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1. Introduction

Frequently, in applied regression analysis using economic data, we

cannot observe some of the variables suggested by our economic theory. Then,

the researcher must decide whether to omit the unobservable variables or to

replace them by proxies. Within the errors-in-variables framework, and

assuming only one unobservable variable, McCallum (1972) and Wickens (1972)

show that the use of a proxy variable leads to smaller asymptotic bias than

omitting the problem variable. Barnow (1976) shows that this result may not

be generally applicable if there is more than one unobservable variable; we

may be better to delete the unobservable variable. In terms of mean squared

error, this latter finding is supported by the studies of Aigner (1974),

Frost (1979), ,Kinal and Lahiri (1981), Ohtani (1981), and Srivastava and

Madhuliea (1990). In particular, Srivastava and Madhuliea (1990) show that

we should always exclude the unobservable variables, rather than proxy them,

acccording to a mean squared error matrix criterion.

These studies concentrate on the effects on the properties of the

parameter estimates when proxy variables are used. Relatively little

research considers the corresponding implications for hypothesis testing.

Exceptions include Ohtani (1985), Kakimoto and Ohtani (1985), and Ohtani

(1987). This research assumes that the disturbance term follows a normal

distribution. However, there is a wide body of literature which suggests

that some economic data series (in particular, financial data), may be

generated by processes which exhibit more kurtosis than the normal

distribution. [See, for example, Mandelbrot (1963), Fama (1965), Blattberg

and Gonedes (1974), Praetz (1972), Praetz and Wilson (1978), Lau et al.

(1990), Rainbow and Praetz (1986) and Hall et at. (1989).

This has obvious implications for the distribution of the regression

disturbance term, and accordingly there has been increasing interest in the
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sampling properties of estimators and test statistics for non-normally

distributed disturbances. One alternative assumption to normality is the

wider one of spherical symmetry.' Many studies have investigated linear

regression models with spherically symmetric disturbances including Thomas

(1970), Zellner (1976), King (1979), Ullah and Zinde-Walsh (1984, 1985),

Judge et a/. (1985), Sutradhar and All (1986), Ullah and Phillips (1986),

Andrews and Phillips (1987), Zinde-Walsh and Ullah (1987), Singh (1988),

Sutradhar (1988), Giles (1990a,b,c), and Ohtani (1990).2

The extension to this broader family of distributions is easily

motivated by some of the aforementioned empirical studies. Further, the

probability density functions (pdf's) of a sub-class of this family of

distributions can be written as a variance mixture of normal distributions

(we denote this sub-class of families as SSD
N
). This implies that each

individual error term may be normally distributed but that their joint

distribution is non-normal if the variance is itself a random variable. The

multivariate-t (Mt) distribution is one member of this family of

distributions (which includes normality as a further special case), and it

arises if the variance mixing distribution is the inverted gamma

distribution. Then the marginal distributions are univariate Student-t and

they may have thicker tails than under normality.

In particular, assuming a correctly specified regression model Thomas

(1970) derives the non-null distribution of the classical F test for linear

restrictions on the regression coefficients and shows that it depends on the

specifc form of the SSD. King (1979) shows that this test is a UMPI size-a

test for the wider case of elliptically symmetric disturbances. Sutradhar

(1988) (unaware of Thomas (1970) or Ullah and Phillips (1986)) examines the

power of the test when the regression disturbances are Mt, and finds that it

depends on the degrees of freedom of the Mt population. He computes the
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power for various cases and shows that if the restrictions are in the

neighbourhood of being true then the power of the test is at least the same

as that which would result from a normality assumption. However, for

relatively large hypothesis error the power for finite degrees of freedom of

the Mt distribution is lower. Giles (1990a) derives the non-null

distribution of the test statistic when the regression disturbances are SSD
N

and we have omitted relevant regressors from the design matrix. She does

not, however, examine the power function of the test.

