

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

CANTER

9005✓

Department of Economics
UNIVERSITY OF CANTERBURY
CHRISTCHURCH, NEW ZEALAND

GIANNINI FOUNDATION OF
AGRICULTURAL ECONOMICS

LIBRARY

SEP 18 1990

AN EXPOSITORY NOTE ON THE
COMPOSITE COMMODITY THEOREM

MICHAEL CARTER

Discussion Paper

No. 9005

This paper is circulated for discussion and comments. It should not be quoted without the prior approval of the author. It reflects the views of the author who is responsible for the facts and accuracy of the data presented. Responsibility for the application of material to specific cases, however, lies with any user of the paper and no responsibility in such cases will be attributed to the author or to the University of Canterbury.

Department of Economics, University of Canterbury
Christchurch, New Zealand

Discussion Paper No. 9005

July 1990

**AN EXPOSITORY NOTE ON THE
COMPOSITE COMMODITY THEOREM**

MICHAEL CARTER

Department of Economics
University of Canterbury
Christchurch, New Zealand

An Expository Note on the Composite Commodity Theorem

Michael Carter

University of Canterbury

July 1990

This note offers an alternative derivation of the composite commodity theorem using only elementary economic and mathematical tools. It offers some insight as to why constancy of relative prices induces separability in the consumers optimisation problem. It should be more readily accessible to student in upper level microeconomics courses and prove useful in the classroom in presenting this central theorem of economic analysis.

Authors address: Department of Economics
University of Canterbury
Private Bag
Christchurch 8001
NEW ZEALAND

FAX: (643) 642999

internet: m.carter@canterbury.ac.nz@relay.cs.net

An Expository Note on the Composite Commodity Theorem

Michael Carter¹

University of Canterbury

The composite commodity theorem is one of the cornerstones of economic analysis, justifying the frequent recourse to two-dimensional diagrams in analysing consumer demand. Conventional proofs of the theorem (eg. Hicks (1946), Samuelson (1947), Green (1976)) rely on aggregation properties of the substitution matrix together with an appeal to integrability of demand functions. This approach is technically difficult and offers little insight to the student.

Some texts (e.g. Cowell (1986), Deaton & Muelbauer (1980)) offer a more elegant proof by utilising the duality between expenditure and utility functions, showing that two utility maximisation problems give rise to the same expenditure function and hence must represent the same underlying preference ordering. This provides a good demonstration of the economy of duality theory but offers the student little insight into the nature of the composite commodity.

¹The author gratefully acknowledges the useful comments made by John Fountain, Leslie Young and Peyton Young.

In this note, we provide an intuitive demonstration of the composite commodity theorem by first showing how the result seems compelling in a special case in which utility is separable. We then show that the assumption of separability was innocent, and that the generalisation is trivial. Not only is this presentation more insightful for students, it depicts the composite commodity theorem as its true role, namely as a separability theorem.

Consider a consumer with preferences defined over three goods. Assume initially that the consumer's preferences are additively separable, i.e. that her preferences can be represented by the following utility function

$$U(x_1, x_2, x_3) = u(x_1) + w(x_2, x_3)$$

where u and w are strictly concave².

In these circumstances, it seems intuitive that the consumer's maximisation problem

$$P0: \max_x U(x_1, x_2, x_3) \text{ s.t. } px = M$$

can be decomposed into two sub-problems

$$P1: \max_{x_1, \bar{x}} u(x_1) + V(\bar{x}) \text{ s.t. } p_1 x_1 + \bar{x} = M$$

and

$$P2: \max_{x_2, x_3} w(x_2, x_3) \text{ s.t. } p_2 x_2 + p_3 x_3 = \bar{x}$$

where $V(\bar{x})$ is the maximum value function for P2.

²The assumption of concavity will also be relaxed in the sequel.

