test is a UMPI size-a
test for the wider case of elliptically symmetric disturbances. Sutradhar
(1988) (unaware of Thomas (1970) or Ullah and Phillips (1986)) examines the
power of the test when the regression disturbances are Mt, and finds that it

depends on the degrees of freedom of the Mt population. He computes the




power for various cases and shows that if the restrictions are in the
neighbourhood of being true then the power of the test is at least the same
as that which would result from a normality assumption. However, for
relatively large hypothesis error the power for finite degrees of freedom of
the Mt distribution is lower. Giles (1990a) derives the non-null
distribution of the test statistic when the regression disturbances are SSDN
and we have omitted relevant regressors from the design matrix. She does
not, however, examine the power function of the test.

In this paper we extend this research by considering the sam?ling
properties of the F test statistic in a linear regression model with proxy
variables and SSDN disturbances. In the next section we provide the model
framework and we derive, in Section 3, the non-null distribution of the test
statistic. Under the null, this distribution is not, in general, central F.
The exception is if the null hypothesis is that the coefficients on the
unobservable variables are zero. We show this result in Section 4. The
power of the test, however, depends on the variance mixing distribution. = To
examine the power function of the test we consider the special case of Mt
regression disturbances and a simple univariate regression model under a
variety of alternative scenarios in Section 5. The paper concludes with some

final remarks in Section 6.

2. The model and the test statistic.
Suppose that the true regression model is
y= XIBI + XZBZ +u, (1)
where y is an (nxl) vector of observations on the dependent variable, X

lIS

an (nxkl) matrix of observable independent variables, X2 is an (nxkz) matrix

of unobservable independent variables, Bl and Bz are (klxl) and (kle)




vectors of regression coefficients, and u is an (nxl) vector of error terms.
We assume that X1 and XZ are non-stochastic (or independent of u).

As X2 is unobservable, there is an incentive to replace it with a
matrix of proxy variables. Denoting this (nxkz) matrix as XE. we write the

model which includes the proxy variables as
- * t 7°31 ] »*
y—XlBl+X232+u .

Let X = le,le. X* = [XI,XEI, B’ = [B’I,Bé], B* = I’.ﬁi’] so that (1)

and (2) can be written as

y=X8+u ,
y:X'Bl*ul

As to the error terms, we assume that u has a non-normal distribution of

-]
the form f(u) = I fN(u)f(r)dt, where fN(u) is f(u) when u ~ N(O.rzln), and
0

f(tr) is supported on [0,w). So E(u) = 0, and E(uu’) = otlen' where 0_‘21 =
f('rz). This class of non-normal distributions is a subclass of the family of
spherically symmetric disturbances which can be expressed as a variance

mixture of normal distributions. When the disturbances are Mt we have

2.2
f(z) = [zxr(v /2)] [Wz /2] v/2 _-(v+1) ~ve©/2T

a1
f(u) = [v"/ zr((wn)/z]] [n"’ zl‘(v/Z)a-n]

.

2 -(v+n)/2
x [v + u’'we ]




The mean and covariance matrix of u, for v > 2, are E(u) = 0 and E(uu’)
= [va‘z/(v-Z)] ln .
We suppose there are m (=k) exact linear restrictions on the regression
coefficients given by,
Rg =r ,
where R is an (mxk) (k=k1+k2) known non-stochastic matrix and r is a known
(mx1) non-stochastic vector. The test statistic for the null hypothesis, HO:

RB =r, is

F =(p/m)(Rb*-r)’ [RS*"R'] “HRo*-r)/er e,
where b* = S“-IX"y. e* = y-X*b*, S* = X*'X*, p = n-k.
3. The non-null distribution of F.

The pdf of F is

(]
f(F) = I r (F)f(dr (8)
[}

where f‘N(F) is f(F) when u ~ N(O.rzln). Ohtani (1983) shows that fN(F) is

doubly non-central F with m and p degrees of freedom and non-centrality

.

parameters 7«/12 and 6/1:2, where
"1 . ! =15, 1-1 l-l .
RS* "X*'XB-r| |RS* R RS* X*'XB-r| ,

= B'X'M*XB ,

and M* = In - X'S'_IX". So, (Johnson and Kotz (1970))

2 ® © . . .
r(F) = e MOV2ZT 5 5 (1 2)i(er2)cd) i)
=0 j=0




1 s
-§(m+p)-1-,| [

Bej gmet-l 1 o1 )7
o[ L. 1.
1!J.B[ SmH; Zpu]] ,

F (p+mF)

m: B 1-
® © i j 2+1 2+j 2m+1 1
f(F)= £ = (A72)(6/2)' m P F

i=0 j=0

-%(m+p)—i- j 1 1 -1
x (p+mF) [isjea[ SmH; iP*.i)]

2 ..
) J e (A+0)/2T7 2)=(iwidp e

where B(.;.) is the beta function.

f(F) depends on f(t) and we can regard (11) as a weighted average of
the non-null distribution of F under normality with the form of the variance
mixing distribution determining the weights. Assuming that X2 is observable,
if the linear restrictions relate only to the coefficients of Xl,then (11)
collapses first, to the non-null distribution derived by Giles (1990a) when
we omit XZ, that is, we exclude relevant regressors; and secondly, to the
non-null distribution derived by Giles (1990b) when the design matrix is
properly specified.

