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ABSTRACT

In this paper we consider the risk (under quadratic loss) of an estimator cf
the error variance after a pre-test for homogeneity of the variances in the
two-sample linear regression model. = We investigate the effects on risk of
assuming normal disturbances when in fact the error distribution is

spherically symmetric. We also broaden the standard assumption that the
never-pool variance estimators are based on the least squares principle.
Using the special case of multivariate Student-t regression disturbances as
an illustration, our results show that in some situations we should always
pre-test, even if the error variances are equal, and we provide the optimal
test critical value. The evaluations also show that using the least squares
technique to form the never-pool estimators may not always be the preferred
strategy.

*The author is grateful to David Giles for many helpful discussions and
suggestions.
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1. Introduction and estimator definitions
We consider a regression model which uses two samples, with 'I'l and T2
observations (T1+T2=T). There is a common location vector, B, but possibly

different error variances:

or more compactly, y=XB+e , where ¥; is a (Tixl) vector of observations on

the dependent variable, X, is a non-stochastic (Tixk) design matrix of rank k

i

(<Ti), and € is a (Tixl) vector of regression disturbances, i=l,2. We

assume that E(e.)=0, and that !-:(e.e.’)=<'r2 IT . Let ¢=o-2 /o2 , and
i : ii e, T, e’ e,
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Suppose that e has a non-normal distribution of the form f(e)=0,fmfN(e)f('c)dr,
where fN(e) is f(e) when e~N(0,-tZZ),and f(t) is supported on [0,»). Hence,

0': =E(rz) and o-: =¢E('cz). So, (Muirhead (1982)) the joint distribution of
2 1

the disturbances in each sample is spherically symmetric, while e has an

elliptically symmetric distribution (ESD) when cr: wz , and a spherically
1 2

symmetric distribution (SSD) when the variances are equal.l'2 The normal and
multivariate Student-t (Mt) distributions are well known members of this
family. The latter distribution arises if f(t) is an inverted gamma density

with, say, scale parameter 0‘; and degrees of freedom parameter v; we write

r~IG(cr§,v) and e~Mt[O,vo-;/(v-2)E]. The marginal distributions are univariate

Student-t and for small values of v they will have thicker tails than under
normality. When v=1 the probability density function (pdf) is Cauchy while

i s - 3
it is normal when v=w.




We consider the estimation of o': given uncertainty about whether the
1
second sample comes from the same population as the first when the researcher

wrongly assumes that e~N [O.o-: Z]. The pre-test under investigation is of
2 :

HO:¢=lvsH:¢<1. (3)

1
We assume for simplicity a one-sided alternative hypothesis, though the

analysis can be extended to the two-sided case.4
The research on this particular pre-test problem has followed the
literature associated with the pooling of two normal samples. If the

variances are unequal then an unbiased (never-pool) estimator of c-: is
1

2 _ .2

NL 1

s

2_ - . - =’ ‘v.=T - = - =1y,
s where si-(yi Xibi) (yi xibi)/vi € Miei/vi' v Ti k, Mi IT. XS, X

i
and bi=Si'lXi'yi, S=(X' X)), i=L2. s? is the usual unbiased least squares
(L) estimator of o-:. Conversely, if the variances are equal then the two
i
samples may be pooled and an unbiased (always-pool) estimator of 0'2 is s:L=
1

2 2 ‘et . .
[vlslfvzszl / (vl+v2). A test statx;}xc for homoscedasticity is

- . N :
J--[vleszZez]/[vzel Mlell’ and f(J)=¢ T [F(vz'vl)], where F(VZ'VI) is a

central F random variate with vy and v degrees of freedom.

The researcher tests Ho using J and so he employs the pre-test estimator

{s:"_ if 1>¢

if J=sc

2 - 2 2
sp = 2 I[O,c](‘”sAL + I(c,m)(J)SNL , (4)
SAL

where Il ](J) takes the value unity if J lies within [.,.], zero otherwise,

and c is the critical value of the test corresponding to a test size of «.
Assuming normal errors and the least squares based estimators s;]_and s.:L’
Bancroft (1944), Toyoda and Wallace (1975), Ohtani and Toyoda (1978), and
Bancroft and Han (1983) have examined the sampling properties of s;.s We
generalise both of these assumptions in this paper.

