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In this paper we consider the risk (under quadratic loss) of an estimator cf
the error variance after a pre-test for homogeneity of the variances in the
two-sample linear regression model. We investigate the effects on risk of
assuming normal disturbances when in fact the error distribution is
spherically symmetric. We also broaden the standard assumption that the
never-pool variance estimators are based on the least squares principle.
Using the special case of multivariate Student-t regression disturbances as
an illustration, our results show that in some situations we should always
pre-test, even if the error variances are equal, and we provide the optimal
test critical value. The evaluations also show that using the least squares
technique to form the never-pool estimators may not always be the preferred
strategy.
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1. Introduction and estimator definitions

We consider a regression model which uses two samples, with Ti and T2

observations (T1+T2=T). There is a common location vector, g, but possibly

different error variances:

[yi l lx1 If3 [e:I
y2 X2

(1)

or more compactly, y=Xj3+e , where yi is a (Tixl) vector of observations on

the dependent variable, Xi is a non-stochastic (Tixk) design matrix of rank k

kTi), and ei is a (Tixl) vector of regression disturbances, i=1,2. We

2 2 2
assume that E(ei)=0, and. that E(eiei  )=0.e.N... Let 0=ose Are , and

1 1 2

cr2e1IT1 °
E(ee' ) =

0 0.
2 
LT 

= 
cr2 C611.1

e2 0
e2

1
2

= cr
e 
Z .

• 2
(2)

Suppose that e has a non-normal distribution of the form f(e)=offN(e)f(r)dr,

where fN(e) is f(e) when e-N(0,t2Z),and f(t) is supported on [0,03). Hence,

cr
2 
=E(T

2
) and Cr

2 
=0E(T

2
). So, (Muirhead (1982)) the joint distribution of

e2 e
l

the disturbances in each sample is spherically symmetric, while e has an

elliptically symmetric distribution (ESD) when o•2 #0'2 , and a spherically
ei e2

symmetric distribution (SSD) when the variances are equal.1'2 The normal and

multivariate Student-t (Mt) distributions are well known members of this

family. The latter distribution arises if l('r) is an inverted gamma density

with, say, scale parameter o•22 and degrees of freedom parameter v; we write

T-IG(cr2
' 
v) and e-Mt mr2/(v-2)Z). The marginal distributions are univariate

2 2

Student-t and for small values of v they will have thicker tails than under

normality. When v=1 the probability density function (pdf) is Cauchy while

it is normal when v=co.
3
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We consider the estimation of cr2 given uncertainty about whether the
e
l

second sample comes from the same population as the first when the researcher

wrongly assumes that e-N (0,o.2 . The pre-test under investigation is ofe2

H
o 
: = 1 vs H1 

:s < 1 . (3)

We assume for simplicity a one-sided alternative hypothesis, though the

analysis can be extended to the two-sided case.4

The research on this particular pre-test problem has followed the

literature associated with the pooling of two normal samples. If the

variances are unequal then an unbiased (never-pool) estimator of cr2 is
ei

2 2

sNL=s1 
where s2.=(y.-X.b. ) (y.-X.b. )/v.=e.' M.e./v., v.=T.-k, M.=I

'

- 
and b.=S. 1X.

, 
y., S.=(X.' X.), i=1,2. 

s2
. is the usual unbiased least squares

(L) estimator of o-2 . Conversely, if the variances are equal then the two
e.

samples may be pooled and an unbiased (always-pool) estimator of cr2 ei 
is s 2 =

AL

Iv1s2i+v2s22) /(v1+v2). A test statistic for homoscedasticity is

J=(v1e2' M2e2) / (v2ei' Mied , and 
f(j)=f (F(v

2'
v
1
)) 

where F(vv) is a

central F random variate with v2 and v1 degrees of freedom.

The researcher tests Ho using J and so he employs the pre-test estimator

s 
2 

if J > c
sp (4)2 I NL ( jos 2 /(c,coms2 

= 2

• SAL i 

= 1[0,d 
4.

f j

where I (J) takes the value unity if J lies within [.,.], zero otherwise,
• ,•1

and c is the critical value of the test corresponding to a test size of a.

