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Abstract

The specification of a regression model is often determined in part by

testing the significance of one or more potential regressors, and then

including them in the model only if they are apparently significant. This

paper considers such a preliminary-test strategy in a two-regressor model when

a single t-test is conducted. The exact sampling distribution of the

preliminary test estimator of a regression coefficient is derived and

illustrated, and some implications for confidence levels are explored.
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1. INTRODUCTION

"Preliminary Test" estimators are encountered frequently in econo-

metrics and other areas of applied statistics. Such estimators arise when

the choice of estimator is effectively randomised by making it dependent upon

the outcome of a prior statistical test. Often, this test relates to the

parameters being estimated and employs the same sample of data, though this

need not be the case. The basic pre-test literature is documented by

Bancroft and Han (1977) and by Judge and Bock (1978, 1983). In the context

of the linear regression model, examples of preliminary test estimators

abound. The particular estimator analysed here is one considered by Bancroft

(1944) in his seminal paper, and relates to the least squares estimation of a

regression coefficient after a t-test of the significance of a second

regressor variable. This is an important problem in the context of model

specification.

Pre-test estimators have been discussed almost exclusively in terms of

point estimation. The literature emphasises the first two moments of such

estimators and their risk under quadratic loss. To analyse the implications

of pre-testing for interval estimation we require the full sampling

distribution of the pre-test estimator in question. This information is also

essential for other purposes, such as comparing estimators on the basis of

concentration probabilities. On this, the literature is relatively silent.

Bennett (1952) and Kitagawa (1967) discuss the distribution of a pre-test

estimator of the mean under Normal sampling, and Bennett (1956) discusses

some aspects of confidence intervals for the mean and variance in a two-

sample Normal problem. The only complete analysis of the exact distribution

of a pre-test estimator, together with a specific discussion of the implica-

tions for confidence interval construction, is that of Giles (1990). That
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study deals with the estimation of the scale parameter in a Normal population

after a pre-test of variance homogeneity.

This paper derives the distribution of the estimator of a regression

coefficient after a preliminary t-test. Section 2 sets out the problem and

the notation used and Section 3 discusses the exact cdf of the estimator.

The features of the cdf and pdf are illustrated in Section 4, and Section 5

deals with some implications for confidence levels associated with interval

estimation. Some concluding remarks appear in Section 6.

2. THE PROBLEM AND NOTATION

Consider the bivariate regression model

y
t 
= /3

1
x
lt 
+ 

132x2 
+ u

t 
; t=1,...,T (2.1)

where the ut's are lid N(0,cr2) and the absence of an intercept reflects the

assumption that the variables are measured as deviations from sample means.

Then p2 = (Ex x2t) 
z[(2) (Ex2 11 is the squared sample correlation between

t 2til

xi and x2.

Consider the hypotheses Ho: /32 = 0 ya. HA: (32 0, with associated

t-statistic t 
= (b21A72)( 

v/v)", where b2.1 is the OLS estimator of /3
2 

in. 
2

(2.1), cr
2 

is the variance of 
b2.1' 

and v denotes degrees of freedom. Let

b
1.2 

be the corresponding OLS estimator of 131, and v 
= E(Yt-b1.2xlt

b
2.1

x
2t
)
2
/Cr
2 2
. Note that v xv, independently of b1.2 and b2.1. Let cri be

2

the variance of b1.2.

Now, if bi is the OLS estimator of (31 in (2.1) when the restriction (32 =
0 is imposed, we shall call b1.2 and bi the "unrestricted" and "restricted"

estimators of (3. The pre-test estimator of interest is1
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It' < c(a)

=

,t31

gl
b1.2 ; It' c(a)

where c(a) is the tabulated t-value for a size-a two-sided test. It is

readily shown that

and

b
1
= b

1.2 
+ p(cr

1
/cr
2
)b

2.1

2
[b 

1.2
1 

N 
[1g1 

[cr
l 

-
ixrlcr21
2

b
2. 1 

-
Pcrl 2 cr2

The correlation between b
1.2 

and b
2.1 

is -p, and

2 2 [ 2

xit)
0'. = / (E (1-p

2
)
]

= 1,2.
t

We wish to determine the cdf of 131. That is, we require Pr. (f31 < r);

—co < T < . Having obtained an expression for this cdf, the corresponding

pdf can be obtained by differentiation.

