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Abstract
We* consider the robustness of the Durbin-Watson test to mis-specification
via heteroscedastic disturbances. Exact powers are calculated using real and
artificial regressors. We find that heteroscedasticity may dramatically alter

the power of the test.
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INTRODUCTION

This paper reports the results of a preliminary investigation of the
sensitivity of the Durbin-Watson (DW) test for serial independence, to a
departure from one of the underlying assumptions - the homoscedasticity of the
errors. The power properties of both the "bounds" and exact versions of this
test under the usual assumptions are well documented (e.g., Koerts and
Abrahamse (1971) and references cited by King (1987, pp.30-31)). The
robustness of the DW test to various departures from these assumptions has
been considered by several authors (e.g., see King (1987, pp.43-45)).
Harrison and McCabe (1975) and Epps and Epps (1977) provide very limited
evidence that the power of the DW test is quite robust to heteroscedasticity
in the disturbances. However, as we show below, this conclusion is not
general, and depends on the form of regressor matrix.

Our results relate to the exact version of the DW test, and exact power
calculations are reported. Section 2 outlines the problem; the design of the
study is discussed in section 3; and the results appear in section 4. Section

S contains some concluding remarks.

THE PROBLEM
Consider the model

y

u H € ~ N(O.oZI)

where X is (nxk) of full rank and non-stochastic, and lpl < 1. Then u is

N(0,Q), where




The DW statistic may be written.d = (u’ MAMu)/(u’Mu), where M =1 - x(x %) xe
and A is a tri-diagonal (nxn) "differencing matrix" with (1,1) and (n,n)
elements as unity, 2 elsewhere on the leading diagonal, and -1 for fhe leading
off-diagonal elements. It is well known (e.g., Koerts and Abrahamse (1971))

» n 2 2
that Pr.(d=d ) = Pr.[z AZT s 0], where the Z?'s are each independent X(yy
)

=1

-
and the Aj’s are the eigenvalues of M(A-d I)MQ.

Such probabilities are readily calculated by Imhof’s (1961) procedure or
Davies’ (1980) algorithm, for example. For a po;itive one-sided alternative
the exact critical value for the DW test of size «, and a particular X, is
that value, ¢, such that Pr.(d s clQ = 1) = «a. The exact power of the
(exactl) DW test may be computed for any particular p and X as
Pr.(d=c|Q(p)).

If the disturbances ére heteroscedastic then Q is more general than in
(2), with non-constant diagonal elements. The details depend on the form of
heteroscedasticity. Given this form, exact size and power calculations

proceed as above.

3. THE STUDY

As the distribution of d depends on X it is important to consider
different regressor characteristics.2 In particular, the form of X determines
whether the power of the DW tends to unity or zt=:ro3 as p » 1, We consider
seven data set.s',4 all of which include an intercept: X1 comprises the annual
"spirits" income and price data of Durbin and Watson (1951); X2 comprises the
quarterly Australian Consumers Price Index and its lag; X3. X4 and X5 each
comprise a linear trend and, respectively, a Normal (2.4,1), lognormal
(generated from N(3,1)), and uniform (0,20) variable; X6 and X7 comprise the
eigenvectors corresponding respectively to the two largest and two (non-zero)

smallest eigenvalues of A.




Sample sizes of 69 and 40 are consit:!ex'ed.s The exact DW test is applied
at the 57 level against a positive one-sided alternative. The SHAZAM package
(White et al. (1990)), incorporating Imhof’s routine, is wused for all
calculations. The results were checked with Davies’ algorithm and our SHAZAM
code was verified against the results of Krimer and Sonnberger (1986, p.23).

Heteroscedasticity of the form var(ut) -3 xz is. considered, where X, is
the t’th observation on one regressor. The leading diagonal of Q is modified
to comprise scaled values of X, the scaling being chosen to contx-ol6 the

value of h = max.(var.(ut))/min.(var.(ut)).

4. RESULTS

In all cases heteroscedasticity produces a slight increase in the size of
the test, which never exceeded 5.5%. No size corrections are made for the
power calculations - we consider the power of the DW test when it is
unwittingly applied under model mis-specification. In practice no such

correction would be possible.7

With data X6 and )9 the power of the DW test increase58 with h (Figure

1). Using a single regressor equal to the eigenvector corresponding to the
smallest non-zero eigenvalue of A, Epps and Epps (1977) found slight decreases
in power with increased heterocedasticity (of a different form). These are
special choices of regressors - the power of the DW test is maximized when the
column space of X is spanned by the eigenvectors of A (e.g., Krdmer and
Sonnberger (1986)).

With the other artificial data, power falls with increasing h. This fall
is modest for X:3 and X4 (e.g., Figure 2), but more pronounced for Xs. For
the latter, with n = 40 the power of the DW test begins to fall (h = 1) as p
approaches unity. In Figures 1 and 2, all powers are unity for p > 0.60, 0.70

respectively.




These results might suggest, as have earlier studies, that the power of
the DW test is reasonably robust to moderate heteroscedascity. This is
dispelled by the results based on the real data, X1 and Xz. These power
functions have orthodox shape when h = 1, but the effect of even minor
heteroscedasticity is dramatic (Figures 3,4). Power falls rapidly for p >

0.8 if h # 1. Even modest heteroscedasticty (h=1.5) results in maximum power

under 207 (77) with xl(XZ) and n s 69.

5. CONCLUSIONS

The known sensitivity of the DW test to the form of regressors prevails
when the model is mis-specified, highlighting the need to consider real as
well as artificial data in such studies. When the errors are heteroscedastic
the test’s power can differ dramatically from what might be presumed - it may
be slightly higher or substantially lower than under homoscedasticity.  Even
with data where the power approaches unity as p - 1 with homoscedastic errors,
the power may fall sharply for large p under heteroscedasticity.

Work in progress considers other forms of heteroscedasticity and other
tests for serial indebendence. The role of the regressor matrix is being

examined further, and recent work by Bartels (1990) may be fruitful here.




FIGURE 1 : EXACT POWERS

X6 : Min. Eigenvectors of A; n=69
(Error Variance Determined by Eigenvector)

FIGURE 2 : EXACT POWERS

X3 : Normal and Trended Data; n=69
(Error Variance Determined by Normal)
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FIGURE 3

=69

X1 : Spirits Data; n
(Error Variance Determined by Income)
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FIGURE 4

RE Australian CPI Data; n=69
(Error Variance Determined by CPI)
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FOOTNOTES

We are grateful to Merran Evans for supplying data used in this study,
and to Robert Davies for providing FORTRAN code for his AS 155 algorithm.
The same approach may be used with DW bounds test, if this is of

interest.

Unfortunately, not all such studies have been careful on this point.

For example, see Tillman (1975), and Krimer and Sonnberger (1986).

These data are variations of those used by Evans (1989) and are
representative of those used in numerous other such studies.

The discussion in the next section is based on the full study, though
only representative results are reported in detail.

A similar approach is adopted by Epps and Epps (1977). Other measures of
the degree of heteroscedasticity, such as the coefficient of
variation of the diagonal elements of Q, are possible.

As may be seen from Figures 1 - 4, this would not significantly affect
our results.

In all cases studied the power of the DW test was less when n = 40 than

when n = 69.