To demonstrate this formally, let $\mathbf{x}^* = (x_1^*, x_2^*, x_3^*)$ be the optimal solution to P1 and $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \hat{x}_3)$ be the optimal solution to P1 and P2 simultaneously. We show that $\mathbf{x}^* = \hat{\mathbf{x}}$. First note that the \mathbf{x}^* must satisfy the first order conditions

$$\begin{aligned}\frac{\partial u(\mathbf{x}^*)}{\partial x_1} &= \lambda p_1 \\ \frac{\partial w(\mathbf{x}^*)}{\partial x_2} &= \lambda p_2 \\ \frac{\partial w(\mathbf{x}^*)}{\partial x_3} &= \lambda p_3\end{aligned}\tag{1}$$

$$p\mathbf{x} = M$$

$\hat{\mathbf{x}}$ must satisfy the first order conditions for P1

$$\begin{aligned}\frac{\partial u(\hat{\mathbf{x}})}{\partial x_1} &= \mu p_1 \\ \frac{\partial V(\hat{\mathbf{x}})}{\partial \hat{\mathbf{x}}} &= \mu \\ p_1 \hat{x}_1 + \hat{\mathbf{x}} &= M\end{aligned}\tag{2}$$

and P2

$$\begin{aligned}\frac{\partial w(\hat{\mathbf{x}})}{\partial x_2} &= \delta p_2 \\ \frac{\partial w(\hat{\mathbf{x}})}{\partial x_3} &= \delta p_3 \\ p_2 \hat{x}_2 + p_3 \hat{x}_3 &= \hat{\mathbf{x}}\end{aligned}\tag{3}$$

simultaneously. But we note that since V is the maximum value function for P2,

$$\delta = \frac{\partial V(\hat{\bar{x}})}{\partial \bar{x}} = \mu \quad (\text{equation (2)})$$

Combining the budget constraints

$$p_1 \hat{x}_1 + p_2 \hat{x}_2 + p_3 \hat{x}_3 = M.$$

equations (2) and (3) become

$$\frac{\partial u(\hat{x}_1)}{\partial x_1} = \delta p_1$$

$$\frac{\partial w(\hat{x})}{\partial x_2} = \delta p_2$$

$$\frac{\partial w(\hat{x})}{\partial x_3} = \delta p_3$$

$$p\bar{x} = M$$

which have the same solution as equations (1).³ We have verified that

$$\hat{x} = x^*.$$

Furthermore, the consumers preferences over x_1 and the composite commodity \bar{x} can be represented by convex indifference curves. This follows trivially from the concavity of the maximum value function and additivity of concave functions.

These results can be illustrated in the following diagram, which shows how the consumer's optimisation problem can be decomposed into two sub-problems. The first quadrant depicts the allocation of expenditure between x_1 and the remaining commodities. The second quadrant shows how the

³ Strict concavity guarantees uniqueness of the solution to equations (1).

remaining expenditure is allocated between goods two and three.⁴ The preceding analysis established (i) that the indifference curves in quadrant 1 are convex to the origin and (ii) that the diagram is consistent in the sense that the overall optimal consumption x^* represents a point of tangency in both quadrants. In analysing the demand for good 1, we can focus our attention on quadrant 1 leaving quadrant 2 to look after itself. Ignoring the second quadrant will not lead us astray.

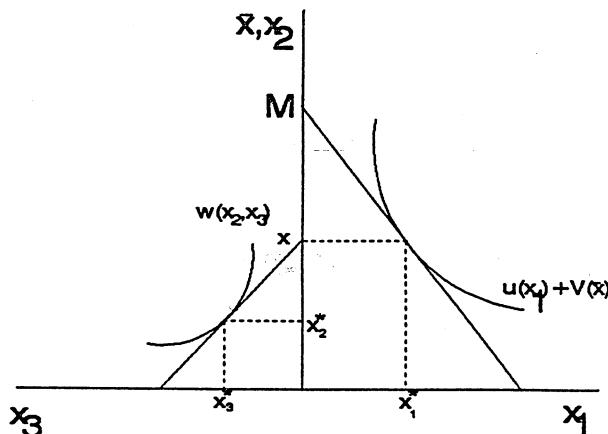


Figure 1

The essence of the composite commodity theorem is that preceding derivation and observations depend not on the separability of preferences but on the constancy the price of p_2 relative to p_3 . Put differently, what makes Figure 1 commute is not the separability of the utility function but the constant slope of the budget line in quadrant 2. Without separability,

