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Abstract

When the choice of estimator for the coefficients in a linear regression
model is determined by the outcome of a prior test of the validity of
restrictions on the model, Brook (1976) has shown that a mini-max (risk)
regret criterion leads to the simple rule that the optimal critical value for
the preliminary test is approximately two in value, regardless of the degrees
of freedom. We show that this result no longer holds in the (likely) event
that relevant regressors are excluded from the model at the outset.
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1. INTRODUCTION

Applied statisticians and econometricians routinely adopt a "preliminary -
_ test" estimator (PTE) when using the linear muitiple regression model. That
is, they search for the preferred specification of the model by testing exact
(and often "zero") linear restrictions on the coefficients, and then apply
Ordinary Least Squares (OLS) or Restricted Least Squares (RLS) estimation
according to the outcome of the test. (For example, see Bancroft (1944),
Brook (1976), Judge & Bock (1978)). Of course, other pre-test regression
" strategies are also common, such as those associated with testing for
homogeneity of the error variance (e.g. Toyoda and Wallace (1975), Bancroft
and Han (1983)) and testing for serial independence of the errors (e.g., King
and Giles (1984)).

The finite sample risks (say, under quadratic loss) of PTEs are
complicated functions of all aspects of the problem, including the chosen size
(and hence critical value(s)) for the two "component"” estimators, and are
discontinuous functions of the sample data. Accordingly, they are generally
inadmissible (e.g., Cohen (1965)). However, PTEs are routinely used, often
without an appreciation that their sampling properties differ crucially from
those of the component estimators, and so they warrant close scrutiny.

Given that the risk of a PTE depends, in part, on the pre-test size,
various criteria have been suggested for choosing the "optimal" size. In the
case of the PTE arising from the testing of exact linear restrictions on the
coefficients of the linear model, two such optimality criteria are those

suggested by Brook (1976) and Toyoda and Wallace (1976).

A recent development in the literature on regression PTEs has been an

investigation of the extent to which their properties are affected if the
model is mis-specified in various ways (e.g., Ohtani (1983), Mittelhammer
(1984), Giles (1986), Giles and Clarke (1989), Giles (1990)). To date, there

has been no discussion of the effects that model mis-specification may have on




the "optimal" choice of pre-test size. This paper addresses this question by
extending Brook’s analysis to the important case where relevant regressors are

omitted from the model.

2. THE MODEL AND DEFINITIONS

Suppose that the data-generating process is

Yy =XB + Zy + u; u -~ N(O,a'zl) (2.1)

where X and Z are (nxk) and (nxg) respectively, each of full rank and

non-stochastic. However, the model fitted to the data is

where € = Zy + u = £ + u, say. Within the framework of the (mis-specified)
model (2.2), we test m independent linear restrictions:

HO:RB=r yvs HA:Rﬂvtr,
where R is (mxk), of rank m; r is (mxl); and both are non-stochastic. Being
unaware that the model is mis-specified, we use the usual "F-statistic",

f = (r-RB) (Rs™'R* ) (r-RB)/msZ,

where S = X’'X; B = S-lX’y is the OLS estimator of B; s2 = y'(I-XS-IX‘ )y/v; and

v = (n-k).

It is readily shown (e.g. Mittelhammer (1984)) that f is F(m,v;hn,kd):

that is, doubly non-central F with m and v degrees of freedom, and.

non-centrality parameters




(s x’ £-8) (Rs" IR ) MRS I’ £-8)/20%

g (1-xs™'x")g/20% ,

where 8 = RB-r.
The PTE of B is based on E; the RLS estimator of B, B*

7R’ (RsT'R’) " RE-r); and the use of f to test Hy:

if f> cla)
B* if f = cla)
where c(a) is the size-a critical value for the central F statistic with m
and v degrees of freedom.

The sampling properties of 5, B* and B will be compared on the basis of

(relative) predictive risk under quadratic loss. For any estimator, b, of B,

this is defined as p[Xb,E(y)] = E[[Xb-E(y)]' (Xb-E(y)]] /crz, which is equivalent

to the risk of b itself with orthornormal regressors. So,

p[xié,s(y)] [k+27\ d] (2.3)

P [XB“‘,E( y)] [k+27\ d+27tn-m] (2.4)

p[XB,E(y)] - [ma 447 -mIP,-22 P 4] . 2.5)

_ " cm
where P, = Pr. [F(mﬂ,v;?\n,ld) = m+i

]. See Mittelhammer (1984) and Giles
(1990).

