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PRE-TESTING FOR LINEAR RESTRICTIONS

IN A REGRESSION MODEL WITH

SPHERICALLY SYMMETRIC DISTURBANCES

Judith A. Giles¥
University of Canterbury

Abstract

In this paper we derive the exact risk (under quadratic loss) of pre-
test estimators of the prediction vector and of the error variance of a
linear regression model with spherically symmetric disturbances. The
pre-test in question is one of the validity of a set of exact linear
restrictions on the model’s coefficient vector. We demonstrate how the
known results for the model with normal disturbances can be extended to this
broader case. Numerical evaluations of the risk expressions in the
particular case of multivariate Student-t errors suggest that sampling
properties of these pre-test estimators under these conditions are
qualitatively similar to those which apply under normal errors.

*This work forms part of the author’s Ph.D. research. My thanks to David
Giles, Tony Rayner, Robin Carter, George Judge, John Knight, Peter Morgan,
Kazuhiro Ohtani, Peter Phillips, Viren Srivastava, Mike Veall and Victoria
Zinde-Walsh for their constructive comments and suggestions. 1 am also
extremely grateful to Robert Davies for suggesting the use of his algorithm
ASI155 and for providing his software.

Correspondence:

Judith A. Giles
Department of Economics
University of Canterbury,
Private Bag,
Christchurch 1, N.Z.




Introduction
In a linear regression model, suppose that the process generating a

(Tx1) vector of observations on a dependent variable y is

y=XB +e, (1)
where X is a (Txk) full rank matrix of non-stochastic variables and B is a
(kx1) vector of unknown parameters. We assume that the (Txl) vector of
regression disturbances e is distributed according to the laws of the class
of spherically symmetric distributions which can be expressed as a variance
mixture of normals.1 Further, assume that the probability density function
(pdf) of e exists and that E(e) = O and E(ee’) = c'zl_r. We write e ~
ssp(0,1).%
Consider also m independent linear restrictions on B, summarised By the
hypotheses
Hg: r Vvs. le RB#r (2)
where R and r are (mxk) and (mxl) matrices of known constants and rank (R) =
m (<k). The usual statistic for testing the linear restrictions (2) is

v(Rb-r)’ [RST'R’ 1 (Rb-1)
m(y-Xb)’ (y-Xb) ’

F = (3)

where v = (T-k), S = (X’'X), b = S-lX’y is the unrestricted least squares

estimator of B, and ;Z = (y-Xb)/(y-Xb)/v is the unrestricted unbiased

estimator of o‘z. The restricted least squares estimator of B which imposes

H0 is b* = b-S-lR’ [RS-lR’ ]-l(Rb-r) and the corresponding estimator of the
error variance is crt";2 = (y-Xb*)’ (y-Xb*)/(v+m). 0';2 is unbiased only when HO
is true.3

We are usually uncertain of the validity of the prior information, so

the common procedure is to (pre-)test H0 prior to estimating the parameters

of the model. This results in pre-test estimators of B and oz, say b and crze

respectively. The sampling properties of these estimators of the parameters




of the linear regression model, after a pre-test for linear restrictions on
the coefficient vector, have been widely examined (see, for example, Brook
(1972), Wallace (1977), Judge and Bock (1978), Ohtani (1988), Clarke, Giles
and Wallace (1987a,b), and Gelfand and Dey (1988)). All of these studies
assume that the regression disturbances are normally distributed, and it is
this assumption which is generalised here.

There is a large body of literature suggesting that some economic data
series may be generated by processes whose error distributions have fat
tails, or even infinite variances. Examples include price-change analysis
in the stock, financial and commodity markets (Fama (1963, 1965), Sharpe
(1971), Praetz (1972), Blattberg and Gonedes (1974) and Sutradhar and Ali
(1986)); cash flow analysis (Granger and Orr (1972)); and demand analysis
(Coursey and Nyquist (1988)). The possibility of non-normal regression
disturbances has led to searches for robust estimators, resulting in such
estimators as the M-, L-, and R-estimators. See, for instance, Huber
(1981), Koenker (1982), Hampel et al. (1983) and Judge et al. (1985).