2. THE DISTRIBUTION FUNCTION

To derive the exact cdf of 13
1' 

note that

Pr. (f3i < = Pr. (131 < T and I t I < c(a))

+ Pr. (131. 2 < and I t I a c(a))

= Pr. (131 < t and I ti < c(a))

+ Pr. (131. 2 < - Pr. (131 . 2 < T and I ti < c(a))

= P1 + P2 - P3, say.

Substituting the expressions for these probabilities derived in the

Appendix, we have:
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Theorem 3.1.

where:

Pr(k < = (I)(ti) + exp(-1322/2e22)

co
. E ((2j)!)-1[032/cr2)24(T*)Ic.(j+1,-)
j=0

(1...p20+1/
u

2,,,
j" c** 7

T
1 
=

1
Wm

1

T* = (T
1
-pg
2
cr
2)/(1-p

2
)
1/2

c* = c2/(v+c2)

c** = c2/[v(1-p2)+c2]

I
x
(a,b) is the incomplete Beta function

(I)(.) is the cumulative standard Normal distribution

T* 2
0 .(r*) = H nzu_p2)-1/2) 2J(27r)-1/2e-z /2dz.

Cr2-co

(3.1)

While a general interpretation of this result is not straightforward,

some special cases provide useful cross-checks. First, if p = 0 then Pr.(fli

< t) = 'r1). This accords with the fact that b
1 
= b

1.2 
= (3

1 
when p = 0, and

the cdf of b
1.2 

is 0(T
1
). Secondly, if c = 0, Pr.(f3

1 
< t) = r1). This

accords with the fact that f3
1 
= b

1.2 
when c = 0. Thirdly, it is readily

shown that if c i03 (C*,C** 4 1), then the cdf of (31 converges to that of b1.

Not surprisingly, the general form of (3.1) is similar to that given by

Bennett (1952, p.38) for the distribution of the pre-test estimator of a

Normal mean after a test of equality of the means of two populations with

common unknown variance.
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4. NUMERICAL EVALUATIONS

To interpret (3.1) more fully, we consider some specific numerical

evaluations. These have been obtained using a FORTRAN program incorporating

routines from Press et al. (1986) for Simpson's rule and the evaluation of

Gamma and incomplete Beta functions. In particular, the latter is obtained

by the method of continued fractions. The infinite series in (3.1) converges

(to six decimal places) in seven or eight terms, and the evaluation of the

cdf is extremely rapid. Differentiating (3.1) numerically by the method of
A

central differences yields the pdf of 131 for any choice of data and para-

meters. All evaluations were undertaken on a VAX 8350 computer.

Figure 1 provides a typical result, based on data such that Ex2it = Ex22t
t t

= 1. So, given the values of the parameters noted in that Figure's heading,

Bias (b1) = 0.5. It is known for this pre-test problem that 0 = Bias(b12) s

Bias(131) Bias(bi), and this is reflected in Figure lb. When Ho is true

(132 = 0), b1 is unbiased, so 131 is also unbiased, as is reflected in Figure

2b. Taking Figure 1 as a benchmark, varying the parameters of the problem

produces anticipated results. (Those not illustrated here are available on

request.) For example, decreasing v or increasing cr2 shifts the cdf and pdf

of fit towards those of b
l. 

Increasing the size of the preliminary t-test (as1

in Figure 3) shifts the cdf and pdf of 131 towards those of b1.2, and

decreasing the absolute value of p leads to a convergence of the results for
A

131' bl 
and b

1.2
.