When T is an inverted gamma random variable with a pdf given by (5) then

u ~ Mt(o.voz/(v-z)ln] and

Byi-1
4, (F) = F2 [p+mF] -(m+p)/2-i-j )




-i-j-v/2

. i Jj
G = 2,V Z[M(Zoz)] [9/(202)] [v+7t/o-2+e/a'2]

m. p,.
5+ +J -1
x I‘[i+j + v/Z] m?  p? [ r[ z ]i!j!B[ Dei; Bej ]] )

(12) follows from (11) by using the change of variable 12 = 1/Z, then t =

2 ® ~t f-1
(A+6+vc™)Z/2, and by noting that o‘[ e t dt = I(f).

Note that, in general, A and 6 are non-zero even if H0 is true.
Accordingly, the usual procedure of testing the restrictions by using a
critical value from the central F distribution is invalid for all members of

the SSDN family when we include proxy variables 3. The exception is when the

null hypothesis is that Bz=0. We consider this case in the next section.
4. The null distribution of F when HO: Bz = 0.

In this section, we consider the null distribution of F when the linear

restrictions are that Bz = 0; that is R = [0, Ikz] and r=0. The unobservable

variables are insignificant under this null hypothesis.

To simplify the problem under this null we write

gl _g#12

_g#?! ge22

-1
. -1 . -1 ’ My~ ’
[xlxl] + [xlxl] X{X,S zx2 xl[xlxl] ,

= go2ls _ [y PR
S [ lxl] XIXZS

-1 -1
= D ¢ I U ’ ryw
[Xz X2 XZ Xl [XIXI] XIXZ] »
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and so, when R = [0, I, ], Rs* R’ = s*% Rs*Ixwxg = [s'zzx s*2lyx ]

2
ge22 S#22xas _gally - s .
x[xlsl+x232], and as ( ] { 2x S* l]xl 0, A is given by

= 8'x’ [c¥22y s _cu?lys ) [e22) "1 [ca22yus _. g2y
-szxz[s 2x2 s xl] [s ] [s X3’ -s ] X,B,
Further, we can write 6 as
= ’ *
0 = [xlalarxzsz] M [xlsl+x232]
LAYES
BZX M XZB2

as X’lM‘ = [I 0] X*'M* = 0.

k'’
1
Clearly, under the null hypothesis HO: BZ =0, A=08=0 and so,

E‘E%‘-l

-1
£(F) = [B(m/Z;p/Z)] mZ p? F2 (ptmF) (M*PV2

(15)

which is the pdf of a central F random variate with m and p degrees of
freedom. Hence, the test based on F is robust to the departure from
normality that we are considering if the null hypothesis is Ho : 82 = 0.
However, clearly from (11) the power of the test depends on the variance

mixing distribution.

S. The power of the test.

The distribution function of F is

C
F(c) = Pr.(F<c) = OJ f(F)dF,

which after applying the transformation z = mF/(p+mF), is given by

2 i j -1 1 1
=2 T 02 (B/Z)J[i!j!] Ic,[imﬂ; ipq]
=0 j=l




2 L.
x J e-(7\+9)/21: (12)-(”_])‘.(1)“

where c* = mc/(p+mc), and Ic,(.;.) is the incomplete beta function ratio.
(16) depends on f(t), and so to numerically consider its effect on the size
and the power of the F test we assume that T is an inverted gamma random

variable so that u ~ Mt [O,VO'Z/(V-Z)In]. Then

where  D;; = 2t v/ Z[A/(Ztrz)]i[e/(bz)]"[v+A/02+6/o‘2] “isj-v/2
x I‘[i+ j+v/2] [i!j! r(u/2)] 1

(17) follows from (16) in the same way that we obtained (12) from (11). We
numerically evaluate (17) to examine the power performance of the F test when
the regression disturbances are Mt and we have included proxy variables. To

simplify this task we consider the following simple model:
Y= Blll + BZXZ +u, (18)

where 11 is an (nx1) vector consisting of ones, X2 is an (nxl1) vector of the
unobservable variable, and Bl and ﬁz are scalar coefficients. The model with

the proxy variable XE is
= » 1 6 *
Y= Blll + ﬁZXZ +u* (19)
We assume that X2 and X;: are measured as deviations from their sample means.