2 2
Assuming normal errors and the least squares based estimators smand sAL,

Bancroft (1944), Toyoda and Wallace (1975), Ohtani and Toyoda (1978), and

Bancroft and Han (1983) have examined the sampling properties of s 
5

We

generalise both of. these assumptions in this paper.

There is substantial empirical evidence to support the possibility that



There is substantial empirical evidence to support the possibility that

some economic series may be generated by processes whose distributions have

more kurtosis than the normal distribution (e.g., Mandelbrot (1963, 1967),

Fama (1963, 1965), Blattberg and Gonedes (1974), Praetz (1972), and Praetz

and Wilson (1978)). The family of distributions that we investigate is

motivated by some of these studies, and by those papers which have studied

linear regression models with ESD (or SSD) disturbances, including Thomas

(1970), King (1979), Chmielewski (1981), Judge, Miyazaki and Yancey (1985),

Ullah and Zinde-Walsh (1985), Zinde-Walsh and Ullah (1987), and Giles

(1990b). In particular, Chmielewski (1981) shows that f(J) holds for all

members of the elliptically symmetric family6, and Giles (1990b) derives the

exact risk (under quadratic loss) of pre-test estimators of the prediction

vector and of the error variance of a linear regression model with

spherically symmetric disturbances when the pre-test is for the validity of a

set of exact linear restrictions on the coefficient vector. She finds that

when estimating the conditional forecast of y the widening of the error

distribution assumption has little impact on the qualitative properties of

the risk function of the predictor pre-test estimator, though there are

quantitative effects. In contrast, there can be a substantial impact on the

risk functions of the estimators of the error variance. Specifically, she

shows that pre-testing, with a critical value of unity, is the preferable

strategy when the disturbances are Mt with small v.7

In this paper we extend the aforementioned pre-testing literature first

by deriving the risk functions of a family of pre-test estimators of cr2
ei

after a pre-test for H
o. 

when the researcher wrongly assumes that the

sub-sample spherically symmetric disturbances are normally distributed. Our

second extension relates to the component estimators under investigation. To

date the research in this area has only considered the pre-test estimator

4



based on s
2 

and s
2 

L 
while, within the linear regression model framework, twoA 

other never-pool estimators of
2 

are commonly used (assuming normality):
e.

the maximum likelihood (ML) estimator and the minimum mean squared error (M)

estimator. Let these estimators be denoted by s2imL and s2im respectively.

They differ from sfL by the divisor used, this being Ti for the ML estimators

and (v.+2) for the M estimators. These estimators are members of the family

2
S. = (e.'M.e.)/(T.+1.1). (5)

2 2 2We can generate siL, simL, and sim by setting µ to -k, 0, and (-k+2),

respectively. Let S12=S21 be the family of never-pool estimators of
ei

In the spirit of sAL2 we can conceive of two alternative always-pool

2 2estimators sAm./.. and sAm, which have as their components the sample ML and M

2 2 2 2estimators, simL and sim, respectively. That i 2 s, sAm L= (TisimL+T2szmd /T and

2 2 2 2 2 2
SAm= (( Vi+2)Sim+(V2+2)S2m) /(Vi+V2+4). SAL, AmL,and sAm are always-pool

estimators of the form

S2 = [(T
1 
+11)(e

1 
M
1 
e
1 
/(T

1 
+1.1))+(T

2 
+11)(e

2 
114
2 
e
22

-110)1/(T+2µ). (6)A 

2 2 2We obtain SAL, sAmL, and sAm by setting µ to -k, 0, and (-k+2). Clearly s
2

AML

is not a ML estimator, nor does sA2m possess the M property, even if the

errors are normal. Of course, when the errors are non-normal then even the

sample estimators are not the ML or M estimators, though the researcher

proceeds assuming that they possess these properties.8

So, given (5) and (6), the pre-test estimator we investigate is

S
2 
= 1 S

2 
if J > c

2
=

(0,c1
MS

A
2 
+ 

(c,.)
(J)S

NS
2 

if J s cA

(7)

In the next section we derive and discuss the risk functions of S
2 

S
2 

and
N' A'

2
S. To illustrate our results we consider exact evaluations of the risks for

the special case of Mt regression disturbances in Section 3. The final

section is devoted to concluding remarks.
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2. The risk functions