There have also been many studies of the robustness of traditional
estimators. In  particular, these studies show that the least  squares
estimator is sensitive to the form of the underlying distribution, because

it minimises squared deviations and so, gives a relatively heavy weight to

the tails of the distribution.4 Various alternative distributions to

normality have been investigated .  One that has received considerable
attention in the literature is the spherically symmetric family of distribu-
tions (and its parent distribution, the elliptically symmetric family).
Well known members are the normal and the multivariate Student-t distribu-
tions; the latter includes the Cauchy distribution.

The T-dimensional random vector e is said to have a (multivariate)

spherically symmetric distribution (SSD) if e and He have the same




distribution for all (TxT) orthogonal matrices H. Hence, its distribution

is independent of direction from the origin and is a function only of

1/2

distance from the origin: that is, r = (e’¢€) So, the joint pdf of e is

of the form

f(e) = ¢le’e) (4)

with respect to the Lebesgue measure on RT, where ¢: [0,0)-[0,0) and
(-]

IrT-1¢(rz)dr - woara2 V2

(o]
which are dependent but are uncorrelated:  the normal distribution is the

All non-normal SSD’s have components

only spherically symmetric law for which the observations are independent.
Discussions of this family of distributions are given by Kelker (1970),
Devlin et al. (1976), King (1979), Chmielewski (1981), and Muirhead (1982),
for instance.

This is a sensible extension of spherical normality to investigate as
first, it is a class of density functions whose contours of equal density
have the same spherical shape as the spherical normal; secondly we can
generate members which have fat and thin tails relative to those of the
normal; thirdly, all marginal and conditional densities of a spherical
random vector are also spherically distributed and have the same shape; and
finally, a subclass of the spherically symmetric family, say SSDN, can be
written in terms of a variance mixture of normal distributions:

(-]
fle) = J’ OO
(o]

where fN(e) is the pdf of e when e ~ N(O.‘rzl.r) and f(t) is the pdf of T

which is supported on [0,@). In this case o*: = E(O).
So, we may have non-normal regression disturbances even if each &

(i=1,...,T) is normally distributed when the variance of & is itself a




random variable. In this paper we consider the f. amily of SSD’s which can be
expressed in the form (5).

For instance, if f(t) is an inverted gamma density with, say, scale
parameter o2 and degrees of freedom parameter v, then (5) is the pdf of a

multivariate Student-t (Mt) distribution. That is,

c =1 _, 2=(T+v)/2
[1+v“623e] ,o~>0,v>0,—m<ei<oo. (6)

fle) = —%
a o

c, = I‘(’I‘+x,-/2)[(nv)'r/‘zl"(v/z)l.-1 is. the normalising constant and 0"2
vo-z/(v—z) is the common variance of the ei’s, i = 1L.,T, v > 2 The
marginal distributions are univariate Student-t and for small values of v
they have thicker tails than under normality; as v+e the pdf’ approaches a
normal form; and when v = 1, the pdf is Cauc:hy.5

Many  studies have investigated linear  regression models  with

spherically symmetric disturbances including Box (1952), Thomas (1970),

Zellner (1976), King (1979), Ullah and Zinde-Walsh (1984), Judge, Miyazaki

and  Yancey (1985), Ullah and Phillips  (1986), Sutradhar and Alj (1986),
Singh (1988), Sutradhar (1988).6 Box (1952) notes that the F-ratio (3),
under HO, is central F(m,v) for all SSD’s. The non-nul] distribution, how-
ever, depends on the specific form of the Ssp. This is shown by Thomas
(1970). We provide an alternative derivation of the non-null distribution
for SSDN errors in Section 2. Unaware of Thomas’s work, Ullah and Phillips
(1986) and Sutradhar (1988), assuming Mt errors, also derive the non-null
distribution of F.

Thomas also proves that the usual least squares estimator of B is the
linear minimum variance unbiased estimator and the maximum likelihood
estimator of g. See also Zellner (1976). King (1979) extends many of
Thomas’s results. In particular, he shows that if a test has an optimal

power property for normal disturbances over aj] possible values of <2 then




it maintains this property when the errors are SSDN. Consequently, the

F-ratio given by (3) is a UMPI size-o test for SSDN regression disturbances.

