

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

CANTER

9009✓

Department of Economics
UNIVERSITY OF CANTERBURY
CHRISTCHURCH, NEW ZEALAND

GIANNINI FOUNDATION OF
AGRICULTURAL ECONOMICS
LIBRARY

NOV 02 1990
RECDRAWN

THE POWER OF THE DURBIN-WATSON
TEST WHEN THE ERRORS ARE HETEROSCEDASTIC

David E. A. Giles and John P. Small

Discussion Paper

No. 9009

This paper is circulated for discussion and comments. It should not be quoted without the prior approval of the author. It reflects the views of the author who is responsible for the facts and accuracy of the data presented. Responsibility for the application of material to specific cases, however, lies with any user of the paper and no responsibility in such cases will be attributed to the author or to the University of Canterbury.

Department of Economics, University of Canterbury
Christchurch, New Zealand

Discussion Paper No. 9009

September 1990

**THE POWER OF THE DURBIN-WATSON
TEST WHEN THE ERRORS ARE HETEROSCEDASTIC**

**David E. A. Giles
and
John P. Small**

THE POWER OF THE DURBIN-WATSON

TEST WHEN THE ERRORS

ARE HETEROSCEDASTIC*

David E.A. Giles and John P. Small

University of Canterbury

September, 1990

Abstract

We consider the robustness of the Durbin-Watson test to mis-specification via heteroscedastic disturbances. Exact powers are calculated using real and artificial regressors. We find that heteroscedasticity may dramatically alter the power of the test.

Address for Correspondence: Professor David Giles, Department of Economics, University of Canterbury, Christchurch 8001, NEW ZEALAND.

1. INTRODUCTION

This paper reports the results of a preliminary investigation of the sensitivity of the Durbin-Watson (DW) test for serial independence, to a departure from one of the underlying assumptions - the homoscedasticity of the errors. The power properties of both the "bounds" and exact versions of this test under the usual assumptions are well documented (e.g., Koerts and Abrahamse (1971) and references cited by King (1987, pp.30-31)). The robustness of the DW test to various departures from these assumptions has been considered by several authors (e.g., see King (1987, pp.43-45)). Harrison and McCabe (1975) and Epps and Epps (1977) provide very limited evidence that the power of the DW test is quite robust to heteroscedasticity in the disturbances. However, as we show below, this conclusion is not general, and depends on the form of regressor matrix.

Our results relate to the exact version of the DW test, and exact power calculations are reported. Section 2 outlines the problem; the design of the study is discussed in section 3; and the results appear in section 4. Section 5 contains some concluding remarks.

2. THE PROBLEM

Consider the model

$$y = X\beta + u \quad (1)$$

$$u = \rho u_{-1} + \varepsilon; \quad \varepsilon \sim N(0, \sigma^2 I)$$

where X is $(n \times k)$ of full rank and non-stochastic, and $|\rho| < 1$. Then u is $N(0, \Omega)$, where

$$\Omega = \left(\frac{\sigma^2}{1-\rho^2} \right) \begin{bmatrix} 1 & \rho & \rho^2 & \dots & \rho^{n-1} \\ \rho & 1 & \rho & \dots & \rho^{n-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \rho \\ \rho^{n-1} & \dots & \rho & 1 & \end{bmatrix} \quad (2)$$

The DW statistic may be written $d = (u' M A M u) / (u' M u)$, where $M = I - X(X' X)^{-1} X'$ and A is a tri-diagonal ($n \times n$) "differencing matrix" with $(1,1)$ and (n,n) elements as unity, 2 elsewhere on the leading diagonal, and -1 for the leading off-diagonal elements. It is well known (e.g., Koerts and Abrahamse (1971)) that $\Pr(d \leq d^*) = \Pr\left(\sum_{j=1}^n \lambda_j z_j^2 \leq 0\right)$, where the z_j^2 's are each independent $\chi^2_{(1)}$'s and the λ_j 's are the eigenvalues of $M(A - d^{-1}I)M\Omega$.