There is substantial -empirical evidence to support the possibility that




There is substantial empirical evidence to support the possibility that
some economic series may be generated by processes whose distributions have
more kurtosis than the normal distribution (e.g., Mandelbrot (1963, 1967),
Fama (1963, 1965), Blattberg and Gonedes (1974), Praetz (1972), and Praetz
and Wilson (1978)). The family of distributions that we investigate is
motivated by sbmé of these studies, and by those papers which have studied
linear regression models with ESD ‘(or SSD) disturbances, including Thomas
(1970), King (1979), Chmielewski (1981), Judge, Miyazaki and Yancey (1985),
Ullah and Zinde-Walsh (1985), Zinde-Walsh and Ullah (1987), and Giles
(1990b). In particular, Chmielewski (1981) shows that f(J) holds for all
members of the elliptically symmetric familye, and Giles (1990b) derives the
exact risk (under quadratic loss) of pre-test estimators of the prediction
vector and of the error variance of a linear regression model with
spherically symmetric disturbances when the pre-test is for the ;falidity of a
set of exact linear restrictions on the coefficient vector. She finds that
when estimating the conditional forecast of y the widening of the error
distribution assumption has little impact on the qualitative properties of
the risk function of the predictor pre-test estimator, though there are
quantitative effects. In contrast, there can be a substantial impact on the
risk functions of the estimators of the error variance. Specifically, she
shows that pre-testing, with a critical value of unity, is. the preferable
strategy when the disturbances are Mt with small v.7

In this paper we extend the aforementioned pre-testing literature first

by deriving the risk functions of a family of pre-test estimators of o-z

1

after a pre-test for HO' when the researcher wrongly assumes that the

sub-sample spherically symmetric disturbances are normally distributed. Our

second extension relates to the component estimators under investigation. To

date the research in this area has only considered the pre-test estimator




based on S;'L and s:L while, within the linear regression model framework, two

other never-pool estimators of a~: are commonly used (assuming normality):
i

the maximum likelihood (ML) estimator and the minimum mean squared error (M)
estimator. Let these estimators be denoted by s?ML and S?M respectively.
They differ from s?L by the divisor used, this being 'I’i for the ML estimators
and (vi+2) for the M estimators. These estimators are members of the family
s’i" = (" Mye,)/(T;4p). (s)
We can generate S?L' s?ML' and S?M by setting p to -k, O, and (-k+2),

2.-

respectively. Let SN

Si be the family of never-pool estimators of zr: .
1

In the spirit of S.:L we can conceive of two alternative always-pool
estimators S:ML and S}ZXM’ which have as their components the sample ML and M
. 2 2 . . 2 _ 2 2
estimators, SiML and Sime respectively. That is, s!lﬁ_[TlslML+T252ML]/r and
2 _ 2 2 2 2 2 ~
SAM= ((v1+2)slM+(v2+2)52M]/(vl+v2+4). Sapr Sayp and s aM 2re always-pool

estimators of the form

s? = [‘Tl““’ (el'Mlel/(Tlﬂx)] T [ez’Mzez/('r2+n)]]/('r+2u). ()

.2 2 2 2
We obtain s AL’ SAML’ and SaM by setting p to -k, O, and (-k+2). Clearly SAML

is not a ML estimator, ‘nor does S:M possess .the M property, even if the
errors are normal. Of course, when the errors are non-normal then even the
sample estimators are not the ML or M estimators, though the researcher
proceeds assuming that they possess these px*opex'ties.8

So, given (5) and (6), the pre-test estimator we investigate is

if J>c

2 2
](J)SA +1 )(J)SN . 7)

= IIO,c: (c,»

if Jsc
In the next section we derive and discuss the risk functions of SN’ S:, and
S;. To illustrate our results we consider exact evaluations of the risks for

the special case of Mt regression disturbances in Section 3. The final

section is devoted to concluding remarks.