Theorem 1 gives the risk functions of the estimators, where we define

the risk of an estimator i2 of c72 as e
l1

Theorem 1. If e-ESD with E(e)=0, E(eei )=c1-2 E and the pre-test is of Ho in
e2

(3), then

2 2 
P(Os ) = 

2 
tvi(vi+2)E(T4)+(E(T2))2(Toi)(Ti+µ-2v ))/(Ti+µ)2,

el N

2 2
Or

e 
,S
A
) =

2 
[V

1
(V

1
+2)E(T4)+ (E(T2)) 2(T+21.1)(T+211-

2V)]

(8)

+ 2V20 [ViE(T4)-(T+211) (E(T2)) 1 +V2(V2+2)E(T4) /(T+211)2,l (9)

2 2
P(Cre ,Sp

) = [02[vi(v1+2)E(T4)((T+24)2-(T2+µ)(2Ti+T_.+3µ)0z '04)
1

+ (T+211) (T1+11) (E(T2)) 2 t(T1+µ-2v1)(T+2µ)+2(T2+µ)viQ02)]

+ 2(T1+1.020 [viv2E(T4)Q22-v2(T+211) (E(T2))2Q20]

+ v2(v2+2)(T1+11)2E(T4)0
40 
/ l(Ti+µ)(T+21.1)) 2 , (10)

' 

where Q
ii 
= Pr. [F

(v +i v +.e(v2(vii-
j)c0)/(vi(v2+1))1, i,j = 0,1,... .

2 ' 1

Note that - does not depend on T.

Proof. See the appendix.

Corollary 1. If e-Mt(0,vcr22/(v-2)E) then, for v>4

p (cr2 ,S2) = 02v2cr24(2vi(vi+v-2)+(k+µ)2(v-4))/
Mt e

l 
N

1

'14,4t(0.e
2 ,s 

A 
2 ) v20,4_ (A.2

4) (v +2(k+µ))2+2v (v +v-2)]
2 2 1 1

1

+ 2v242v -(v-4)(v
2 
+2(k+µ))1+v„(v2+2)(v-2))/

.
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i(T+2µ)2(V-2)2(1,-4)) .
(0.2 .s2) v2

0
.41,2 [T+41)2 

((v-4)(k+g)2+2v
vMt` e p 2

1
vi+v-2))

(12)

- v
1 
(v

1 
+2)(v-2)(2T

1 
+T
2 
+3µ)(T2+µ)Q04+2v1(Ti+µ)(T+2µ)

)(v-4)Q201
2

+ v2(v2+2)(Ti
+µ)2(v-2)Q40) / l(T

i+p)2(T+2µ)2(v-4)(v-2)1 . (13)

2
Proof. e-Mt (0, vcr /( v-2)E) when T-IG(cr2

' 
v). Then, f(T)= [2./r(v/2)]

2 2

-PT i4T
.(072/2)V/2T--(V+ne 2 Etr2,=072/f v-2), Ecr4)=v2,74 .

so, i((v-2)(v-4)).
2 ' 2 ' 2

Using these expressions appropriately in Theorem 1 yields Corollary 1. tt

Corollary 2. If e-N(0,cr2E) then cr2 =c r2 cr2 =a2 (say), and
2 e2 2' el 1

2 2 2 4
pN(cri,SN) = (14)

=

+ v.2(v2+2))/(T+2µ)2 (15)

(cr2 s2) = 0.41,2[f.r _12,2

+ 2v1(Ti+p)(T2+µ)(T+2µ)Q021+2(T +11)202 [v1Q22-(T+2µ)Q201

+ v2(v2+2)(Ti+µ
)2Q40) ((T1

+1.02(T4-24.01 •

Proof. This corollary follows from Corollary 1 as e-N(0,T22E) when v=op.

(16)

Remarks.

(i) The risk expressions of Bancroft (1944) (allowing for the change in H1)

and of Toyoda and Wallace (1975) follow from Corollary 2 by setting g=-k.

7



(ii) If a=0, c= 
Q

co, then Q. =l so we never reject Ho. Then,ij
2 2 2 2

PUT ,S 
A ii 

Conversely, 
Q

a=1, c=0, then Q. so that we rejecte
l 
P e

l .