Such probabilities are readily calculated by Imhof's (1961) procedure or Davies' (1980) algorithm, for example. For a positive one-sided alternative the exact critical value for the DW test of size α , and a particular X , is that value, c , such that $\Pr(d \leq c | \Omega = I) = \alpha$. The exact power of the (exact¹) DW test may be computed for any particular ρ and X as $\Pr(d \leq c | \Omega(\rho))$.

If the disturbances are heteroscedastic then Ω is more general than in (2), with non-constant diagonal elements. The details depend on the form of heteroscedasticity. Given this form, exact size and power calculations proceed as above.

3. THE STUDY

As the distribution of d depends on X it is important to consider different regressor characteristics.² In particular, the form of X determines whether the power of the DW tends to unity or zero³ as $\rho \rightarrow 1$. We consider seven data sets,⁴ all of which include an intercept: X_1 comprises the annual "spirits" income and price data of Durbin and Watson (1951); X_2 comprises the quarterly Australian Consumers Price Index and its lag; X_3 , X_4 and X_5 each comprise a linear trend and, respectively, a Normal (2.4,1), lognormal (generated from $N(3,1)$), and uniform (0,20) variable; X_6 and X_7 comprise the eigenvectors corresponding respectively to the two largest and two (non-zero) smallest eigenvalues of A .

Sample sizes of 69 and 40 are considered.⁵ The exact DW test is applied at the 5% level against a positive one-sided alternative. The SHAZAM package (White et al. (1990)), incorporating Imhof's routine, is used for all calculations. The results were checked with Davies' algorithm and our SHAZAM code was verified against the results of Krämer and Sonnberger (1986, p.23).

Heteroscedasticity of the form $\text{var}(u_t) \propto x_t^\gamma$ is considered, where x_t is the t 'th observation on one regressor. The leading diagonal of Ω is modified to comprise scaled values of x_t , the scaling being chosen to control⁶ the value of $h = \max(\text{var}(u_t)) / \min(\text{var}(u_t))$.

4. RESULTS

In all cases heteroscedasticity produces a slight increase in the size of the test, which never exceeded 5.5%. No size corrections are made for the power calculations - we consider the power of the DW test when it is unwittingly applied under model mis-specification. In practice no such correction would be possible.⁷

With data X_6 and X_7 the power of the DW test increases⁸ with h (Figure 1). Using a single regressor equal to the eigenvector corresponding to the smallest non-zero eigenvalue of A , Epps and Epps (1977) found slight decreases in power with increased heteroscedasticity (of a different form). These are special choices of regressors - the power of the DW test is maximized when the column space of X is spanned by the eigenvectors of A (e.g., Krämer and Sonnberger (1986)).

With the other artificial data, power falls with increasing h . This fall is modest for X_3 and X_4 (e.g., Figure 2), but more pronounced for X_5 . For the latter, with $n = 40$ the power of the DW test begins to fall ($h \neq 1$) as ρ approaches unity. In Figures 1 and 2, all powers are unity for $\rho > 0.60, 0.70$ respectively.

These results might suggest, as have earlier studies, that the power of the DW test is reasonably robust to moderate heteroscedascity. This is dispelled by the results based on the real data, X_1 and X_2 . These power functions have orthodox shape when $h = 1$, but the effect of even minor heteroscedasticity is dramatic (Figures 3,4). Power falls rapidly for $\rho > 0.8$ if $h \neq 1$. Even modest heteroscedasticty ($h=1.5$) results in maximum power under 20% (7%) with $X_1(X_2)$ and $n \leq 69$.

5. CONCLUSIONS

The known sensitivity of the DW test to the form of regressors prevails when the model is mis-specified, highlighting the need to consider real as well as artificial data in such studies. When the errors are heteroscedastic the test's power can differ dramatically from what might be presumed - it may be slightly higher or substantially lower than under homoscedasticity. Even with data where the power approaches unity as $\rho \rightarrow 1$ with homoscedastic errors, the power may fall sharply for large ρ under heteroscedasticity.

Work in progress considers other forms of heteroscedasticity and other tests for serial independence. The role of the regressor matrix is being examined further, and recent work by Bartels (1990) may be fruitful here.