2. The risk functions
Theorem 1 gives the risk functions of the estimators, where we define

the risk of an estimator S° of c-: as p(a-: ,Ez)=!:'.(§2—o-: )2=E(§2—¢E(tz)] 2,
1 1 1

Theorem 1. If e~ESD with E(e)=0, E(ee’ )=a': % and the pre-test is of Ho in
2

(3), then

2 o2, _ 2 4 2.)2 _ 2
p(crel.SN) =¢ [Vl(vl+2)E(T )+[E('c )] (Tl+u)('r1+u 2v1)]/(Tl+u) y

2 o2, _ |2 4 2.)2 -
pley 53 = [¢ [vl(v1+2)E('r )+[E(1.' )] (Te2u)(T+23 2v1)]

+2vg [vls(z")-mzu) [E(rz)] 2] +v2(v2+z)z(r“)] /(Te2p)?,
ple? 5% 62| v (v, +2)E(Th) | (T+21)?~(T,,+1) (2T, +T_+3u)Q
el' P 11 2 172 04
(T+242)(T +12) [E('tz)] z [(Tl+p.—2v1)(T+2p)+2(T2+p)v1002]]
2 4 2,12
2T ) ¢[vlv2E('r Q,,~v,(T+21) [E('t )] 020]
vz(v2+2)(Tl+u)zE(f4)Q 40]/ [(Tl+u)(T+2p)] z,
where Qij = Pr. [F(v2+i,vl+j)s[vz(v1+j)c¢]/(vl(v2+i)]]' i,j = 0,1,... .
Note that Qij does not depend on T.

Proof. See the appendix.

Corollary 1. If e~Mt(0,vo-;/(v-2)Z] then, for v>4

2 o2y _ 22 4 _ 2
th(o-el,SN) v c2[2v1(vl+v 2)+(k+p) (v 4)]/

[(T1+u)2(v-4)(v-2)2] ,

th(u':l.Si) 2 vztr‘;‘ [¢2 [(v-4) [v2+2(k+u)] 2+2v1(v1+v—2)]
+ 2v2¢ [Zvl-(v-4) [v2+2(k+!1)]] +v2(v2+2)(v-2)] /

6




[(T+2p)2(v-2)2(l.’-4)] .

Py t(o‘ S ) = v, [¢2 [(T+2“)2 [(v-4)(k+p)z+2vl(vl+v-2)]
- vl(vl+2)(v-2)(2’I‘1+T2+3u)('r2+u)00 4+2v1(TX#p)(T+2u)

' 2
-(Tz*“""“”%z] s2AT v, [vl(v-Z)sz-(T+2u)(v-4)Q20]

. v2(v2+2)(T1+u)z(v-2)Q4o]/[(T‘+u)2(T+2p)z(v-4)(v-2)2]. (13)

Proof. e~Mt[O,W2/(v-2)Z] when 'r~IG(a' ). Then, f(1)= [2/1‘(v/2)]

v/2_~(v+1), Ve /ZT

(vcr /2) , so, E('rz)=va';/(v-2), E(T4)=vzd‘;/ ((v-Z)(v-4)] .

Using these expressions appropriately in Theorem 1 yields Corollary 1. #

Corollary 2. If e~N(0,0';Z) then o': —crz. :r2 —c' (say), and

2 °

pN("T'S;) = ¢zo-; [2v1+(k+u)2] /(Tldrp)2

4

pN(vf,s:) o, [¢2[[v2'+2(k+p)] 2+2v1] -2¢v, [v2+2(k+}1)]
2
+ v2(v2+2)]/(T+2u) ,

o, (¢2 [(T+2}.l)2 [(k+u)2+2vl) =v (v #2)(Ty#) (2T #T,#30)Q
+ 2v1(Tl+p)(T2+u)(T+2u)002] +2(Tl+p)2¢v2 [VIQZZ'(T+2”)QZO]
+ vz(v2+2)('rl+u)20 4 0] / [(Tlm)z(’nzu)z] .
Proof. This corollary follows from Corollary 1 as e~N(0,a‘§Z) when v=w.

Remarks.
(i) The risk expressions of Bancroft (1944) (allowing for the change in Hl)

and of Toyoda and Wallace (1975) follow from Corollary 2 by setting p=‘-k.




(ii) If a=0, c=w, then Qi j=l so we never reject Ho. Then,

p(c‘2 ,Sz)=p(o‘2 ,Sz). Conversely, if a=l, c=0, then Q,.=0 so that we reject
e:l P € A : ij