Judge et al. (1985) establish sampling properties of the James-Stein

estimafcor of the location parameter vector (and its positive part counter-
part) under a squared error loss measure and a Mt error density. They
compare, via a Monte Carlo experiment, the finite sample behaviour
(empirical risks) for their Stein-like, and some conventional robust,
estimators. In general, the risk characteristics are found to be the same
as for the normal errors case. However, there are no analytical results
relating to the finite-sample properties of pre-test estimators when the
model’s disturbances are non-normally distributed. Accordingly, in this
paper we derive the risk, under squared error loss, of the usual pre-test
estimators of the prediction vector7 and of the error variance of model (1)
after a pre-test of H0 st'hen the regression disturbances are SSDN(O,LI.).
These risk functions depend on the form of f(r) and so to illustrate the
results we ‘numerically evaluate them for the important case of Mt errors.
This enables us to investigate how departures from normality, as represented
by the value of v, affect the risk functions of the estimators. In the next
section we derive the non-null distribution of F for the general case of
SSDN errors. Sections 3 and 4 present, discuss and evaluate the finite
sample risk functions of the various estimators of the prediction vector and
of the error variance respectively. Some concluding remarks are given in

the final section, and the proofs of the theorems appear in an appendix.

2. The non-null distribution of F
To determine the properties of the pre-test estimators, Wwe need
knowledge of the distribution of the test statistic under the alternative

hypothesis.




Theorem 1. If e ~ SSDN(O.IT) then,

2
£(F) = LA [« @ e, @)

r=0 —5—+r
2 m v] O
r!(v+mF) B [?”'i}

where 6 = (RB—r)’(RS_lR’]_IIRB—r)/Z, and B(.;.) is the usual Beta function.

Proof. See the appendix.

Corollary 1. If e ~ Mt[O,o‘zv/(u-Z)I,r] then,

m _vom
54 5 +r-]

© (2av)'r lz’ﬂ* m2 v2F2
fMt(F) = Z
r=

+v
m +r

0 2

v/2+r_(m v v
ri(1+2x/v) B[§+r,er[zJ(v+mF)

where A = 6/0'2.

Proof. See the appendix.
We note the following points:
fMt(FJ is equivalent to the expressions derived by Ullah and
Phillips (1986) and Sutradhar (1988).

(7) and (8) both collapse to a non-central F pdf, F’ with

(m,v;a)
m and v degrees of freedom and non-centrality parameter A, when
e ~ N(O,a‘zIT).

When HO is true F ~ F (This information is also used in

(m,v)

analysing the pre-test estimators’ sampling properties.)

The risk functions of alternative estimators of E(y).

We define the pre-test estimator for E(y) = XB as

Xb ; ifF>c

Xb*; if F=sc




= Xbl (F) + qu[o,c)(F) (9)

(c,)
c

where ¢ = cla) satxsfnesv JdF(m,v) = (1-a) and I[a,b](F) is an indicator

0

function with value unity if F e [a,b], zero otherwise. Then, if Xb is any

estimator of E(y) its risk f unction, under quadratic loss, is
p[E(y),xS] = E[XB—E(y)]' [xE—E(y)] , (10)

which is the trace of the mean squared error matrix of Xb. We now derive

the risk expressions for the various estimators of E(y).
Theorem 2. If e ~ SSDN(O,XT) then,
p[E(y),Xb] = KE(z?)

p[E(y),Xb‘] = (k-m)E(z?) + 28
0

o 2 T _pT
p[E(y).Xb] = KE(z?) + 20 I [ZPZO P40)f(1:)d1:
0

«©
2,.T
-m I Py fladT 13)
(0]

_ , . . _ 2 ..
ic Pr'[F(m+i,v+j;hr) = [cm(v+3)]/[v(m+1)]] and 7\1 = e/t, L,j =

0,1,2,... .
Proof. See the appendix.