FIGURE 1 : EXACT POWERS
 X6 : Min. Eigenvectors of A; n=69
 (Error Variance Determined by Eigenvector)

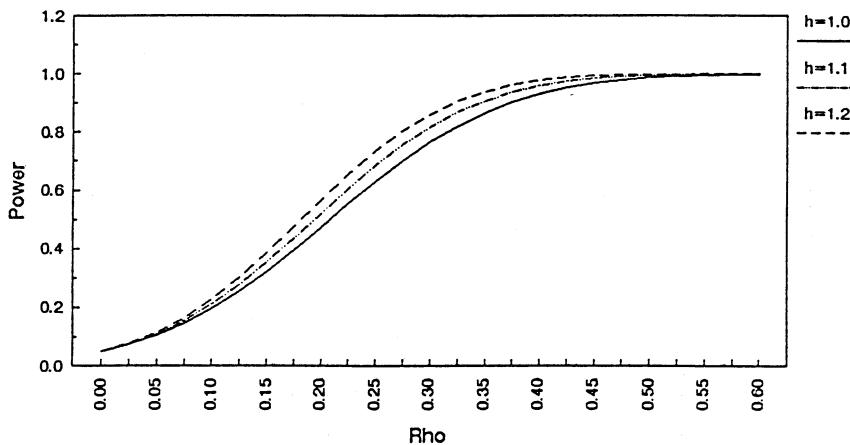


FIGURE 2 : EXACT POWERS
 X3 : Normal and Trended Data; n=69
 (Error Variance Determined by Normal)

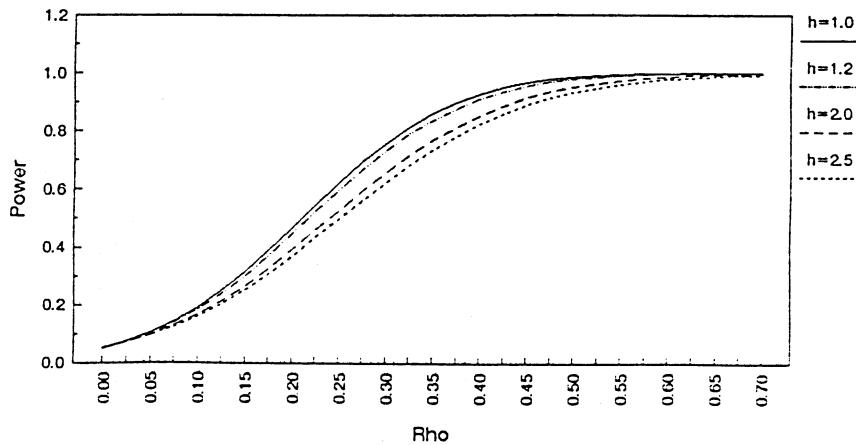


FIGURE 3 : EXACT POWERS

X1 : Spirits Data; n=69

(Error Variance Determined by Income)