A final cross-check on the validity of Theorem 3.1 is also enlightening.

We have derived the cdf of 131 in a different way for the special case where

cr
2 

is known. This results in
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where

< t) = 0(T*)[(1)(cu)-0(c)] +

C
u

- clit**(z))0(z)dz (4.1)

CL

Cu = c - g2/cr2

CL = -c - (32
cr
2

= (1132)-1/2,

trl PZ)

0(z) is the Standard Normal density

and the other notation is as above. Our numerical evaluations of (4.1),

based on a separate computer program, accord exactly with those of (3.1) when

V 4 co in the latter, as expected.

5. CONFIDENCE LEVELS AFTER PRE-TESTING

Clearly, as the pdf of /31 differs fror,n that of b1.2 or b1, after pre-

testing the true confidence level (CL) associated with any interval estimate

of 131 generally differs from the nominal CL. Two situations must be

considered.

First, suppose a 957. confidence interval (CI) for 131 is constructed

using b1.2, without pre-testing. As the distribution of b
1.2 

does not

involve 132, the true CL for this interval equals the nominal 957. CL for all

132. However, if the confidence limits associated with this CI are used in

conjunction with f31, the true CL differs from 957., as generally Pr.((31 < t) *

Pr.(b
1.2 

< t). This difference depends on /32, as that parameter enters the

cdf for ft,. This is illustrated in Figure 4a for a = 57. and a = 18.5%, the

latter value corresponding to the optimal c suggested by Brook's (1976) mini-

max risk regret criterion, and being calculated using the algorithm reported

by Giles et al. (1990). Davies' (1980) algorithm is used to compute the

corresponding a value.



••

Within a moderate neighbourhood of H
0' 

the true CL associated with g
1

exceeds the nominal CL of 95% because gi incorporates b1. As we depart from

H
o 

the true CL falls as the restriction associated with b
1 

becomes

increasingly false. Ultimately, the true CL increases to that associated

with b
1.2 

as the power of the t-test approaches unity.

Secondly, suppose a 95% CI for gi is based on br without pre-testing.

The distribution of b1 depends on g2: E(b1) = 1 + (pg2cr1Ar2). So, the true

CL for this CI equals the nominal 95% CL only if Ho is true. Otherwise the

true CL declines monotonically to zero as we depart from Ho, as in Figure 4b.

Using the relationship between the non-central t and non-central x2

distributions, Davies' (1980) algorithm may be used to compute this CL.

If the confidence limits associated with the nominal 95% CI based on b
l

are used after pre-testing, the true CL of the interval is always less than

95%. Even when Ho is true gi incorporates b1.2 to some degree. There is

again a trade-off between increasingly false restrictions and the power of

the pre-test as we depart from Ho. When Ho is very false, f3i 4 b1.2 again,

but the confidence limits used are those based on the distribution of b
l' 

not

b
1.2' 

so the true CL still differs from the nominal 957..

These results accord with those of Giles (1990) for interval estimation

of the scale parameter after pre-testing for variance homogeneity in two

Normal populations. Clearly, Cl's constructed after imposing restrictions

should be interpreted cautiously. Moreover, while pre-testing may affect the

true CL of an interval estimate either favourably or adversely, the only way

to be assured that the chosen CL actually holds is to apply the unrestricted

estimator without any prior testing.
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6. CONCLUSIONS

This paper illustrates some of the effects that a preliminary t-test,

for the significance of one regressor, can have on the sampling distribution

of the least squares estimator of the coefficient of a second regressor. We

have shown how the cdf and pdf of this pre-test estimator differ from those

of its two component parts, and the way in which confidence levels associated

with the corresponding interval estimator may be affected.

The results are data dependent and also depend on all of the unknown

parameters in the problem. Accordingly, it is difficult to offer general

prescriptions to applied researchers. Further, our results are based on a

two-regressor model, and any generalisation to the multiple regression case

is by no means trivial.