In this paper we extend this research by considering the sampling

properties of the F test statistic in a linear regression model with proxy

variables and SSD
N 

disturbances. In the next section we provide the model

framework and we derive, in Section 3, the non-null distribution of the test

statistic. Under the null, this distribution is not, in general, central F.

The exception is if the null hypothesis is that the coefficients on the

unobservable variables are zero. We show this result in Section 4. The

power of the test, however, depends on the variance mixing distribution. To

examine the power function of the test we consider the special case of Mt

regression disturbances and a simple univariate regression model under a

variety of alternative scenarios in Section 5. The paper concludes with some

final remarks in Section 6.

2. The model and the test statistic.

Suppose that the true regression model is

y = X1f31 + X2132 + u, (1)

where y is an (nxl) vector of observations on the dependent variable, X1 is

an (nxki) matrix of observable independent variables, X2 is an (nxk2) matrix

of unobservable independent variables, /31 and 132 are (k1x1) and (k2x1)
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vectors of regression coefficients, and u is an (nxl) vector of error terms.

We assume that X1 and X2 are non-stochastic (or independent of u).

As X
2 

is unobservable, there is an incentive to replace it with a

matrix of proxy variables. Denoting this (nxk2) matrix as X41, we write the

model which includes the proxy variables as

y = X
11 
/3* + X*(3* + U* .

2 2 (2)

Let X = EX1,X21, X* = [X1,X11, = g.' = (f3r so that (1)

and (2) can be written as

and

y = Xf3 + u ,

y = X•f3* + u*

(3)

(4)

As to the error terms, we assume that u has a non-normal distribution of
co

the form f(u) = fN(u)f(r)d-r, where fN(u) is f(u) when u N(0,T2I
n
), and

NT) is supported on [0,03). So E(u) = 0, and E(uus ) = cru2In, where =

VT
2
). This class of non-normal distributions is a subclass of the family of

spherically symmetric disturbances which can be expressed as a variance

mixture of normal distributions. When the disturbances are Mt we have

and

2 2
f(r) = [2/r(v/2 cr)1 (v 212) v/2 T-(v+1)C-14r lar

f(u) = pv/2r((v+n)/2)1 [Trv/2r(v/2)crn]

(5)

_(v+n)/2x u' u/crl (6)
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The mean and covariance matrix of u, for v > 2, are E(u) = 0 and E(uu' )

= (vcr
2
/(v-211n .

We suppose there are m (sk) exact linear restrictions on the regression

coefficients given by,

Ri3 =r

where R is an (mxk) (k=k1+k2) known non-stochastic matrix and r is a known

(mxl) non-stochastic vector. The test statistic for the null hypothesis, H
o
:

1213 = r, is

F =(p/m)(Rb*-r)' [RS*-1R'] -1(Rb*-r)/e*' e*, (7)

where b* = S*-1X*' y, e* = y-X*b*, S* = X*' X*, p = n-k.

3. The non-null distribution of F.

The pdf of F is

03

f(F) = f
N
(F)f(t)dr , (8)

where fN(F) is f(F) when u N(0,T
2
I
n
). Ohtani (1983) shows that fN(F) is

doubly non-central F with m and p degrees of freedom and non-centrality

parameters Alt
2 

and 0/1
-2
, where

= (RS*
-1
X*1

0 = 13' X' M*Xf3 ,

-r) [RS*-1R1
1

and M* = I
n 
- X*S* 1X*' . So, (Johnson and Kotz (1970))

fN(F) 
= e 2T2

E E
1=0 j=0

(9)

(10)
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and

m • 2 . 1 
2+1 2+J 2m+i--1 2

XM p F (p+mF) [i!j!B

CO 03 . : 111+ i 2+i Im+i-1
f(F) = E E (A/2)1(0/2)J m2 p2 F2

1=0 j=0

1 
-

x 
(p+mF)2( [ 

i!j!B ( im+i; lp+ j)]

1

2 2

co

x of e
-(A+0)/2-r

2
,tT2)-( i)

1+- f(r)d-r

Irn+i; 
lp+i) 1 

-1

2 2 ) J •

where B(.;.) is the beta function.

f(F) depends on f(r) and we can regard (11) as a weighted average of

the non-null distribution of F under normality with the form of the variance

mixing distribution determining the weights. Assuming that X2 is observable,

if the linear restrictions relate only to the coefficients of Xi, then (11)

collapses first, to the non-null distribution derived by Giles (1990a) when

we omit X
2' 

that is, we exclude relevant regressors; and secondly, to the

non-null distribution derived by Giles (1990b) when the design matrix is

properly specified.