⁴The diagram is drawn assuming that x_2 is numeraire.

the indifference curves in quadrant 1 will depend upon the quantities of x_2 and x_3 and the indifference curves in quadrant 2 will depend upon the quantity of x_1 . The only interdependence which cannot be incorporated into the indifference curves in quadrant 1 is a change in the relative price p_2/p_3 . As long as p_2/p_3 remains constant, the slope of the budget line in quadrant 2 remains unchanged, and hence the tangencies between indifference curves and budget lines in both spaces remain necessary and sufficient for an overall optimum. We can still focus our attention on quadrant 1 and leave quadrant 2 to look after itself.

To establish this result, we repeat the preceding analysis dispensing with the assumption of separability. The consumer's problem is:

$$PO': \max_{\mathbf{x}} U(x_1, x_2, x_3) \text{ s.t. } p\mathbf{x} = M$$

with V strictly quasi-concave.

Let us decompose this into two subproblems

$$P1': \max_{\substack{\mathbf{x}_1, \bar{\mathbf{x}}}} V(x_1, \bar{\mathbf{x}}) \text{ s.t. } p\mathbf{x}_1 + \bar{\mathbf{x}} = M$$

where $V(x_1, \bar{\mathbf{x}})$ is the maximum value function of

$$P2': \max_{\substack{\mathbf{x}_2, \mathbf{x}_3}} U(x_1, x_2, x_3) \text{ s.t. } p_2 x_2 + p_3 x_3 = \bar{\mathbf{x}}$$

We claim that (i) $V(x_1, \bar{\mathbf{x}})$ is quasi-concave and (ii) PO' has the same solution as $P1'$ and $P2'$.

To establish (i), we follow Diewert (1978, Theorem 2.4). Let $(x'_1, \bar{\mathbf{x}}')$ and $(x''_1, \bar{\mathbf{x}}'')$ be two solutions to $P1'$ and let (x'_2, x'_3) , (x''_2, x''_3) be the corresponding solutions to $P2'$. That is, (x'_2, x'_3) maximises $U(x'_1, x'_2, x'_3)$ subject to $p_2 x'_2 + p_3 x'_3 = \bar{\mathbf{x}}'$. For any $\alpha \in (0,1)$, define

$$\mathbf{x}^0 = \alpha x' + (1-\alpha)x''$$

$$\bar{\mathbf{x}}^0 = \alpha \bar{\mathbf{x}}' + (1-\alpha) \bar{\mathbf{x}}''$$

Then

$$\begin{aligned} V(x^0, \bar{x}^0) &= \max_{x_2, x_3} \{ U(x^0, x_2, x_3) : p_2 x_2 + p_3 x_3 = \bar{x}^0 \} \\ &\geq U(x_1^0, x_2^0, x_3^0) \\ &> \min \{ U(x'), U(x'') \} \quad (\text{quasiconcavity of } U) \\ &= \min \{ V(x', \bar{x}'), V(x'', \bar{x}'') \} \end{aligned}$$

Thus V is quasi-concave.