Finally, the confidence level trade-offs in Figure 4a suggest the

possibility of an optimal pre-test size in ' this context, somewhat analogous

to Brook's (1976) suggestion in the context of point estimation risk. This

remains a topic for future research.

8



1.2

1.0
m
0
F-

0.8
V

I:5
I 0.6
,-
a
4(u'
co 0.4

L.:
Cl.

0.2

0.0

0.5

0.4

0.1

0.0

-1.6 •

-1.6

FIGURE la: DISTRIBUTION FUNCTIONS
(Degrees of Freedom=20; Alpha=5%; Rho=0.5)

(Beta1 =1.0; Beta2=1.0; Sigma=1.0)

-1.0 -0.4 0.2 0.8 1.4

Tau

2.0 2.6

FIGURE lb: DENSITY FUNCTIONS
(Degrees of Freedom=20; Alpha=5%; Rho=0.5)

(Beta1=1.0; Beta2=1.0; Sigma=1.0)

-1.0 -0.4 0.2 0.8 1.4

Beta 1Hat

9

2.0 2.6

3.2

3.2

Pre-Test

Restricted

Unrestricted

Pre-Test

Restricted

Unrestricted



1.2

1.0

0

- 0.8
V

I • 0.6

a
stu
co 0.4

0.2

0.0

0.5

0.4

0.1

0.0

FIGURE 2a: DISTRIBUTION FUNCTIONS
(Degrees of Freedom=20; Alpha=5%; Rho=0.5)

(Beta1 =1.0; Beta2=0.0; Sigma=1.0)

-1.6 -1.0 -0.4 0.2 0.8 1.4 2.0 2.6 3.2

T a u

-1.6 -1.0

FIGURE 2b: DENSITY FUNCTIONS
(Degrees of Freedom=20; Alpha=5%; Rho=0.5)

(Beta1 =1.0; Beta2=0.0; Sigma=1.0)

-0.4 0.2 0.8 1.4

Beta 1Hat

2.0 2.6 3.2.

Pre-Test

Restricted

Unrestricted

Pre-Test

Restricted

Unrestricted

10



1.2

1.0

0.2

0.0

0.5

0.4

0.1

0.0

FIGURE 3a: DISTRIBUTION FUNCTIONS
(Degrees of Freedom=20; Alpha=20%; Rho=0.5)

(Beta1 =1.0; Beta2=1.0; Sigma=1.0)

-1.6 -1.0 -0.4 0.2 0.8 1.4 2.0 2.6 3.2

Tau

-1.6 -1.0

FIGURE 3b: DENSITY FUNCTIONS
(Degrees of Freedom=20; Alpha=20%; Rho=0.5)

(Beta1 =1.0; Beta2=1.0; Sigma=1.0)

-0.4 0.2 0.8 1.4

Beta 1Hat

2.0 2.6 3.2

Pre-Test

Restricted

Unrestricted

Pre-Test

Restricted

Unrestricted

11



Tr
ue

 C
o
n
f
i
d
e
n
c
e
 L
ev

el
 

T
r
u
e
 C
o
n
f
i
d
e
n
c
e
 L
ev

el
 

0.98

0.96

0.94

0.92

0.90

0.88

1.00

0.80

0.60

0.40

0.20

0.00

FIGURE 4a: CONFIDENCE LEVELS
Pre-Test and Unrestricted Estimators

(Nu=20;Rho=0.5;Beta1=1.0;Sigma=1.0)

0 1

Beta2
* The Nominal Confidence Level is 95%
** c=1.377 is Brook's Optimal Critical Value

Nir

FIGURE 4b: CONFIDENCE LEVELS
Pre-Test and Restricted Estimators

(Nu=20;Rho=0.5;Beta1 =1 .0;Sigma=1 .0)

'1 0 1

Beta2
* The Nominal Confidence Level is 95%
** c=1.377 is Brook's Optimal Critical Value

2

s

Unrestricted

Pre—Test (5%)
(c=2.086)