Corollary 2. If e ~ Mt[O,vcz/(v-Z)lT} then, for v > 2,

th[E(y),Xb] = B/ (v-2) (14)
th[E(y).Xb*] = oz[(k-m)v+27\(v-2)]/(v-2) (15)

o ) ] )
th[E(y).Xb] =0 [kv mUP o +2A(v-2)(2P P402)]/(v 2), (6




@ (zx/u)rr['z—’nm-z]
P, = 3
ign = =

1 . 1
I [—(m+x)+r;-(v+j)] ,
Y rtn-2 x|2 2

(o] 5t
ri(1+2x/v)

l‘[§+n—2]
i,jn = 0,1,2,..., , and Ix(.;.) is Pearson’s incomplete beta function with

X = cm/(v+cm).

Proof. See the appendix.

Comparing (11), (12) and (13) we note that each depends on f(t). In
addition,
(i) If e ~ N(O.rle) then (11), (12) and (13) reduce to the well known
expressions

L2
pN[E(y),Xb] = ko

PN [E(y),xb'] = vz[(k-m)+2h]

1, ) )
pN[E(y),Xb] =0 [k+(47\ m)PZO ZAPao],

where Pij = Pr. [F2m+i,v+_j;>\) = [cm(v*j)]/[v(mﬁ)”.

(See, for example, Wallace (1977) and Judge and Bock (1978)).°

(17), (18) and (19) can also be obtained directly from (14), (15) and
(16), respectively, as e ~ N(O,crle) when v = w. In this case, Pijn
=P, .

1

When @ » 1(0), ¢ » O(w), PL. » 0(1) for all i,j and p[E(y).Xb] -

p [E(y),Xb] (p [E(y).Xb"]].

When the null hypothesis is true (6 = 0),

pO[E(y),xtz'] = (k-m)E(z?) < pO[E(y).Xl;] = kE(1?)




. o
- m J' tzPEOf(r)dt < pO[E(y),Xb] = kE(rD) ,
0

where P’;j = Pr. [F‘(m+i,v+j) = [cm(v+j)]/[v(m+i)]].

When 6 - «, the risk of Xb* is unbounded, while

p[E(y).X;)] - p[E(y),Xb] as P-'i"j » 0 for all i,j.

p[E(y),Xb] = p[E(y),Xb'] when 8 = mE(t?)/2 = 6*. If e ~ N(0,0°1)

*
then BN = mcrz/z, as is well documented in the literature; while if

2

e ~ Mt[O.va'z/(v-Z)IT] then E(tY) = vo/(v-2) > o° and 6% =

Mt
mvo-z( [2(!)-2)] > 9;\*].

So, if we assume normality when in fact the distribution of the errors
belongs to the wider class of SSDN, there is a range of 6 over which we .
would choose the incorrect estimator. For example, if E('rz) > 0‘2 (that is,
the ma;'ginal distribution of e has fatter tails than under normality) then
we should select Xb* for 8 < 8* to minimize risk but if we assume normality
then we would incorrectly choose Xb for 8 € (9;1,6').

It is difficult to discuss further features of the risk functions
without numerically evaluating them. Hence, to illustrate the results we
assume Mt errors and evaluate the risk expressions (14),(15), and (16) for
various choices of v, «, m, k and T as functions of A. We consider risk
relative to o and parameterise with respect to A rather than 6 to eliminate
the scale parameter 0'2.8 So, the relative risk of an estimator Xb of E(y)
is R[E(y),Xl-)] = p[E(y),XE]/a‘z. Some representative results, for various v
values, appear in Figures 1 to 4.

Comparing the figures, we see that a decrease in the value of v from
the normal errors case (v = w) causes an upward shift of the estimator risk

functions, a decrease in the rate at which the risk of the pre-test




estimator approaches that of the unrestricted estimator, and an increase in

the risk gain of the restricted estimator over the unrestricted estimator

for all A such that R[E(y),Xb'] < R[E(y).)(b]. For the unrestricted and the

restricted estimators these changes occur because of the increase in the
estimators’ variances as v decreases (the marginal distribution has fatter
tails). For the pre-test estimator, the increase in its variance and its
absolute bias (for relatively large A) both contribute to the observed
differences. Our numerical evaluations suggest that, in general, the
difference between an estimator’s risk under normality and Mt errors is
relatively insignificant for a v value of at least 100.