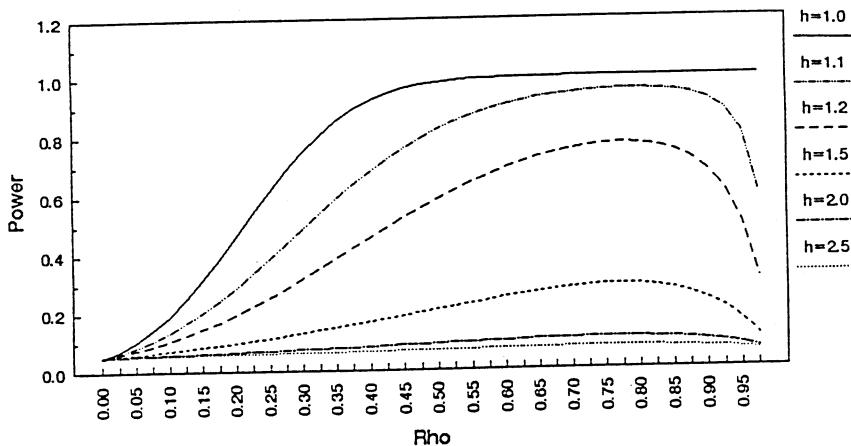
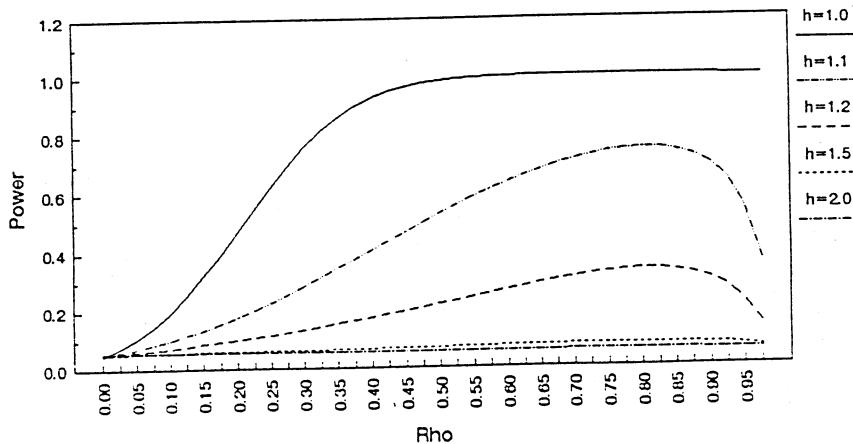



FIGURE 4 : EXACT POWERS

X2 : Australian CPI Data; n=69

(Error Variance Determined by CPI)

REFERENCES

Bartels, R., 1990, On the power of the Durbin-Watson test, Discussion Paper #90-03, Department of Econometrics, University of Sydney.

Davies, R.B., 1980, The distribution of a linear combination of χ^2 random variables: algorithm AS 155, Applied Statistics 29, 323-333.

Durbin J. and G.S. Watson, 1951, Testing for serial correlation in least squares regression II, Biometrika 38, 159-178.

Epps, T.W. and M.L. Epps, 1977, The robustness of some standard tests for autocorrelation and heteroskedasticity when both problems are present, Econometrica 45, 745-753.

Evans, M.A. 1989, Robustness and size of tests of autocorrelation and heteroscedasticity to non-normality, Discussion Paper #10/89, Department of Econometrics, Monash University.

Harrison, M.J. and B.P.M. McCabe, 1975, Autocorrelation with heteroscedasticity: a note on the robustness of the Durbin-Watson, Geary and Henshaw tests, Biometrika 62, 214-215.

Imhof, P.J. 1961, Computing the distribution of quadratic forms in normal random variables, Biometrika 48, 419-426.

King, M.L. 1987, Testing for autocorrelation in linear regression models: a survey, in M.L. King and D.E.A. Giles (eds.), Specification analysis in the linear model (Routledge and Kegan Paul, London).

Koerts, J. and A.P.J. Abrahamse, 1971, On the theory and application of the general linear model (Rotterdam University Press, Rotterdam).

Krämer, W. and H. Sonnberger, 1986, The linear regression model under test (Physica-Verlag, Heidelberg).

Tillman, J.A., 1975, The power of the Durbin-Watson test, Econometrica 43, 959-974.

White, K.J., S.D. Wong, D. Whistler and S.A. Haun, 1990, SHAZAM user's reference manual: version 6.2 (McGraw-Hill, New York).

FOOTNOTES

- * We are grateful to Merran Evans for supplying data used in this study, and to Robert Davies for providing FORTRAN code for his AS 155 algorithm.
- 1. The same approach may be used with DW bounds test, if this is of interest.
- 2. Unfortunately, not all such studies have been careful on this point.
- 3. For example, see Tillman (1975), and Krämer and Sonnberger (1986).
- 4. These data are variations of those used by Evans (1989) and are representative of those used in numerous other such studies.
- 5. The discussion in the next section is based on the full study, though only representative results are reported in detail.
- 6. A similar approach is adopted by Epps and Epps (1977). Other measures of the degree of heteroscedasticity, such as the coefficient of variation of the diagonal elements of Ω , are possible.
- 7. As may be seen from Figures 1 - 4, this would not significantly affect our results.
- 8. In all cases studied the power of the DW test was less when $n = 40$ than when $n = 69$.