If £ = 0, then A, = O, the fitted model is correctly specified, and (2.3)

d
- (2.5) collapse to the corresponding expressions given by Brook (1976). Note

that p[Xﬁ.E(y)] = p[XB",E(y)] when An = m/2, regardless of the value of A e

Also, from (2.3)-(2.5), it is readily shown for any A d (i.e. degree of model

mis-specification), that p[Xé,E(y)] = p[XE,E(y)) for some 7\“ € (m/4,m/2); and




that p Xé,E(y)] has a unique mode at a value of An greater than that for which

p[Xé,E(y)] = p[XB',E(y)]. This is illustrated in Figure 1 for a specific

degree of mis-specification. As Mittelhammer (1984) notes, the OLS, RLS and
PTE risks are unbounded as A 4 (for a given ).n). Further, for fixed ¢ and

An' p(Xé,E(y)] > p[XB",E(y)] as Ad > o,

3. OPTIMAL SIZE OF THE TEST
Clearly, from (2.5), the predictive pre-test risk depends on ¢ = cla).
For any particular value of A 4 the predictive risks, as functions of An’ have
the same essential characteristics as when A 4 = 0. In particular, of the
three estimators considered, RLS is preferred if An < m/2, and OLS is

preferred if An > m/2. We can define the "regret" associated with using the

PTE as

p(XB) - p(X8*) ; AL < m2
R(XB) =
p(XB) - p(XB) ; A, = w2,

As is well known, if A 4= 0, then for any c there is a unique RL

= sup. R(XB) and a unique RU = sup.R(XB). Further, an increase in ¢ leads to
’An<m/z A zms2

a decrease in RL and an increase in RU. The same result applies for any fixed
Ad > 0. So for a given Ad' an optimal choice of ¢ may be defined as c = c*
such that RL = RU, and both regrets are simultaneously minimized. This is the
"mini-max - regret" rule adopted by Brook (1976) (and similar to that of Sawa
and Hiromatsu (1973)) for the properly specified model (A d=0). °  The
computations needed to obtain c*, for any A g are equivalent to those needgd

in Brook's case, but with doubly non-central F probabilities replacing his

non-central F probabilities.




4. RESULTS

Optimal critical values, c*, are reported in Table 1 for several values of
A n These were calculated using a FORTRAN program written by the authors and
executed on a VAX8350. The program incorporates Davies’ (1980) algorithm to
evaluate the doubly non-central F probablities. The chosen degrees of freedom
match those considered by Brook, and his results correspond to A 4 = 0. (There
are some minor differences between our results and his for small and large
degrees of freedom. These can be accounted for if one adopts less stringent
convergence tolerences then we have used in our program.) The optimal
significance levels (x*) corresponding to c*, and based on the central Fm,
distribution, are reported in Table 1. These are also computed using Davies’
algorithm.

The strongest feature of Brook’s results for the properly specified model
is that c* is always close to two in value, regardless of the degrees of
freedom. (Using a different criterion, Toyoda and Wallace (1976) concur with
this result for m = §.) As Figure 1 and Table 1 show, this result is
undermined if the model is mis-specified through the omission of regressors.
In this case c* is sensitive to the degrees of freedom and can
differ substantially from the values suggested by Brook. In addition, for any.
m and v, c* declines monotonically as the degree of model mis-specification
increases. Accordingly, the optimal pre-test size («*) increases
monotonically with a & for fixed degrees of freedom. This accentuates the

other strong feature of the results obtained by Brook (and Toyoda and Wallace

(1976)) - the optimal pre-test size is frequently much greater than the

commonly assigned sizes of 1% or 5%.




S. CONCLUDING DISCUSSION

We have focussed attention on pre-testing in the context of a model which
is under-specified. The case where extraneous regressors are included in the
model does not require separate consideration. Giles (1986) shows that all of
the usual risk results hold (as in Figure 1, with A d4 = 0) in this case with a
simple re-definition of An. It follows that Brook's results (that is, the
results in our Table 1 for A 4 = 0) apply directly to the case of over-fitted
models.