When t is an inverted gamma random variable with a pdf given by (5) then

u - Mt (0,vcr
2
/(v-2)I

n
) and

In
Oa CO  —+1-1   

fmt(F) = E E C. . r" 
i=0 j=0 

(p+mF) -(m+P)/2-i-j1 1 '-

6
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where
Jrc. = 2i+jvv/2 (A/(20.2))1 (6/(20.2)) [v+vcr2+0/0.2] 

-i-j-v/2

ij

m. 2..

x + 1,12) m p21-J
[ r(

v ) i!.). . ( m
'a !B -+i. 2+•

2 2 -I

(12) follows from (11) by using the change of variable T2 = 1/2, then t =
co

(X+0+vcr
2
)Z/2, and by noting that of e

-t
t
f-1

dt =

Note that, in general, A and 0 are non-zero even if Ho is true.

Accordingly, the usual procedure of testing the restrictions by using a

critical value from the central F distribution is invalid for all members of

the SSDN family when we include proxy variables 3. The exception is when the

null hypothesis is that 132=0. We consider this case in the next section.

4. The null distribution of F when H
O
: /3
2 
= 0.

In this section, we consider the null distribution of F when the linear

restrictions are that 132 = 0; that is R = [0, Ik and r=0. The unobservable
2

variables are insignificant under this null hypothesis.

To simplify the problem under this null we write

where

S." =

s.12

s.11 .12

S*-1 =
s.22

-S*"

+ (X1
1 
X
1 
)Xi X S

*22
XI"

1 2 2 1 1 1

(Xi X
i
) X*S

*22

2

-1 -1
—— [X* ' x - V" X

1 
(X' ) X'

1 
X"'2 2 2  2

7
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and so, when R = [0, I
k2 

], RS*-1R' = S*22, RS*-1X*' X13 = (S*22i
2 
" --S*21X1)

1

x (X1131+X22) , and as (S*22) -1 (S*22)(1" -S*21XI) = 0, A is given by

= 132c(s.22)qi-s.,21x,i),(s.22) (s.22x.,
2 1 r2

(13)

Further, we can write 0 as

0 = (X1f3I+X2/32) ' M* (Xii3I+X22)

= /32(24*X2132 (14)

as VIM* = [Ik , X*'M* = 0.

Clearly, under the null hypothesis Ho: 132 = 0, A = 0 = 0 and so,

-1 rnpm-1
f(F) = (Ii(m12;p/2)) m p- (p+mF)

-(m+p)/2
(15)

which is the pdf of a central F random variate with m and p degrees of

freedom. Hence, the test based on F is robust to the departure from

normality that we are considering if the null hypothesis is Ho : (32 = 0.

However, clearly from (11) the power of the test depends on the variance

mixing distribution.

5. The power of the test.

The distribution function of F is

g(c) = Pr. (F<c) = of f(F)dF,

which after applying the transformation z = mF/(p+mF), is given by

03 CO

g(c) = E E (A/2)1(0/2)i (i! j!) C* im+i• ID )
2 2'i=0 j=0
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x e
-(X+0)/2T I)

2t f(T)dt (16)

where c* = mc/(p+mc), and Ic.(4. ) is the incomplete beta function ratio.

(16) depends on f(t), and so to numerically consider its effect on the size

and the power of the F test we assume that t is an inverted gamma random

variable so that u Mt (0, vcr2/(v-2)In) . Then

Y
Mt(c) =

co co
E E D..
i=0 j=0

Ic. im+i; lp+j)
2 2

where D. = 21+i vv/2 (A/(2a2)) i (0/(20'2)) P+Xicr2+0/0s2ij

x r(i+i+v/2)[iii! r(v/2)]-1.