2 Q2,2 o2
HO. Then, p(¢el.Sp)-p(oel,SN).
(iii) lim[p(a-: ,S;)]=lim[p(c~: 'S:I)] =0 while lim[p(a-: ,S:)]=(v2(v2+2)E(r4)]
¢$->0 1 >0 1 >0 1
/('I’+2p)2>0. Intuitively it is better to ignore the prior information when it
is very false, and pre-testing leads us to follow the correct strategy of

ignoring the second sample when estimating az N
1

(iv) If ¢=1, thé.t is, the error variances are equal, then the sign of
2 o2y, (2 <2 la 1y 4 2
p(vel,s Al¢—1) p(oel,leqs-l) E(t )[(Tl-m) (vl+y2)(vl+v2+2)

v (v2)(Ts2)% [E(tz)] 2(Te2u)(T ) [(sz) [vl-(km)]

(T ) [vz-(kﬂx)]]}/[(T+2p)(Tl+p)]2 amn
is negative if {.}<O, so that imposing valid prior information produces a

risk gain. The sign of (17) is not obvious. If we are employing the L

112

for all Vs Vo f(r). However, the sign is still ambiguous if we are using

components then (17) is equal to [—2E(r4)v2/[v (v +v. )}] which is negative

the ML or the M components. We will return to this feature in Section 3.

2
N

¢. Let these be ¢l and ¢2. Their values are

(v) The risk functions of S{ and Sz have two intersections with respect to

$, = [vz(Tlﬂx)z [le(t4)-(T+2u) [E('cz)) 2] .t(Tlﬂl){vlvz [E('l:")2

. [vlvz(Tl+u)z+(vl+2)(v2+2)(T2+u)(2Tl+T2+3u)] +v;(Tl+p)z(T+zp)2 {E(rz)) 4

1

20T TH2E(T") [E(tz)] 2 [vz(r+zp)+z(T2+m] }2]/ [vl(vl+zn~:(r“)

'(Tz*")(2T1+T2*3'f)j2v1(rl*“)(T*z‘“)”2""’ [E(tz)] 2] ,




to discern the signs of ¢1 and ¢2 frorn (18), though our _numerical evaluations
with Mt regression disturbances suggest that there are two §ossibilitie§. We
comment on this in the next section.

‘(vi)  Bancroft (1944) and Toyoda and Wallace (1975) show mét there is -a |
¢-range over which it is preferable to pre-test rather than‘fo alwas's-pool ‘or
to never-pool the two samples when e~N(O, 0'22), using the usual L components

They fmd that there is a family of pre-test estimators, with ce(0,2), Wthh_
strictly dominate fx‘rst{ the never-pool estimator for all ¢ and secondly, ‘the
always-poc;l evstiméto.r, for a wide range of ¢. It is only in the neighbourhood

_of ‘¢=1 that the risk of s>, is smaller than that of s . Ohtani and Toyoda

AL PL’
T (1978) prove ° ihat_ of this family of dominating estimators the pre-test
a estimator with c=1 has the smal;est risk. The following theorem extends this

result to the case that we are investigating.

. Theorem - 2. The pre-test risk function has a minimum when

[v (T. +u)] [ (T +u)]
.. 9
Proof. See the appendix.

So, in particular, c*=l, c‘ -(v T )/(v T) and c“ [v (v. +2)] [v (v +2)]

L
3. Numerical evaluations of the risk functions.

Given the complexities of the »r'isl.cv""expressions, it is useful to evaluate
them numerically, which we have dor;e, assuming Mt errors, for the L, the ML
and the M component estimaiors fbxj various values of v, «, vl' v,, and k, as

functions of ' ¢. We evaluate the risks relative to o; and so, define the

410

o> Giles (1990a)

‘relative risk of an estimator 52 of o': as R—z—p(o- ,59/c
S e

1
" details the range of the values of the arguments considered and the computer

programs employed.  Figures 1 and 2 depict typical results for the L »

components when v

=16 v,=8, k=3, v=5 and v=w. For this example c*=l




deté.ils the range of the values of the arguments considered and the computer
programs employed. Figures 1 and 2 depict typical results for the L
1=16. v2=8, k=3, v=5 and v=w. For this example c*=l
corresponds to «=47.3%. The risk functions for the ML and the M components

components when v

are qualitative similar, though there are quantitative differenz=s which we
mention below.

Remarks.

(i) 1f e~Mt[0,va‘;/(v-2)2] and we are using the ML or the M ccrmponents then
the risk difference (17) is negative for all possible values of v.u So, when
the error variances are equal it is always preferable to pool the samples,
rather than to ignore the prior information.