H
o• 

Then, p(cr
2 
,S
2 
)=p(cr

2 
,S
2 
).

e P e N
1 1

(iii ) mo Lrp(cr:1,Sp2 )1 =01 imo [Or; N ]=0 while 1 im [p(c
'

r2 S2 )]= 
2 
(v
2 
+2)E(T4))

/(T+2µ)2>0. Intuitively it is better to ignore the prior information when it

is very false, and pre-testing leads us to follow the correct strategy of

ignoring the second sample when estimating cr2 .

(iv) If 0=1, that is, the error variances are equal, then the sign of

ore2i,sA2 10=')-P(T: ,sN2 10=1)=1E(T4)[(Tiv)2(vi+v2)(vi+v2+2)

-vi(vi+2)(T+241)2+ (E(T2)) 2(T+2µ)(Tiv) [(T2+µ) (vi-(k+µ))

-(T1v)(1/2-(k+µ))]1/((T+242)(T1v)) 2 (17)

is negative if (.)<O, so that imposing valid prior information produces a

risk gain. The sign of (17) is not obvious. If we are employing the

components then (17) is equal to [-2E(T4)v2/(v1(v1+v2))] which is negative

for all v1, v2, VT). However, the sign is still ambiguous if we are using

the ML or the M components. We will return to this feature in Section 3.

(v) The risk functions of SN2 and SA2 have two intersections with respect to

O. Let these be 01 and 02. Their values are

= [v2(Ti+µ)2 [v1E(T4)-(T+2g) (E(T2)) ±(T1+g)Iv1v2 (E(T4)2

(E(T2)) 41 2 2 1

-2v1v2(T1+µ) (T+2µ )E(T4) (E(T2)) 2 [V2(T+2A)+2(T2-11.1)1 
1 

+1(Vi+2)E(T4)

. Cr +µ)(2T +T +3µ)-2v (T +g)(T+ (18)2 1 2 1 1 2
241)(T 4v) (E(T2))1 ,

. _

= CJ±K i = 1,2.

8



to discern the signs of 01 and 02 from (18), though our numerical evaluations

with Mt regression disturbances suggest that there are two possibilities. We

comment on this in the next section.

(vi) Bancroft (1944) and Toyoda and Wallace (1975) show that there is .a

0-range over which it is preferable to pre-test rather than to always-pool or

to never-pool the two samples when e-N(0,cr22E), using the usual L component.

They find that there is a family of pre-test estimators, with ce(0,2), which

strictly dominate first, the never-pool estimator for all 0 and secondly, the

always-pool estimator for a wide range of 0. It is only in the neighbourhood

of '0=1 that the risk of s is smaller than that of SL. Ohtani and Toyoda

(1978) prove • that of this family. of dominating estimators the pre-test

estimator with c=1 has the smallest risk. The following theorem extends this

result to the case that we are investigating.

Theorem 2. The pre-test risk function has a minimum when

c*= (vi(T2+µ))/(v2(Tfi-p.)) .

Proof. See the appendix.9

So, in particular, 1=1, cAL=(viT2)/(v2T. 1), and II= (vi(v2+2)) /(v2(v1+2))

3. Numerical evaluations of the risk functions

Given the complexities of the risk * expressions, it is useful to evaluate

them numerically, which we have done, assuming Mt errors, for the I.-, the ML

and the M component estimators for various values of v, a, v1, v2, and k, as

functions of 0. We evaluate the risks relative to cr22 and so, define the

-2 410
relative risk of an estimator "i2 of Cr2 

PCr 
2 
's 

)/ 
as R-2= ( Giles (1990a)el s cr2 *

el

details the range of the values of the arguments considered and the computer

programs employed. Figures 1 and 2 depict typical results for the L

components when v1=16, v2=8, k=3, v=5 and v=co. For this example c*=1

9



details the range of the values of the arguments considered and the computer

programs employed. Figures 1 and 2 depict typical results for the L

components when v1=16, v2=8, k=3, v=5 and v=co. For this example c*=I

corresponds to a=47.37.. The risk functions for the ML and the 1.1 components

are qualitative similar, though there are quantitative differer..cs which we

mention below.

Remarks.