To establish (ii), we note that a commodity bundle x^* solves the consumer's optimization problem $\mathbb{P}0'$ if it satisfies the first order conditions

$$\frac{\partial U(x^*)}{\partial x_i} = \lambda p_i \quad i = 1, 2, 3 \quad (4)$$

$$p x = M$$

A commodity bundle \hat{x} solves $\mathbb{P}1'$ and $\mathbb{P}2'$ jointly if it satisfies the first order conditions for $\mathbb{P}1'$

$$\begin{aligned} \frac{\partial V(\hat{x}, \bar{x})}{\partial x_1} &= \mu p_1 \\ \frac{\partial V(\hat{x}, \bar{x})}{\partial \bar{x}} &= \mu \\ p x_1 + \bar{x} &= M \end{aligned} \quad (5)$$

and $\mathbb{P}2'$

$$\begin{aligned} \frac{\partial U(\hat{x})}{\partial x_i} &= \delta p_i \quad i = 2, 3 \\ p_2 x_2 + p_3 x_3 &= \bar{x} \end{aligned} \quad (6)$$

simultaneously. Since $V(\bar{x})$ is the maximum value function for $\mathbb{P}2'$, the Lagrange multiplier δ is equal to its slope, i.e.

$$\delta = \frac{\partial V(\hat{x})}{\partial \bar{x}}$$

Using (5), this implies that

$$\delta = \mu$$

The shadow price of the expenditure constraint in $P2'$ is equal to the marginal utility of income. Further we note that

$$\frac{\partial V(\hat{x}_1, \hat{\bar{x}})}{\partial x_1} = \frac{\partial U(\hat{x})}{\partial x_1}$$

so that first order conditions (5) and (6) can be amalgamated into

$$\frac{\partial U(\hat{x})}{\partial x_1} = \delta p_i \quad i = 1, 2, 3$$

$$p\bar{x} + M$$

which have the same solution as (4). This establishes that $\hat{x} = x^*$. Problem $P0'$ has the same solution as $P1'$ and $P2'$.

This derivation also suggests another way of depicting the economic intuition underlying the composite commodity theorem. The first order conditions for the overall consumer problem (4) can be rearranged as follows:

$$\frac{\frac{\partial U(x^*)}{\partial x_1}}{p_1} = \lambda = \text{marginal utility on income.}$$

Optimality requires that expenditure be allocated across commodities so that a small increment in income yield the same utility no matter how it is spent. This applies à fortiori to the division of expenditure between commodity 1 and all other commodities,

$$\text{i.e. } \frac{\frac{\partial U(x^*)}{\partial x_1}}{p_1} = \frac{\partial V(\hat{x}_1, \hat{\bar{x}})}{\partial \bar{x}}$$

which is another way of expressing the tangency in quadrant 1. In this sense, the consumer's problem is separable into expenditure on commodity 1 and expenditure on the other commodities, assuming that expenditure on other

commodities is allocated optimality.

In this note we have offered an alternative derivation of the composite commodity theorem which reveals it as a separability result arising from the structure of the utility maximisation process. The demonstration involves no more than simple manipulation of familiar first order conditions plus an elementary proof of quasi-concavity of the maximum value function. It should be readily accessible to intermediate and advanced level microeconomics classes. In conjunction with Figure 1, this should prove useful in the classroom in presenting this central theorem of economic analysis. Finally we note that nothing in the preceding discussion hinged on there being only two commodities in the fixed price group.

References

Cowell, F. A. 1986. *Microeconomic principles*. Oxford: Philip Allan.

Deaton, A., and J. Muellbauer. 1980. *Economics and consumer behaviour*. Cambridge: Cambridge University Press.

Diewert, W. E. 1978. Hicks' aggregation theorem and the existence of a real value-added function. Chap. III.2 In *Contributions to economic analysis*. III, *Production economics: a dual approach to theory and applications*, ed. M. Fuss and D. McFadden, 17-51. Vol. 2. Amsterdam: North-Holland.

Green, H. A. J. 1976. *Consumer theory*. 2nd ed. London: Macmillan.

Hicks, J. R. 1946. *Value and Capital*. 2nd ed. London: Oxford University Press.

Samuelson, P. A. 1947. *Foundations of Economic Analysis*. Cambridge: Harvard University Press. Reprinted by Atheneum, New York, 1974.

LIST OF DISCUSSION PAPERS*

No. 8401 Optimal Search, by Peter B. Morgan and Richard Manning.