(ii) The numerical evaluations suggest that there are two possizie values of
¢1j and ¢2j' j=L,MLM. First, 0<¢l j<x, ¢2j<0 and secondly, Omqu, ¢2j>1.
Thus, there exists one feasible intersection, ¢l je(O,l). So, tze= never-pool
estimator dominates the always-pool estimator when 0<¢<¢1j. Liternatively,
the always-pool estimator has smaller risk than the never-pool estimator when
¢lj<¢51. For this ¢-range the gain in sampling variance frc— the extra
degrees of freedom ‘when pooling the samples outweighs the bias Irom pooling
the (unequal) variances. These conclusions accord with those foumz by Toyoda
and Wallace (1975).

Our numerical evaluations also suggest that ¢1ML<¢1M<¢1L it v while

2=Vp
the inequalities are reversed if vl<v2. Further, ¢l j decr=ases as v

increases, j=L,ML,M. This implies if we assume normality =hen in fact

e~Mt [O,vo-;/(v—z)}:], v<w, that there is then a ¢-range over whizh we would

incorrectly choose to pool the samples.
(iii)  For relatively small v the pre-test estimator can stricily dominate
both of its ‘component estimators. In such cases, it is always preferable to

pre-test, and given Theorem 2, to use c=c®. For these values of v the




pre-test estimator has smaller variability than either of its component
estimators. 12

(iv) Of the L, ML, and the M estimators, the numerical results suggest, if
one adopted a pre-test strategy and a crude minimax risk criterion, that for
normal disturbance terms the preferred estimator is sfz’M for «=0.01 and S;L
for «=0.05. However, if v is relatively small then it is preferable to use
the ML component estimators. So, given our previous discussion, for small v

we should pre-test using the ML components and a critical value of

(vl'l"z]/(val).

4. Concluding remarks

In this paper we have examined the risk properties of estimators of the
disturbance variance, after a preliminary test of homogeneity, when the joint
distribution of the wunobservable errors in each sample is SSD but it .is
assumed to be normal. We have considered the usual least squares estimators
of the error variance and we have also investigated the risks of the
never-pool, the always-pool and the pre-test estimators whose components are
the usual never-pool maximum likelihood and the minimum mean squared error
estimators assuming a correctly specified error distribution. Of course,
under the investigated specification error these estimators do not possess
their desired properties.

Nevertheless, our results suggest that these estimators are preferred to
the usual least squares estimator when v is small. Then the ML pretest
estimator which uses c=c* strictly dominates: it is never preferable to
always-pool the samples wiihout testing the validity of the null -hypothesis,

nor is it optimal to ignore the prior information.

We should recall that the results discussed here apply to a one-sided

alternative hypothesis. It remains for future research to consider the

two-sided case. We also need to investigate the sensitivity of the results

1




to the particular form of non-normality considered. Whether they will extend

to the situation of non-normal but identically, independently distributed

disturbances is not clear.




Appendix
Proof of Theorem 1
S:‘=¢e"M‘l'e'/(T1+p) where MI is a (TxT) idempotent matrix partitioned as

[0)
= ’ s - ‘" 2 <2y _
0], MI-XI(XIXI) Xl. r(Ml)—vl, and e* —[e’ll\/$ eé]. Now, p(o'el,SN) =

©

E(S;I)-quE(rz)E(S;)wz[E('tz))2 and E(S§)=I EN(s;)f(r)dr where E,(.)=E(.) when
0

e~N(0,7°%). So, then e‘~N(0.'erT) and e*’Mje*/t’~x2, which gives
1

VYL IR YA CVL Ry . 2 o2
EN(e Mle /T°) v EN(e Mle /t°) vl(v1+2). Using these results p(o'el.SN)

follows directly.

Similarly, Si=(¢e"M'{e‘+e"Mie"')/('l'+2u). where ME is a (TxT) idempotent

00
. et *_ = 73 -1 ] =
matrix partitioned as M2 [o y ], MZ—XZ(XZXZ) Xz. r(Mz)—vz. Now, when
2

e~N(O,1:zZ) so that e*~N(0.'erT) it is straightforward to show that the
quadratic forms (e"M;e‘/rz) and (e"M;e‘/‘rz) are independent. Further,

(e"Mze‘/'rz%xf, . So, using the moments of a xz random variate and the fact
2 o0
that we can write E(.)=I EN(.)f (t)dT the p(cr: ,S:) follows in the same manner
1
[0}

as it did for Stfr

Finally, to establish p(cr: ,s;) we write
1

2—

Sp = [¢(T+2u)(e"MIe*)+[(Tl+M)(e“' Mie‘)-¢(T2+}1)(e"M‘l‘e‘)]