-i-j-v/2

(17)

(17) follows from (16) in the same way that we obtained (12) from (11). We

numerically evaluate (17) to examine the power performance of the F test when

the regression disturbances are Mt and we have included proxy variables. To

simplify this task we consider the following simple model:

Y 132X2 u ' (18)

where 11 is an (nxl) vector consisting of ones, X2 is an (nxl) vector of the

unobservable variable, and and 132 are scalar coefficients. The model with

the proxy variable XI is

Y = 13*111 1321X2 u* (19)

We assume that X2 and n are measured as deviations from their sample means.
(This involves no loss of generality.)

5.1 H
0 
: =0

2

We consider first H
O 
: g

2
=0. From Section 4 we know that under this null F
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is a central F random variate with 1 and (n-2) degrees of freedom.

1 1

Let t = g 
2 
(X' X

2 
)
i
/cr and r

22 
= X*' X 

2 
i[(X*' X*) (X' X

2 
) 1

2 
so that A/cr

2 
=g

2 
2 * 2 2 2 2 '

2 2 
and e/cr 

2 2 2t
g 
r22*, = 11 - r22.). r22* is the correlation coefficient
2

between the unobservable variable, X2, and its proxy variable, X. When r22.

is very close to 1 the proxy variable is said to be "rich", while it is

"poor" when r22 is close to 0. Clearly, if there is perfect correlation

between XI and X2 (r22.=1) then 0/cr
2 
= 0 and Aim

2 
= t
2 
. This latter case is

g2

the one examined by Sutradhar (1988).

We can regard t
g2 

as a measure of the hypothesis error. Ceteris

paribus, if Ho is true then ti3 = 0 (and for the special case we consider
2

here, A/cr
2 
= OAr

2 
= 0), while t2 increases with (32, as do also theg

2

non-centrality parameters.

We have calculated the power of the test, at the 57. significance level,

when n = 10,20,30; v = 5,10,20,50,100,m (normal); r22. = 0.1, 0.3, 0.5, 0.7,

0.9, 0.95, and for various values of t„ 4. Typ i cal results are given in

Table 1 and illustrated in Figure 1. The results show that the F test is

biased when the proxy variable is very poor, say when r22. = 0.1, regardless

of the value of v. For a given value of v, the power of the test decreases

for t„ e (0,6] indicating that the test is misleading as it fails to detect
f-12

the alternative hypothesis over this range of t, ; that is, the power is less
r-12

than the size of the test. Further, for tg e (0,6] the power of the test is
2

higher the smaller the value of v. For t, >6 the power increases,

dramatically so, for relatively large values of v, while for relatively small

values of v the power increases relatively slowly.

If the proxy variable is a 'better substitute' for the unobservable
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variable then we find that the power increases with v, regardless of the

value of t. For a 'moderate' proxy variable, say r22. = 0.5, there is ai32 

considerable loss in power as v decreases from co, particularly for relatively

larger values of t, (hypothesis error). This carries over for a 'rich'

proxy variable say, r22.= 0.95, but the difference between the powers is

relatively smaller. The results for this latter case are similar to those of

Sutradhar (1988, p.179).

5.2 
HO 
: =0gi

Our aim in this section is to ascertain whether the results of

Srivastava and Madhuliea (1990) extend to a comparison of power functions.

That is, we address the question of whether the power of the test is higher

if we omit the regressor than if we use a proxy variable. For this purpose

we consider the model given by equation (18) subject to the hypothesis that

=0. Though this particular testing problem is usually not of interest to

econometricians its examination may give some light to the question under

investigation. (See also Ohtani (1985).)