No. 8402 Regional Production Relationships During the Industrialization of New Zealand, 1935-1948, by David E. A. Giles and Peter Hampton.

No. 8403 Pricing Strategies for a Non-Replenishable Item Under Variable Demand and Inflation, by John A. George.

No. 8404 Alienation Rights in Traditional Maori Society, by Brent Layton.

No. 8405 An Engel Curve Analysis of Household Expenditure in New Zealand, by David E. A. Giles and Peter Hampton.

No. 8406 Paying for Public Inputs, by Richard Manning, James R. Markusen, and John McMillan.

No. 8501 Perfectly Discriminatory Policies in International Trade, by Richard Manning and Koon-Lam Shea.

No. 8502 Perfectly Discriminatory Policy Towards International Capital Movements in a Dynamic World, by Richard Manning and Koon-Lam Shea.

No. 8503 A Regional Consumer Demand Model for New Zealand, by David E. A. Giles and Peter Hampton.

No. 8504 Optimal Human and Physical Capital Accumulation in a Fixed-Coefficients Economy, by R. Manning.

No. 8601 Estimating the Error Variance in Regression After a Preliminary Test of Restrictions on the Coefficients, by David E. A. Giles, Judith A. Mikolajczyk and T. Dudley Wallace.

No. 8602 Search While Consuming, by Richard Manning.

No. 8603 Implementing Computable General Equilibrium Models: Data Preparation, Calibration, and Replication, by K. R. Henry, R. Manning, E. McCann and A. E. Woodfield.

No. 8604 Credit Rationing: A Further Remark, by John G. Riley.

No. 8605 Preliminary-Test Estimation in Mis-Specified Regressions, by David E. A. Giles.

No. 8606 The Positive-Part Stein-Rule Estimator and Tests of Linear Hypotheses, by Aman Ullah and David E. A. Giles.

No. 8607 Production Functions that are Consistent with an Arbitrary Production-Possibility Frontier, by Richard Manning.

No. 8608 Preliminary-Test Estimation of the Error Variance in Linear Regression, by Judith A. Clarke, David E. A. Giles and T. Dudley Wallace.

No. 8609 Dual Dynamic Programming for Linear Production/Inventory Systems, by E. Grant Read and John A. George.

No. 8610 Ownership Concentration and the Efficiency of Monopoly, by R. Manning.

No. 8701 Stochastic Simulation of the Reserve Bank's Model of the New Zealand Economy, by J. N. Lye.

No. 8702 Urban Expenditure Patterns in New Zealand, by Peter Hampton and David E. A. Giles.

No. 8703 Preliminary-Test Estimation of Mis-Specified Regression Models, by David E. A. Giles.

No. 8704 Instrumental Variables Regression Without an Intercept, by David E. A. Giles and Robin W. Harrison.

No. 8705 Household Expenditure in Sri Lanka: An Engel Curve Analysis, by Mallika Dissanayake and David E. A. Giles.

No. 8706 Preliminary-Test Estimation of the Standard Error of Estimate in Linear Regression, by Judith A. Clarke.

No. 8707 Invariance Results for FIML Estimation of an Integrated Model of Expenditure and Portfolio Behaviour, by P. Dorian Owen.

No. 8708 Social Cost and Benefit as a Basis for Industry Regulation with Special Reference to the Tobacco Industry, by Alan E. Woodfield.

No. 8709 The Estimation of Allocation Models With Autocorrelated Disturbances, by David E. A. Giles.

No. 8710 Aggregate Demand Curves in General-Equilibrium Macroeconomic Models: Comparisons with Partial-Equilibrium Microeconomic Demand Curves, by P. Dorian Owen.

No. 8711 Alternative Aggregate Demand Functions in Macro-economics: A Comment, by P. Dorian Owen.

No. 8712 Evaluation of the Two-Stage Least Squares Distribution Function by Imhof's Procedure by P. Cribbitt, J. N. Lye and A. Ullah.