.I( 0,c¢] [(vlew Mie-)/(vzeu M’l‘e')] ] /{(Tl"ﬂ)(T"Zu)] s

and note that
2 o2y _ 4y 2 a2y, 42 2,)2
plof SP) = E(S)-20E (B 06 [E('t )] 3 (A1)
0 N "
Now, E(.)= EN(.)f (T)dt and so we require EN(SIZ’) and EN(SP). Using Lemma 1

[0}
of Clarke et al. (1987) we have




E\(SD) = [q&vlt2(T+2u)+v2'rz(’l'l+u)on-vlqb(Tzw)eroz]/((Tlm)('hz;x)],
and
E\(SH) = * [q&zvl(vl+2)(T+2u)2-¢zvl(vl+2)(T2+u)(2T1+T2+3u)QO4
2 2 2
+ 2¢vlv2(Tl+u) 022+v2(v2+2)(T1+u) Q 40]/ [(Tl+u)('l"+2p)] .
To complete the proof we integrate these expressions with respect to 7 to

give E(Slz,) and E(S;,), then substitute these into (A.1). #

Proof of Theorem 2

2 2, _ 2 2,12 2_ 2\]2
e Sp) = E[ 550800 g 0+ (55450 1y

(-]
= I r“x-:N{ [[(«ﬁe"M*{e‘/‘rzH(e" M:‘Ze‘/tz)]/('HZu)
o

- ¢E(12)/1'2] b [(e"MEe‘/‘tz)Sg] +[(¢e"M;e*/rz)/(T1+u)

- ¢E(12)/t2]2[1-1((e*’ Mze‘/tz)sg]]}f(r)dr , (A.2)

where g=c¢v2(e"M;e*/‘tz)/vl. Giv&i (A.2) the remainder of this proof follows

the approach outlined in Giles (1990b) for a similar theorem. #
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Footnotes
lA discussion of this family of distributions is beyond our scope. See,

for example, Kelker (1970) and Muirhead (1982).

2We could assume that each sample is generated by a different va}iance
mixing distribution. If the mixing distributions are independent then we can
easily extend our analysis. However, it is unclear how we would proceed if

they are dependent.

3ln this paper we require v>4 and so, in particular, our results exclude

the Cauchy case.

40ur alternative hypothesis is consistent with the majority of the

existing literature.

sYancey et al. (1983) and Ohtani (1987) consider a related, though not

identical, pre-test“ problem to that investigated here. They also assume

normality.
SThis result is also implied by King (1579).

7Giles (1990b) uses the least squares unrestricted and restricted
estimators of the error variance. Giles (1990a) derives the critical values
which minimise the pre-test risk function when one uses the usual maximum
likelihood or the minimum mean squared error (assuming normality) component
estimators. Then, the optimal critical values are zero and v/(v+2)

respectively, where v=T-k.




8One may then reasonably ask why we do not consider the L; ML, and M
pooled estimators assuming that the error variances are equal and that the
disturbances are normally distributed. These estimators should be more
efficient than the pooled estimators that we consider as they incorporate the
information that B is common to both samples. However, even under a
normality assumption , the non-null distribution of e’Me is not clear, so we

do not proceed along this path. One could presumably conceive of many other

always-pool estimators to that which we investigate.

9The form of this proof is not the same as that used by Ohtani and
Toyoda (1978). Further, this proof can be easily extended to allow for
omitted regressors. c* remains unchanged. See Giles (1990a).

1QWe lose no generality in considering relative risk, and the results

could equally be interpreted as the risk functions when cr;=l.

llWe noted in point (iv) of Section 2 that (17) is always negative for

the L components but we could not'-ifgebraically sign (17) for the ML or the M

components.

12This result is also found by Giles (1990b) when estimating the error

variance after a pre-test for exact linear restrictions.
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- FIGURE 1. Relative risk functions for-s%i, SgL, and S%L whé3; 

e ~ Mt(0,903/(v-2)8), v; =16, v, = 8, k = 3, v = 5.
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FIGURE 2. Relative risk functions for sﬁL, sﬁL, and S%L when

e ~ N(O,oéz), V] =16, Vo =8 , k = 3.