2 2Let 
t 

=n
1/2

13
1 
/cr so that A/cr

2
=t
2 

and 
0/cr2 

=t(3 (1-r22*). When we simplygi 
2

omit the unobservable variable 0/cr
2
=t
2 5 

. 
Note first that t is a measure

g 
2
 

gi

of the hypothesis error, secondly, that A/cr2=0 under Ho, and finally, that

0/cr
2
, and hence, t

i32 
(for a given value of r 2 ), indicates the extent of the2.

mis-specification error whether from excluding the variable or from using an

(imperfect) proxy variable.

We have calculated the true significance level and the power of the F

test, for this case, when the nominal significance level is 5% 
6
, for n=10,

20, 30; v=5, 10, 20, 50, 100, oo; r22,0=0.1, 0.5, 0.95; ti3 =1, 10; and for
2
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various values of t . Typical results are given in Tables 2 and 3, and
gi

Figure 2.

When t =1 (see Table 2), that is, the degree of model mis-specification
13,

is relatively small, we find little difference between the sizes of the

procedures for all v, though the size when r22.=0.95 is marginally closer to

0.05. Nevertheless, as the power functions have different test sizes we

cannot make a definite comparison of their powers. Our results suggest that

for (relatively) small t the ordering of powers reflects the ordering of
II2

the corresponding sizes. So, for small t the power of the test is similiar

whether we omit or proxy the unobservable variable, regardless of the value

of v.

This result does not extend to all degrees of mis-specification, as is

evident from the results given in Table 3, and depicted in Figure 2. In this

case to =10. We now observe a wide variation in the sizes and powers of the

test for the different procedures and for different values of v.

Specifically, we find, ceteris paribus, that as to increases the size and
t'a 2

the power of the test firstly decrease, attain their minima, and then

increase towards unity with the rates of convergence depending on v and r22.

(ceteris paribus, they are faster for large v, or small r22., or if the

unobservable variable is simply omitted).7

So, in particular, if the model is sufficiently mis-specified then the

size of the test is unity; that is, we always reject Ho even if It is true.

That an increase in mis-specification error causes the size/power to increase

is easily seen from agmt(c)/30 which is given by

M
c ) 03 a) r, veSY 

t
E E b[ v+ —2

2 cr
1-11+-I-

50 1=0 j=0 Cr
(20)
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where

b A )i   r(i+j+v/2) ( 1 ) ( 0= 2i+i vv/2 + 
)j-1 [ A 0 i-j-v/2-1— 

—
2cr2 i!j!r(v/2) 26-

2 
20.
2 

Cr
2 

Cr2

From (20) it is clear that with A and v fixed the negative term dominates and

so' Mt 
(c) (the power) will (eventually) decrease (increase) as 0 increases.

Given the marked differences in the test sizes, it is difficult to

compare the power functions. We can only make a definite conclusion when one

procedure has both a lower test size and a higher power than another

procedure. For the example given here this occurs, for small v, when

r
22*

 =0.95. Then, the test has a smaller size but higher power (for t a3)

using the "rich" proxy variable than omitting the regressor . This

conclusion does not hold, however, when the proxy variable is poor. Though

not illustrated in the results presented here, there is a degree of

mis-specification (i.e. t
g2
) for which this feature is evident for all

possible values of v.

These results suggest, therefore, that the performance of the test is,

typically, better if we include a "good" proxy variable than if we omit the

unobservable variable. However, regardless of whether we omit or proxy the

unobservable variable, the test is not robust to severe mis-specification.

6. Final remarks.

In this paper we have investigated the power function of the classical F

test for linear restrictions on the coefficients in a linear regression model

with spherically symmetric disturbances when proxy variables are used in the

place of unobservable regressors. We have shown that the test is invalid

unless the null hypothesis is that the coefficients on the unobservable

variables are zero.