LIST OF DISCUSSION PAPERS*

No. 8501 Perfectly Discriminatory Policies in International Trade, by Richard Manning and Koon-Lam Shea.

No. 8502 Perfectly Discriminatory Policy Towards International Capital Movements in a Dynamic World, by Richard Manning and Koon-Lam Shea.

No. 8503 A Regional Consumer Demand Model for New Zealand, by David E. A. Giles and Peter Hampton.

No. 8504 Optimal Human and Physical Capital Accumulation in a Fixed-Coefficients Economy, by R. Manning.

No. 8601 Estimating the Error Variance in Regression After a Preliminary Test of Restrictions on the Coefficients, by David E. A. Giles, Judith A. Mikolajczyk and T. Dudley Wallace.

No. 8602 Search While Consuming, by Richard Manning.

No. 8603 Implementing Computable General Equilibrium Models: Data Preparation, Calibration, and Replication, by K. R. Henry, R. Manning, E. McCann and A. E. Woodfield.

No. 8604 Credit Rationing: A Further Remark, by John G. Riley.

No. 8605 Preliminary-Test Estimation in Mis-Specified Regressions, by David E. A. Giles.

No. 8606 The Positive-Part Stein-Rule Estimator and Tests of Linear Hypotheses, by Aman Ullah and David E. A. Giles.

No. 8607 Production Functions that are Consistent with an Arbitrary Production-Possibility Frontier, by Richard Manning.

No. 8608 Preliminary-Test Estimation of the Error Variance in Linear Regression, by Judith A. Clarke, David E. A. Giles and T. Dudley Wallace.

No. 8609 Dual Dynamic Programming for Linear Production/Inventory Systems, by E. Grant Read and John A. George.

No. 8610 Ownership Concentration and the Efficiency of Monopoly, by R. Manning.

No. 8701 Stochastic Simulation of the Reserve Bank's Model of the New Zealand Economy, by J. N. Lye.

No. 8702 Urban Expenditure Patterns in New Zealand, by Peter Hampton and David E. A. Giles.

No. 8703 Preliminary-Test Estimation of Mis-Specified Regression Models, by David E. A. Giles.

No. 8704 Instrumental Variables Regression Without an Intercept, by David E. A. Giles and Robin W. Harrison.

No. 8705 Household Expenditure in Sri Lanka: An Engel Curve Analysis, by Mallika Dissanayake and David E. A. Giles.

No. 8706 Preliminary-Test Estimation of the Standard Error of Estimate in Linear Regression, by Judith A. Clarke.

No. 8707 Invariance Results for FIML Estimation of an Integrated Model of Expenditure and Portfolio Behaviour, by P. Dorian Owen.

No. 8708 Social Cost and Benefit as a Basis for Industry Regulation with Special Reference to the Tobacco Industry, by Alan E. Woodfield.

No. 8709 The Estimation of Allocation Models With Autocorrelated Disturbances, by David E. A. Giles.

No. 8710 Aggregate Demand Curves in General-Equilibrium Macroeconomic Models: Comparisons with Partial-Equilibrium Microeconomic Demand Curves, by P. Dorian Owen.

No. 8711 Alternative Aggregate Demand Functions in Macro-economics: A Comment, by P. Dorian Owen.

No. 8712 Evaluation of the Two-Stage Least Squares Distribution Function by Imhof's Procedure by P. Cribbitt, J. N. Lye and A. Ullah.

No. 8713 The Size of the Underground Economy: Problems and Evidence, by Michael Carter.

No. 8714 A Computable General Equilibrium Model of a Fisherine Method to Close the Foreign Sector, by Ewen McCann and Keith McLaren.

No. 8715 Preliminary-Test Estimation of the Scale Parameter in a Mis-Specified Regression Model, by David E. A. Giles and Judith A. Clarke.

No. 8716 A Simple Graphical Proof of Arrow's Impossibility Theorem, by John Fountain.