Comparing the risk functions of the pre-test estimator and jts
component estimators for ga given v we find that the conclusions observed
when the errors are normally distributed hold for all values of v. When the
null  hypothesis is true the pre-test estimator is risk inferior to the
restricted estimator but superior to the unrestricted estimator. However,
the pre-test estimator is dominated by the unrestricted estimator over a
wide range of A, and by both of its component estimators over part of the
parameter space. Hence, no one of the estimators strictly dominates the
other two. This latter feature suggests choosing an estimator according to
some optimality criterion. Such a study is beyond the scope of this paper
(see, for example, Brook (1972), Ohtani and Toyoda (1978), Ohtani (1988),
FToyoda and Wallace (1975)).  So, aside from appropriate scaling, we find that

the risk characteristics of the estimators are similar for all choices of v.

4. The risk functions of alternative estimators of a-z.

Let the pre-test estimator of crz be given by

~2 .

a-e;lfF>c
~ 2
Te = 2
a‘;:ifFSc




_~2 2
- Uel(c,w)(F) * a~; llO,cl(F)

](F) are as previously defined.

The risk, under

where ¢, F and I[a,b
quadratic loss, of any estimator Ez of o‘z is

2
p[cz,o_-z) = E(’ozz-o‘zl .
ee e e

and is the mean squared error of Ee We now consider the risks of the

. . 2
various estimators of O‘e.

Theorem 3. If e ~ SSDN(O,IT) then,

2
P(O‘Z.g‘:) = [(v+2)E(1:4) - v[E(tz)] ]/v
p[crz,of] = [(v+m)(v+m+2)r:(-c“)-(v+m)2(E(rz)]

+ 26 [94»2!-.‘.(1:2)]] /(v+m)2

~ 2
p[«rz.o:) - {(V“‘m)z[(v+2)5(‘t4)-v[E(tz)] ]

L]

4T 2, .2,.T
+ _[ [ m(v+2)(2v+m)T PO 4t 2mv(v+m)E(T )T POZ
[0}
4T 2.T 2,T 2.2, _2.T T
+ v[m(m+2)1: P40 + 4(m+2)6T P60 + 40 PSO] + 2vit (mt P22+29P42)
(22)

- 2v(v+m)E(12)(mrzP;0+29PZO)]f (T)d‘t}/ [v(‘v*rm)z] .

Proof. See the appendix.

= vot/(v-2), v > 4, then

2 2
Corollary 3. If e Mt(O.xreLr), T
(23)

Pyt [02,52] = 2@2(v+v-2)/ [v(v-4)]

2
(24)

Put [o*e,a;z] = h;[vztv+m)(v+m+2) + 27\(v-2)(v-4)[(v-2)7t+2v]/

[vz(v-4)(v+m)2]

11




272) 4 2 2 . 2| _
Pyt [a-e.cre] = o-e{Zv (v+m)“(v+v-2) + mp [ (v+2)(m+2v)(v 2)P040

+ v(u-2)(m+2)P400 + 2v2(v-2)P220+2v(v+m)(v-4)(P021—P201)]
+ 4Avv(v-2)(u—4)[(m+2)P601-(v+m)P402 + VP421]

2 2 2 2
+ 4A"v(v-2) (v~4)P802}/[v (v~4)v(v+m)] .

Proof. See the appendix.