To illustrate the power functions we considered a simple model with
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multivariate Student-t regression disturbances. The results showed that if

the proxy variable is a good substitute for the unobservable variable then

the power functions are similar for all v. However, if the proxy is "poor"

then the power for relatively small v is higher than for v=co if the

restrictions are in the neighbourhood of being true. Otherwise, it is

significantly lower for small v than for large v. Further, if the proxy is

"poor", regardless of value of v, the test fails to detect the alternative

hypothesis for a wide range of the hypothesis error. We also investigated

whether the power is higher if we proxy the unobservable variable than if we

simply omit it. Our results suggest there is little difference if the proxy

is "poor" but that it is preferable to use a proxy when it is "rich". We

find that the test is not robust if the degree of mis-specification is high,

particularly when we omit the variable or we use a "poor" proxy.

The numerical analysis assumes that there is only one unobservable

variable. It remains for future research to determine whether these results

extend to the case of more than one unobservable variable. The extent to

which our results are valid for other forms of non-normality (for instance,

iid non-normal regression disturbances) also needs investigation.
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Footnotes

1. A discussion of this family of distributions is beyond our scope. See,

for example, Kelker (1970) and Muirhead (1982).

2. Zellner (1976), Ullah and Zinde-Walsh (1984), Sutradhar and Ali (1986),

Ullah and Phillips (1986), Singh (1988), Sutradhar (1988) and Ohtani

(1990), consider the special case of Mt regression disturbances.

3. Similarly, the F test statistic is invalid when we merely omit relevant

regressors and the linear restrictions relate only to the coefficients

on Xi. See, for instance, Mittelhammer (1984) and Giles (1990a).

4. The function is symmetric for positive and negative f32, and so we only

consider the former.

5. For this latter case we take R=1 and r=0 in (7), and let X*=[1]:nx1 in

(9) and (10).

6. Recall that the test is only valid under the null for H0432=0.

7. Though this feature is not evident from Tables 2 and 3 for r22.=0.95,

the more detailed numerical evaluations that we have undertaken show

that it does hold for all r
22**
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Table 1

Power of the F test at the 57 significance level for n=20 (c=4.414)

22*
tg 5 10 20 50 100

0.1 0 .0500 .0500 .0500 .0500 .0500 .0500
1 .0457 .0457 .0456 .0456 .0456 .0456
2 .0358 .0354 .0352 .0350 .0350 .0349
3 .0254 .0243 .0237 .0233 .0231 .0230
4 .0171 .0153 .0143 .0137 .0135 .0133
5 .0116 .0092 .0080 .0073 .0071 .0069
6 .0137 .0059 .0043 .0044 .0042 .0039
7 .0383 .0119 .0056 .0038 .0269 1.0000
8 .0985 .0499 .0219 .0446 1.0000 1.0000
9 .1907 .1412 .0936 1.0000 1.0000 1.0000
10 .3002 .2845 .2963 1.0000 1.0000 1.0000

0.5 0 .0500 .0500 .0500 .0500 .0500 .0500
1 .0703 .0704 .0705 .0706 .0706 .0706
2 .1209 .1223 .1231 .1236 .1238 .1239
3 .1843 .1884 .1907 .1921 .1926 .1931
4 .2497 .2567 .2607 .2632 .2640 .2649
5 .3158 .3229 .3274 .3306 .3317 .3329
6 .3882 .3914 .3929 .3943 .3984 .3984
7 .4702 .4931 .4891 .5168 .5136 .6602
8 .5814 .5985 .6517 .7300 .9534 1.0000
9 .6660 .7017 .7744 .9797 1.0000 1.0000
10 .7382 .8254 .9064 1.0000 1.0000 1.0000

0.95 0 .0500 .0500 .0500 .0500 .0500 .0500
1 .1457 .1457 .1456 .1456 .1456 .1455
2 .4045 .4158 .4217 .4253 .4265 .4277
3 .6642 .7037 .7271 .7426 .7481 .7538
4 .8268 .8779 .9069 .9255 .9319 .9383
5 .9112 .9544 .9747 .9854 .9885 .9913
6 .9529 .9833 .9940 .9979 .9987 .9993
7 .9739 .9937 .9986 .9998 .9999 1.0000
8 .9848 .9976 .9997 1.0000 1.0000 1.0000
9 .9908 .9990 .9999 1.0000 1.0000 1.0000
10 .9942 .9996 1.0000 1.0000 1.0000 1.0000
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Figure 1 : Power functions for n=20 and 110 :p2 =0
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Table 2