No. 8717 Rational Choice and Implementation of Social Decision Functions, by Manimay Sen.

No. 8718 Divisia Monetary Aggregates for New Zealand, by Ewen McCann and David E. A. Giles.

No. 8719 Telecommunications in New Zealand: The Case for Reform, by John Fountain.

(Continued on back cover)

No. 8801 Workers' Compensation Rates and the Demand for Apprentices and Non-Apprentices in Victoria, by Pasquale M. Sgro and David E. A. Giles.

No. 8802 The Adventures of Sherlock Holmes, the 48% Solution, by Michael Carter.

No. 8803 The Exact Distribution of a Simple Pre-Test Estimator, by David E. A. Giles.

No. 8804 Pre-testing for Linear Restrictions in a Regression Model With Student-t Errors, by Judith A. Clarke.

No. 8805 Divisia Monetary Aggregates and the Real User Cost of Money, by Ewen McCann and David Giles.

No. 8806 The Management of New Zealand's Lobster Fishery, by Alan Woodfield and Pim Borren.

No. 8807 Poverty Measurement: A Generalization of Sen's Result, by Prasanta K. Pattanaik and Manimay Sen.

No. 8808 A Note on Sen's Normalization Axiom for a Poverty Measure, by Prasanta K. Pattanaik and Manimay Sen.

No. 8809 Budget Deficits and Asset Sales, by Ewen McCann.

No. 8810 Unorganized Money Markets and 'Unproductive' Assets in the New Structuralist Critique of Financial Liberalization, by P. Dorian Owen and Otton Solis-Fallas.

No. 8901 Testing for Financial Buffer Stocks in Sectoral Portfolio Models, by P. Dorian Owen.

No. 8902 Provisional Data and Unbiased Prediction of Economic Time Series by Karen Browning and David Giles.

No. 8903 Coefficient Sign Changes When Restricting Regression Models Under Instrumental Variables Estimation, by David E. A. Giles.

No. 8904 Economies of Scale in the New Zealand Electricity Distribution Industry, by David E. A. Giles and Nicolas S. Wyatt.

No. 8905 Some Recent Developments in Econometrics: Lessons for Applied Economists, by David E. A. Giles.

No. 8906 Asymptotic Properties of the Ordinary Least Squares Estimator in Simultaneous Equations Models, by V. K. Srivastava and D. E. A. Giles.

No. 8907 Unbiased Estimation of the Mean Squared Error of the Feasible Generalised Ridge Regression Estimator, by V. K. Srivastava and D. E. A. Giles.

No. 8908 An Unbiased Estimator of the Covariance Matrix of the Mixed Regression Estimator, by D. E. A. Giles and V. K. Srivastava.

No. 8909 Pre-testing for Linear Restrictions in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.

No. 9001 The Durbin-Watson Test for Autocorrelation in Nonlinear Models, by Kenneth J. White.

No. 9002 Determinants of Aggregate Demand for Cigarettes in New Zealand, by Robin Harrison and Jane Chetwyd.

No. 9003 Unemployment Duration and the Measurement of Unemployment, by Manimay Sengupta.

No. 9004 Estimation of the Error Variance After a Preliminary-Test of Homogeneity in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.

No. 9005 An Expository Note on the Composite Commodity Theorem, by Michael Carter.

No. 9006 The Optimal Size of a Preliminary Test of Linear Restrictions in a Mis-specified Regression Model, by David E. A. Giles, Offer Lieberman, and Judith A. Giles.

No. 9007 Inflation, Unemployment and Macroeconomic Policy in New Zealand: A Public Choice Analysis, by David J. Smyth and Alan E. Woodfield.

No. 9008 Inflation — Unemployment Choices in New Zealand and the Median Voter Theorem, by David J. Smyth and Alan E. Woodfield.

No. 9009 The Power of the Durbin-Watson Test when the Errors are Heteroscedastic, by David E. A. Giles and John P. Small

* Copies of these Discussion Papers may be obtained for \$4 (including postage, price changes occasionally) each by writing to the Secretary, Department of Economics, University of Canterbury, Christchurch, New Zealand.