Each of the risk functions in Theorem 3 depends on f(t). We also note,
from comparing these risk functions, that:
(i) If e ~ N(O,O'ZIT) then (20), (21) and (22) collapse to the expressions

derived by Clarke et _al. (1987b):
pN(o-z,gz) = 20%y
pN(oz,o-'z) = 20-4(2A2+4>d»v+m)/(v+m)2
PN(wz,t;‘z) = 0‘4{4VA2P80 + 4vA[(m+2)P60+vP42—(v+m)P40]
+ 2(v+m)2—2mv(v+m)(P20-P02)-m(v+2)(m+2v)P04+2mv2P22

+ mv(m+2)P40}/[v(v+m)2] . (28)

(26), (27) and (28) also follow, respectively, from (23), (24) and

2 . _
(25) as e ~ N(0,o IT) when v = w. In this case, Pijn = PU.

p[@z,czj converges to p[az,gz] when « =+ 1, and to p[c-z,cr‘zJ when
e'e ee e’e




To illustrate the results we have numerically evaluated, relative to

4 T { 272 2 42 272 .
Cor the risk expressions th[ole'o‘e]' th[O‘e,O‘e] and th[ce'Ge) as functions

of A, for the values of v, «, m and v as before. So the relative risk of an

estimator o= of o’ is R{a‘z,i;z] = p[a'z,az]/cr“. Figures 5 to 8 depict typical
e e e e ee) e

cases. We note that Figure 6, which considers the risk functions when

v = 5, is drawn on a different scale from that of Figures S5, 7, and 8, to

enable the features for all four cases to be distinguishable.

Consider first Figure 5, _which illustrates the risk functions of the
estimators when the errors are normally distributed. We see that there
exists a family of pre-test estimators, with ¢ € (0,1}, which strictlyv
dominate the unrestricted estimator for all A, and dominate the restricted
estimator over part of this parameter space.9 This feature is not observed
in the evaluations undertaken by Clarke et al. (1987b) but is noted in
subsequent work by Ohtani (1988).10

Turning to the consequences of decreasing the value of v from infinity,
we find that the risk functions change in a similar way to that observed
when estimating the prediction vector. That is, the estimator risk
functions shift upwards, there is a decrease in the rate at which the risk
of the pre-test estimator approaches that of the unrestricted estimator, and

there is an increase in the risk gain of the restricted estimator over the

unrestricted estimator for all A such that R[c':.a;z] < R[q-z.gz]. These

effects occur because of the increase in the variance of all of the
estimators when v decreases and changes in the bias functions of the
restricted and pre-test estimators. The bias of the restricted estimator
decreases for all A while the bias function of the pre-test estimator shifts
down for relatively small A (which may increase or decrease absolute bias)

but becomes unbiased at a slower rate.




In Section 3, when comparing the risk functions of an estimator of the
prediction vector for different values of v, we found that, in general,
there was little difference between the normal risk function and those for
v = 100. However, when estimating the error variance we find that the
differences may be up to 207 for this v value and only become relatively
insignificant for much larger values of v, say 10,000.

Nevertheless, when comparing the risk functions of the pre-test
estimator and its component estimators for a given v, the conclusions for
when the errors are normally distributed continue to hold for all values of
V. Namely, there exists a family of pre-test estimators, with c € (0,1]
which strictly dominate the unrestricted estimator for all A. Further, some
members of this family,11 for some v, also strictly dominate the restricted

estimator. The numerical evaluations suggest that the pre-test estimator

with critical value 1 strictly dominates all other members of this f‘amily.12

Moreover, for some v, the restricted estimator s also strictly
dominated by those pre-test estimators with 1 < ¢ < ®. Comparing equations
(24) and (25) this will depend on m and v as well as v.  For the cases
analyzed we find, in general, that the restricted estimator s strictly
dominated by all pre-test estimators, except for those with ¢ around 0 and ¢
= ®, if v is at most 5.

These numerical evaluations show that, apart from appropriate scaling,
the risk properties of the estimators are qualitatively similar for all
values of v, Regardless of the value of v, our recommendation is to
pre-test rather than to impose the restrictions without testing their
validity, particularly if p js believed to be relatively small. Further,
when using the least Squares component estimators, a critical value of one

seems to be the appropriate choice for the pre-test.




Conclusions

In this paper we have considered the sampling properties of various
estimators of the linear regression model, after 2a preliminary test of
restrictions on the coeffyicients, when the regression disturbances are
spherically symmetric.  The risk expressions were numerically evaluated for
the case of Mt errors, and these results suggested that, qualitatively, the
estimator properties are similar for all values of v.