(This involves no loss of generality.)
5.1 Ho : Bz=0

We consider first HO : BZ=O. From Section 4 we know that under this null F




is a central F random variate with 1 and (n-2) degrees of freedom.

1

- . i - ’ L. 5D ¢4 ’ 2 2 =
Let th = B,(X;X,)"/0 and Fpow = X3 XZ/ [[Xz Xz] (XZXZ]] , so that A/c” =

2 2 2 _ 2 _ 2 . . . .
thrZZ" and 6/¢” = th[l rzz.]. Foow IS the correlation coefficient
between the unobservable variable, Xz, and its proxy variable, Xs. When rzz,

is very close to 1 the proxy variable is said to be "rich", while it is

"poor" when Tooe is close to O. Clearly, if there is perfect correlation

between X3 and X, (r,_,=1) then 9/«:1‘2 = 0 and }‘/o'2 = t2 . This latter case is
2 2 T 22* 32

the one examined by Sutradhar (1988).

We can regard t as a measure of the hypothesis error. Ceteris

BZ

paribus, if Ho is true then tﬁ

= 0 (and for the special case we consider
2

here, 7«/0'2 = 6/02 = 0), while t; increases with Bz, as do also the
2

non-centrality parameters.
We have calculated the power of the test, at the 5% significance level,
when n = 10,20,30; v = §5,10,20,50,100,o (normal); Fooe = 0.1, 0.3, 0.5, 0.7,

0.9, 0.95, and for various values of t 4. Typical results are given in

BZ

Table 1 and illustrated in Figure 1. The results show that the F test is
biased when the proxy variable ‘is véry poor, say when Fooe = 0.1, regardless
of the value of v. For a given value of v, the power of the test decreases
for tﬁ € (0,6] indicating that the test is misleading as it fails to detect

2

the alternative hypothesis over this range of tB; that is, the power is less
2

than the size of the test. Further, for t, e (0,6] the power of the test is

B

2

higher the smaller the value of v. For tB >6 the power increases,
2

dramatically so, for relatively large values of v, while for relatively small
values of v the power increases relatively slowly.

If the proxy variable is a ‘better substitute’ for the unobservable




variable then we find that the power increases with v, regardless of the
value of th. For a ‘moderate’ proxy variable, say Tooe = 0.5, there is a
considerable loss in power as v decreases from o, particularly for relatively
larger values of th (hypothesis error). This carries over for a ‘rich’
proxy variable say, Fooe= 0.95, but the difference between the powers is

relatively smaller. The results for this latter case are similar to those of

Sutradhar (1988, p.179).

5.2 H =0

oA

Our aim in this section is to ascertain whether the results of
Srivastava and Madhuliea (1990) extend to a comparison of power functions.
That is, we address the question of whether the power of the test is higher
if we omit the regressor than if we use a proxy variable. For this purpose
we consider the model given by equation (18) subject to the hypothesis that
Bl=0. Though this particular testing problem is usually not of interest to
econometricians its examination may give some light to the question under
investigation. (See also Ohtani (1985).)

z )

2 and 6/0°%=t? (l-rzz, .

1/2 2
Let t_ =n /o so that A/c =t
8™ P B 8,
Note first that t_, is a measure

1 1
omit the unobservable variable e/a-2=t; .5 8
2 1

When we simply

of the hypothesis error, secondly, that A/6%=0 under H_, and finally, that

o’

), indicates the extent of the

e/o-z, and hence, tB (for a given value of r
2

2
22*
mis-specification error whether from excluding the variable or from using an
(imperfect) proxy variable.

We have calculated the true significance level and the power of the F
test, for this case, when the nominal significance level is 5% 6, for n=10,

20, 30; v=5, 10, 20, 50, 100, o; =0.1, 0.5, 0.95; t, =1, 10; and for

BZ

PZZ'




various values of tB' Typical results are given in Tables 2 and 3, and
1

Figure 2.
When tB =1 (see Table 2), that is, the degree of model mis-specification
2

is relatively small, we find little difference between the sizes of the
procedures for all v, though the size when r22,=0.95 is marginally closer to
0.05. Nevertheless, as the power functions have different test sizes we
cannot make a definite comparison of their powers. Our results suggest that

for (relatively) small t the ordering of powers reflects the ordering of

BZ

the power of the test is similiar
2

the corresponding sizes. So, for small t

B
whether we omit or proxy the unobservable variable, regardless of the value
of v.

This result does not extend to all degrees of mis-specification, as is
evident from the results given in Table 3, and depicted in Figure 2. In this

case t, =10. We now observe a wide variation in. the sizes and powers of the

[

2

test for the different procedures and for different values of v.