The latter results, which suggest that c* = 2 (approximately) regardless
of the degrees of freedom, have obvious practical appeal. They offer a simple
prescription to be followed in empirical work. However, as our results show,
this prescription is dangerously misleading if the model is under-specified.
It would be helpful to have a substitute prescription in the face of possible
such model mis-specification. Table 1 does not provide this, given that A d is
geﬂerally unknown.

If an upper bound, A & could be placed on A & then the following

generalised mini-max regret criterion might be considered: for some value of

c, take a sequence of RL values for A d € lO,X d]’ and a corresponding sequence

of RU values. Then, vary c to c**, say, to equate sup._(RU) and
o<}\d<).d

sup. (RL). It is readily shown that c** is unique. The implications of

0<Ad<xd
such a criterion are illustrated in Table 2, where o** is the test size
corresponding to c**, based on the central F distribution. The difficulty is
that if A q is unknown, then c** 5 0 as X 4 > @ and the optimal strategy is to
apply OLS rather than pre-test. This is consistent with the results in Table
1, of course.

In the context of a mini-max regret approach to the choice of c*, it seems
that little more can be offered by way of a truly general prescription, other

than to remark that the correct specification of the initial model is of




paramount importance. Of course, this applies more generally than simply to

the choice of c. Under-fitting the model has other serious implications for

the properties of pre-test strategies, as is illustrated by Ohtani (1983) and

Mittelhammer (1984), for example.
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Table 1. Optimal Critical Values and Their Significance Levels

c* o* c*

1.990 0.294 0.970 0.319 o. 0.173 0.718
1.940 0.236 1.280 0. 0.540 0.317 0.604
1.910 0.204 1.530 0. 0.840 0.540 0.483
1.900 0.187 1.690 0. 1.160 0.840 0.373
1.890 0.182 1.750 0. 1.330 1.028 0.321
1.890 0.174 1.830 0. 1.620 0. 1.418 0.238
1.890 0.172 1.860 0. 1.746 0. 1.621 0.205

2.090 0.324 1.020 O. 0.327 0. 0.176 0.850
2.000 0.250 1.328 0. 0.558 0. 0.320 0.743
1.960 0.203 1.558 0. 0.860 O. 0.550 0.597
1.930 0.177 1.710 0. 1.180 0.850 0.446
1.920 0.168 1.770 0. 1.350 0. 1.040 0.369
1.910 0.157 1.850 0. 1.630 1.430 0.247
1.900 0.154 1.870 0. 1.760 0. 1.630 0.200

2.060 0.251 1.360 0. 0.564 0.326 0.848
1.990 0.189 1.583 0. 0.871 0. 0.557 0.700
1.960 0.149 1.740 0. 1.200 O. 0.865 0.506
1.950 0.135 1.800 O. 1.378 1.060 0.398
1.940 0.115 1.880 1.662 1.460 0.226
1.940 0.108 1.910 O. 1.790 0 135 1.660 0.164

2.020 0.170 1.611 0.887 0.565 0.567 0.780
1.990 0.115 1.765 1.220 0.348 0.880 0.553
1.980 0.094 1.826 1.397 0.248 1.077 0.411
1.970 0.066 1.910 0. 1.690 0.119 1.480 0.184
1.970 0.056 1.936 0. 1.820 0.080 1.690 0.108

2.007 0.087 1.784 0. 1.231 0.341 0.887 0.593
1.999 0.061 1.843 0. . 0.218 1.087 0.416
1.989 0.029 1.923 0. . 0.071 1.490 0.134
1.986 0.019 1.953 0. . 0.034 1.701 0.055

2.005 0.048 1.850 0. 0.202 1.090 0.417
1.994 0.016 1.930 0. 0.048 1.495 0.106
1.991 0.008 1.958 0. 0.017 1.706 0.032

2.021 0.004 1.955 0. . 0.018 1.514 0.055
2.011 0.001 1.978 0. . 0.002 1.723 0.006

2.010 0.000 1.977 0. . 0.000 1.723 0.002




Table 2. Globally Optimal Critical Values and Their Significance Levels

A4




FIGURE 1
RELATIVE RISK FUNCTIONS
(Lambda(d)=5; m=4; v=16; k=5)
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NOTE : Brook's c=1.96; 5% ¢=3.01; c*=1.2