(i) If e-Mt(0,v1722/(v-2)E) and we are using the ML or the M crrnnonents then

the risk difference (17) is negative for all possible values of v_11 So, when

the error variances are equal it is always preferable to pool the samples,

rather than to ignore the prior information.

(ii) The numerical evaluations suggest that there are two poss::::e values of

0
1j 

and 
2f 

j=L,ML,M. First, 
°<1j<1' 2j

•crt<0 and secondly, C .<1, 
2j
.>1.(k Ij 

Thus, there exists one feasible intersection, 01ie(0,1). So, the never-pool

estimator dominates the always-pool estimator when 0<0<01i. Alternatively,

the always-pool estimator has smaller risk than the never-pool es-limator when

.<0.1. For this 0-range the gain in sampling variance frcr= the extralj

degrees of freedom when pooling the samples outweighs the bias from pooling

the (unequal) variances. These conclusions accord with those by Toyoda

and Wallace (1975).

Our numerical evaluations also suggest that if v2sv, while451ML</)1M<(k1L

the inequalities are reversed if v1<v2. Further, Oii de=--eases as v

increases, j=L,ML,M. This implies if we assume normality 74-nen in fact

e-Mt(0,vcr
2
Av-2)E), v<co, that there is then a 0-range over whic-.11 we would

incorrectly choose to pool the samples.

(iii) For relatively small v the pre-test estimator can stricnly dominate

both of its -compbnent estimators. In such cases, it is always preferable to

pre-test, and given Theorem 2, to use c=c*. For these values of v the

10



pre-test estimator has smaller variability than either of its component

estimators.12

(iv) Of the L, ML, and the M estimators, the numerical results suggest, if

one adopted a pre-test strategy and a crude minimax risk criterion, that for

normal disturbance terms the preferred estimator is sp2m for a=0.01 and 
5
p2L

for a>-0.05. However, if v is relatively small then it is preferable to use

the ML component estimators. So, given our previous discussion, for small v

we should pre-test using the ML components and a critical value of

(v
1
T
2
)/(v

2
T
1
).

4. Concluding remarks

In this paper we have examined the risk properties of estimators of the

disturbance variance, after a preliminary test of homogeneity, when the joint

distribution of the unobservable errors in each sample is SSD but it is

assumed to be normal. We have considered the usual least squares estimators

of the error variance and we have also investigated the risks of the

never-pool, the always-pool and the pre-test estimators whose components are

the usual never-pool maximum likelihood and the minimum mean squared error

estimators assuming a correctly specified error distribution. Of course,

under the investigated specification error these estimators do not possess

their desired properties.

Nevertheless, our results suggest that these estimators are preferred to

the usual least squares estimator when v is small. Then the ML pretest

estimator which uses c=c* strictly dominates: it is never preferable to

always-pool the samples without testing the validity of the null hypothesis,

nor is it optimal to ignore the prior information.

We should recall that the results discussed here apply to a one-sided

alternative hypothesis. It remains for future research to consider the

two-sided case. We also need to investigate the sensitivity of the results

11



to the particular form of non-normality considered. Whether they will extend

to the situation of non-normal but identically, independently distributed

disturbances is not clear.

July. 1990 
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Appendix

Proof of Theorem 1

S 2=0&" M*
1
e*/(T

1 
+p) where M* is a (TxT) idempotent matrix partitioned as1

[M1
, M1=X1(XIXI) 1X" r(M1)=v1, and e*' =fejArsi Now, p(cr

e0 0 1
03

E(S4 )-20E(T2)E(SN2 )+02 (E(T2)) 2 and E(S)=j' EN(SN2 )f (t)d-r where EN(. )=E(. ) when

0

e-N(0,T2E). So, then el-N(0, T2IT) and e*' , which gives
*1

EN(e* Mte*/T2)=v1, EN(e*' MIe*/T2)2=v1(v1+2). Using these results p(cr2 ,S 2 )
el N

follows directly.

2
Similarly, SA=(ibe*' Mile*+e*' Mp*)/(T+41), where Mil is a (TxT) idempotent

r

0 

0
matrix partitioned as Mil= M2=X2(X2C2)

-1 
r(M2)=v2. Now, when

mi.

e-N(0,T2E) so that e*-N(0,T2IT) it is straightforward to show that the

quadratic forms (e*' Mle*/T2) and (e*' Mle*/T2) are independent. Further,

(e*1 Mp*/T
2 
)-

2 
x
v
. So, using the moments of a random variate and the fact2 

co

that we can write E(J=f EN(. )ftr)d-c. the p(cr2 ,S ) follows in the same manner
el A

0

as it did for S1 .