Specifically, we find, ceteris paribus, that as t increases the size and

B

2

the power of the test firstly decrease, attain their minima, and then

increase towards unity with the rates of convergence depending on v and Tooe

(ceteris paribus, they are faster for large v, or small Fyom OF if the

unobservable variable is simply omitted).7

So, in particular, if the model is sufficiently mis-specified then the

size of the test is unity; that is, we always reject H. even if it is true.

0

That an increase in mis-specification error causes the size/power to increase

is easily seen from 6?Mt(c)/69 which is given by

B?Mt(c)

36




" where

b.. = 2itd V72 [A_]i T(i+j+v/2) [1_] (e_}j-l [V+ A, g]i-j-v/z-l )
1 20”7 njirwrz) 2® 2 o o

20
From (20) it is clear that with A and v fixed the negative term dominates and
so, ?T'Mt(c) (the power) will (eventually) decrease (increase) as @ increases.

Given the marked differences in the test sizes, it is difficult to
compare the power functions. We can only make a definite conclusion when one
procedure has both a lower test size and a higher power than another

procedure. For the example given here this occurs, for small v, when

ry54=0.95.  Then, the test has a smaller size but higher power (for tB z3)
1
using the "rich" proxy variable than omitting the regressor . This
conclusion does not hold, however, when the proxy variable is poor. Though
not jllustrated in the results presented here, there is a degree of
mis-specification (i.e. tﬁ) for which this feature is evident for all
2

possible values of v.

These results suggest, therefore, that the performance of the test is,
typically, better if we include a "good" proxy variable than if we omit the

unobservable variable. However, regardless of whether we omit or proxy the

unobservable variable, the test is not robust to severe mis-specification.

6. Final remarks.

In this paper we have investigated the power function of the classical F

test for linear restrictions on the coefficients in a linear regression model
with spherically symmetric disturbances when proxy variables are used in the
place of unobservable regressors. We have shown that the test is invalid
unless the null hypothesis is that the coefficients on the wunobservable
variables are zero.

To illustrate the power functions we considered a simple model with




multivariate Student-t regression disturbances. The results showed that if
the proxy variable is a good substitute for the unobservable variable then
the power functions are similar for all v. However, if the proxy is "poor"
then the power for relatively small v is higher than for v=w if the
restrictions are in the neighbourhood of being true. Otherwise, it is
significantly lower for small v than for large v. Further, if the proxy is
"poor”, regardless of value of v, the test fails to detect the alternative
hypothesis for a wide range of the hypothesis error. We also investigated

whether the power is higher if we proxy the unobservable variable than if we

simply omit it. Our results suggest there is little difference if the proxy

is "poor" but that it is preferable to use a proxy when it is "rich". We
find that the test is not robust if the degree of mis-specification is high,
particularly when we omit the variable or we use a "poor” proxy.

The numerical analysis assumes that there is only one unobservable
variable. It remains for future research to determine whether these results
extend to the case of more than one unobservable variable. The extent to
which our results are valid for other forms of non-normality (for instance,

iid non-normal regression disturbances) also needs investigation.
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Footnotes

A discussion of this family of distributions is beyond our scope. See,

for example, Kelker (1970) and Muirhead (1982).

Zellner (1976), Ullah and Zinde-Walsh (1984), Sutradhar and Ali (1986),

Ullah and Phillips (1986), Singh (1988), Sutradhar (1988) and Ohtani

(1990), consider the special case of Mt regression disturbances.

Similarly, the F test statistic is invalid when we merely omit relevant
regressors and the linear restrictions relate only to the coefficients
on Xl' See, for instance, Mittelhammer (1984) and Giles (1990a).

The function is symmetric for positive and negative 32' and so we only

consider the former.

For this latter case we take R=l and r=0 in (7), and let X*=[1]:nxl in

(9) and (10).

Recall that the test is only valid under the null for HO:BZ=O.

Though this feature is not evident from Tables 2 and 3 for r,,,=0.95,

22*

the more detailed numerical evaluations that we have undertaken show

that it does hold for all Toow
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Power of the F test at the 57 significance level for n=20 (c=4.414)
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Figure 1 : Power functions for n=20 and Hy :p,=0
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Table 2

Power of the F test at the nominal 5% significance  level

for n=20 (c=4.414) when HO: Bl=0 and tB =1.0 »
2
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* "-" in the column of T,,s Means that the unobservable variable is omitted.




Table 3

Power of the F test at the nominal 5% significance level

for n=20 (c=4.414) when HO: Bl=0 and tB =10.0 *
2
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nLpLON=O

* "=" in the column of r,,s Mmeans that the unobservable variable is omitted.




Figure 2 : Power functions for n=20 when HO:,é1=O & t,g = 10
2
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