No. 8713 The Size of the Underground Economy: Problems and Evidence, by Michael Carter.

(Continued on back cover)

No. 8714 A Computable General Equilibrium Model of a Fisherine Method to Close the Foreign Sector, by Ewen McCann and Keith McLaren.

No. 8715 Preliminary-Test Estimation of the Scale Parameter in a Mis-Specified Regression Model, by David E. A. Giles and Judith A. Clarke.

No. 8716 A Simple Graphical Proof of Arrow's Impossibility Theorem, by John Fountain.

No. 8717 Rational Choice and Implementation of Social Decision Functions, by Manimay Sen.

No. 8718 Divisia Monetary Aggregates for New Zealand, by Ewen McCann and David E. A. Giles.

No. 8719 Telecommunications in New Zealand: The Case for Reform, by John Fountain.

No. 8801 Workers' Compensation Rates and the Demand for Apprentices and Non-Apprentices in Victoria, by Pasquale M. Sgro and David E. A. Giles.

No. 8802 The Adventures of Sherlock Holmes, the 48% Solution, by Michael Carter.

No. 8803 The Exact Distribution of a Simple Pre-Test Estimator, by David E. A. Giles.

No. 8804 Pre-testing for Linear Restrictions in a Regression Model With Student-t Errors, by Judith A. Clarke.

No. 8805 Divisia Monetary Aggregates and the Real User Cost of Money, by Ewen McCann and David Giles.

No. 8806 The Management of New Zealand's Lobster Fishery, by Alan Woodfield and Pim Borren.

No. 8807 Poverty Measurement: A Generalization of Sen's Result, by Prasanta K. Pattanaik and Manimay Sen.

No. 8808 A Note on Sen's Normalization Axiom for a Poverty Measure, by Prasanta K. Pattanaik and Manimay Sen.

No. 8809 Budget Deficits and Asset Sales, by Ewen McCann.

No. 8810 Unorganized Money Markets and 'Unproductive' Assets in the New Structuralist Critique of Financial Liberalization, by P. Dorian Owen and Otton Solis-Fallas.

No. 8901 Testing for Financial Buffer Stocks in Sectoral Portfolio Models, by P. Dorian Owen.

No. 8902 Provisional Data and Unbiased Prediction of Economic Time Series by Karen Browning and David Giles.

No. 8903 Coefficient Sign Changes When Restricting Regression Models Under Instrumental Variables Estimation, by David E. A. Giles.

No. 8904 Economies of Scale in the New Zealand Electricity Distribution Industry, by David E. A. Giles and Nicolas S. Wyatt.

No. 8905 Some Recent Developments in Econometrics: Lessons for Applied Economists, by David E. A. Giles.

No. 8906 Asymptotic Properties of the Ordinary Least Squares Estimator in Simultaneous Equations Models, by V. K. Srivastava and D. E. A. Giles.

No. 8907 Unbiased Estimation of the Mean Squared Error of the Feasible Generalised Ridge Regression Estimator, by V. K. Srivastava and D. E. A. Giles.

No. 8908 An Unbiased Estimator of the Covariance Matrix of the Mixed Regression Estimator, by D. E. A. Giles and V. K. Srivastava.

No. 8909 Pre-testing for Linear Restrictions in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.

No. 9001 The Durbin-Watson Test for Autocorrelation in Nonlinear Models, by Kenneth J. White.

No. 9002 Determinants of Aggregate Demand for Cigarettes in New Zealand, by Robin Harrison and Jane Chetwyd.

No. 9003 Unemployment Duration and the Measurement of Unemployment, by Manimay Sengupta.

No. 9004 Estimation of the Error Variance After a Preliminary-Test of Homogeneity in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.

No. 9005 An Expository Note on the Composite Commodity Theorem, by Michael Carter.

* Copies of these Discussion Papers may be obtained for \$4 (including postage, price changes occasionally) each by writing to the Secretary, Department of Economics, University of Canterbury, Christchurch, New Zealand.