Power of the F test at the nominal 57. significance level

for n=20 (c=4.414) when H
0" 
• g =0 and t0 1.0 *1

r
22* 5 10 20 50 100

0 .0449 .0449 .0449 .0449 .0448 .0448
1 .1454 .1460 .1463 .1464 .1465 .1465
2 .4272 .4408 .4480 .4524 .4540 .4555
3 .6988 .7422 .7679 .7851 .7912 .7974
4 .8549 .9056 .9334 .9506 .9564 .9621
5 .9294 .9684 .9851 .9929 .9950 .9967

0.1 0 .0448 .0447 .0447 .0447 .0447 .0447
1 .1443 .1449 .1452 .1454 .1454 .1455
2 .4246 .4379 .4450 .4494 .4509 .4524
3 .6964 .7394 .7650 .7820 .7881 .7943
4 .8534 .9041 .9320 .9493 .9551 .9609
5 .9286 .9678 .9847 .9926 .9947 .9965

0.5 0 .0460 .0459 .0459 .0459 .0459 .0459
1 .1474 .1479 .1481 .1482 .1483 .1483
2 .4290 .4426 .4499 .4544 .4559 .4574
3 .6991 .7425 .7683 .7856 .7917 .7980
4 .8546 .9053 .9332 .9505 .9563 .9620
5 .9290 .9682 .9850 .9929 .9949 .9967

0.95 0 .0494 .0494 .0494 .0494 .0494 .0494
1 .1563 .1563 .1563 .1563 .1562 .1562
2 .4411 .4556 .4633 .4680 .4696 .4713
3 .7063 .7509 .7775 .7953 .8016 .8082
4 .8577 .9086 .9365 .9537 .9594 .9651
5 .9303 .9692 .9858 .9934 .9954 .9970

"-" in the column of r
22* 

means that the unobservable variable is omitted.
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Table 3

Power of the F test at the nominal 5% significance level

for n=20 (c=4.414) when H
0

.• (3 =0 and t,2 =10.0 *
1

ta2

r22 *
5 10 20 50 100

0 .3046 .2850 .2497 1.0000 1.0000 1.0000
1 .3060 .2921 .3049 1.0000 1.0000 1.0000
2 .3268 .3522 .4438 1.0000 1.0000 1.0000
3 .4179 .5073 .6514 1.0000 1.0000 1.0000
4 .5805 .7009 .9041 1.0000 1.0000 1.0000
5 .7418 .8485 .9635 1.0000 1.0000 1.0000

0.1 0 .2988 .2774 .2400 1.0000 1.0000 1.0000
1 .3002 .2845 .2963 1.0000 1.0000 1.0000
2 .3211 .3459 .4381 1.0000 1.0000 1.0000
3 .4127 .5032 .6488 1.0000 1.0000 1.0000
4 .5753 .6979 .9037 1.0000 1.0000 1.0000
5 .7362 .8457 .9632 1.0000 1.0000 1.0000

0.5 0 .1592 .1071 .0567 .0163 1.0000 1.0000
1 .1622 .1098 .0714 1.0000 1.0000 1.0000
2 .1847 .1631 .1948 1.0000 1.0000 1.0000
3 .3119 .3610 .4703 1.0000 1.0000 1.0000
4 .5368 .6282 .7461 1.0000 1.0000 1.0000
5 .7382 .8254 .9064 1.0000 1.0000 1.0000

0.95 0 .0201 .0186 .0177 .0171 .0169 .0167
1 .0690 .0705 .0714 .0719 .0721 .0723
2 .2803 .2879 .2922 .2949 .2958 .2968
3 .5902 .6189 .6351 .6455 .6491 .6528
4 .8047 .8516 .8779 .8947 .9004 .9062
5 .9090 .9509 .9707 .9813 .9845 .9875

"-" in the column of r22. means that the unobservable variable is omitted.
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