Finally, to establish p( Cr
2

el 
,S
2
) we write
P

=[Sp2 0(T+2µ) (e*' Mile*)+ [(Ti+11)(e*' Mile.)-0(T2+µ)(e*' Mite*)]

. I[0, co] ((vie*'Mp*)/(v2e*' Mile*)) 1/ ((Ti+µ)(T+2µ)) ,

and note that

p( o-2 ,S2) = E(S4)-20E(T
2
)E(S

2
)+0

2 (
E(T

2))2.

el P
(A.1)

co
Now, E(. )=.1 EN(.)f(t)d-r and 'so we require EN(S) and EN(Sp4). Using Lemma 1

of Clarke et al. (1987) we have

13



EN(S) = (Ov1r2(T+20+v2T2(T1+p)Q20-v1°(T2411)T2Q02) 
/1(Ti+p)(T+2µ)) ,

EN(S) 
=

9 (vi+2)(T+241)2-02v1(vi+2)(T2+µ)(2T1+T_+311)0z '04

+ 20viv2(Ti+µ)2Q22+v2(v2+2)(Ti+µ
)2°40) 

/ ((Ti+A)(T+2µ)) 2.

To complete the proof we integrate these expressions with respect to T to

and

give E(S
2
) and E(S

4
), then substitute these into (A.1).

Proof of Theorem 2

072 ,S;) = E [(SA2-0E(T2)) 2I[0,c1M+(SN2 -0E(T2)) 21(c,.)(J)I

03

= T4ENI [((0&" Mille*/T2)+(e" Mle*tr2)) AT+212)

0

- 0E(1.2)/T1 21 ((el" Mr/T2)sg) + [(9&" M7e*/T2)/(T1+pt)

- OE(T2)/T1 2 [1-I ((e*1 Itge*/T2)sg) I If (T)dr , (A.2)

where g=c0v2(0" Mille*/T )/vi. Given (A.2) the remainder of this proof follows

the approach outlined in Giles (1990b) for a similar theorem.
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Footnotes

lA discussion of this family of distributions is beyond our scope. See,

for example, Kelker (1970) and Muirhead (1982).

2We could assume that each sample is generated by a different variance

mixing distribution. If the mixing distributions are independent then we can

easily extend our analysis. However, it is unclear how we would proceed if

they are dependent.

3
In this paper we require v>4 and so, in particular, our results exclude

the Cauchy case.

4
Our alternative hypothesis is consistent with the majority of the

existing literature.

5
Yancey et at. (1983) and Ohtani (1987) consider a related, though not

identical, pre-test problem to that investigated here. They also assume

normality.

6This result is also is by King (1979).

7
Giles (1990b) uses the least squares unrestricted and restricted

estimators of the error variance. Giles (1990a) derives the critical values

which minimise the pre-test risk function when one uses the usual maximum

likelihood or the minimum mean squared error (assuming normality) component

estimators. Then, the optimal critical values are zero and v/(v+2)

respectively, where v=T-k.
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8
One may then reasonably ask why we do not consider the L, ML, and M

pooled estimators assuming that the error variances are equal and that the

disturbances are normally distributed. These estimators should be more

efficient than the pooled estimators that we consider as they incorporate the

information that (3 is common to both samples. However, even under a

normality assumption , the non-null distribution of e' Me is not clear, so we

do not proceed along this path. One could presumably conceive of many other

always-pool estimators to that which we investigate.

9
The form of this proof is not the same as that used by Ohtani and

Toyoda (1978). Further, this proof can be easily extended to allow for

omitted regressors. c* remains unchanged. See Giles (1990a).

10
We lose no generality in considering relative risk, and the results

could equally be interpreted as the risk functions when

11We noted in point (iv) of Section 2 that (17) is always negative for

the L components but we could not algebraically sign (17) for the ML or the M

components.

12This result is also found by Giles (1990b) when estimating the error

variance after a pre-test for exact linear restrictions.
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