Pre—Test (18.5%)
(c= 1.377)

Restricted

Pre—Test (5%)
(c=2.086)

Pre—Test (18.5%)
(c= 1.377)

12



APPENDIX: PROOF OF THEOREM 3.1

Consider P :
1

P
1 
= Pr. [b

1
) 

.2 
+ p(cr /cr )b < T and -ccr < b

(v1/2
1 2 2.1 — 2 2.1(v) -

2-f3= k 
 

JJJvv/2-1exp v  1  
b 
1. 2 1 

2 H b2. 1 (32
2 2(1-p2) 

cr
2R

1

+ 2p1  
Cr1

b12-1 
)  

a.
2 

b2. 1-132 ) 11 
db

1.2
db

2.1
dv

21/2var(11 -1where k = 
[271cr1cr2

(1
_,,) 2 

2

and

R = b_lccr. 2 : P:(71/(: /21)b22. <1 < t

1 2 2.1 

V) 

CO2/

0 < v < a) 

Apply the transformation

•

2 -1 / 2 [( b1. 1431 ) b2 1-g2 
Z - (1-p ) 

cr
1 

+ p
T
2 )

t = (b icr M 1/2
2.1 2'

cr_cr_[(i_n2) 1/2

expansion of exp [(t(32/„.2) 
(y1)1/1212,

not'ing vthat •

with associated Jacobian

and that

co 
v 2 Lexp {--v- (1 + 1'2) dv

2 v
0

Taking the infinite series

v+ j+1

=2 2 1
1
4--v+i+11 + —

t2
) 22 j v
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V+j+1
2

t (1+-t- ) 2 dt

-c

vanishes for odd j, we find that

where -r* =

Pi = [n12; r[1-;-)1 -lexp Eg22/2021

. pirr+j)(4/vali(2P]
2

j=0

V+1
T*

c 
2

exp (
12%; 2- 2
---z dz (t2)J-1/2 (14-1 dt

2
.

2 V

-Oa 0

2)1/2.

Applying the duplication formula.

Wr(2j)! = 22i1" (j+) j!,

and the transformation

P = (t2/v)/ 
t
2)

we obtain

T*
co

P
I 
= exp [1322/20.22] E 1

322/2,722) j/ j! f 1

j=0 %TEE-co

▪ ic.(i+1,11
where c* = c2/(v+c2), and

" v+1--+
2 

rii+!
2 2

is an incomplete Beta function.

exp

C*
J1/2 V/2113 )v/2-1dp

0 v

1 2
--Z idz
2
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4

Consider P
2
:

P
2 
= Pr. (b

1.2 
< t) =

where T
1 
=

Consider P
3
:

T

Ii
1

- exp
J v
-co

1 2
dz

2

P
3 
= Pr. [b

12 
< T and -ccr

2 
< b

21 
(v/v)

1/2 
< ard. - .

2

k JfJ vv/2-lexp [ v  1  b1.2 131 

2(1-p2) [1 T1 )R
3

+ 2p ( 
131T1 

.2-131 if b21-f32

) cr
2 

db
1.2

db
2.1

dv

where k is defined above, and

b 
1 . 2 

< T

R
3 
= 1 -ccr

2 
< b

21 
1-v11/2 < ca.z •. or)

0 < v< co

Apply the transformation

Z = (1-p2)- 1 / 2 [ 
b12- 1

J Pgicrd(ri 

b2 
12

cr
2

t = b
2.1

/cr
2
)(v/v)1/2,

(!)] 1/2.whose Jacobian is also cr1cr 
2

Then following steps analogous to those used to evaluate P1, we obtain

p = (1132)1/2ex, [...,2/201 E (1

 

2

)J

.1/2!
3 r '2 2 2

j=0

r

. r
-13-2 

- 
pz  )

2j 
1 expz2) dzie• 122 (1-p

2 
)
1/2) 

p
V2TE-co

where c" = c21 [v(1-p2)+c2] .

2
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