Our analysis assumes that the researcher estimates the parameters of

the model separately whereas one usually wishes to simultaneously estimate

XB and o-z. This suggests considering a joint risk function for XB and cr:.

This problem remains to be investigated, not only for our choice of error

distribution, but generally in the pre-test literature.




Appendix
Proof of Theorem 1.

We note equation (5) and so,
. ©
() = [ 1P, (A1)
(0]
where f (F) is the joint density function of F when e ~ N(O‘rl ), which is

(m vi A ) Using this and (A.1) gives the result directly. #

Proof of Corollary 1.
To obtain Corollary 1 from Theorem I let f(r) be an inverted gamma
density function with scale parameter o2 and degrees of freedom parameter v.

Then,

2, 2
flz) = [2/[‘(1)/2)] {vaz/z] V/Zr—(vﬂ)e-vo /2T

2 2
rl\lt(”: 2 \ e T°) dr,
r=0 +r

r!(v+mF) 2 B[m (A.3)

where B(.;.) is the usual Beta function.

Let 7%= 1/Z so that the integral in (A.3) becomes

]
2
%J‘ e-(29+vo~ 12/22r+v/2—ldz

0

——

r+v/2 °
[ 2 z] J‘e—ttrw/z--ldt

2
20+vo 0

with the change of variable t = (20+vc‘212/2.
0
-t f-1
Now, [ e "t dt = I(f) so (A.3) becomes
(o]




v
IR ."_‘"_2 v/2T iﬂ‘ 2 r+v/2
Mt = = . . .

=0 2+r m v 28+vc~2
r{(v+mF) B[T2-+r;§]

v
Tz

Collecting terms and allowing for the change from 6 to A completes the

proof. #

Proof of Theorem 2.

First,
p[E(y).Xb] = tr[v(Xb)]
= kE(7?) ,

as E(ee’) = E(TZ)IT, and b is unbiased.

Secondly,
p[E(y),Xb'] = E(Xb‘-E(y)]’ [Xb“—E(y)]

E[e’ xs™'x’-xs7 IR’ (RsT'R* 1R X e
(RB-r)’ [RS™'R’ 1"(rrs-r)]
(k-m)E(x?) + 20 ,
as Xo* - Ely) = XS'X'e - xs“R'[Rs'IR'1'1[(R3-r)+Rs'1x'e]. and

6 = (R-r)’ [RS 'R’ I }(RB-r) 2.

Finally, to derive the risk of X{; we have that

X6 = Xb - xs R’ [Rs'R* 1 HRL-R)I, . (F),
[0,c]

p[E(y).xﬂ] - p[E(y).Xb] . s{[z(ms-r)'ms"fz'1‘1(Rb-r)

R N S
- Rb-r)’ [RS'R* 1 (Rb r)]I[O’C](F)}

- ofein] - efc}




Now, let EN{G} = E{G} when e ~ N(O,TZIT) so that

E{G} = !;mEN{G}(t)dt :

Then, using the results of, for instance, Judge and Bock (1978) we have

2
EN{G} =T [27\ [2P20 P4O} - szo] , (A.5)

where A_ = (RB-r)’[RS™'R’1™(rg-r)/2t%.  Substituting (A.5) into (A.4), and
noting that 6 = A_t/tz, yields the expression p[E(y),XG]. #

To establish some of the remaining results we require the following
lemma:

Lemma Al. If T ~ IG(oz,v) then e ~ Mt(O,va‘z/(v-Z)IT) and

® 2hot vol (ZAXV)PF[g+r~h]
Py f (t)dr (—] z —
f 2) r=0 ri(1+2a/0)?/2*T hr[%]

X Ix[%(m’ri)**r;;-(vw‘j)] ,

hi,j = 0,1,2,.. .

Proof.

If t~ IG(crz,v) then

o«
‘[ (Tz)hPT f('r)dr = J- e} 2 e [A;/r!] (r!)-l

1 [%(m+i)+r;;-(v+j)] [r [g]]"z(wzxz)"/ 2

2, 2
T-(wl)e-vo /2T dc




r. |1 . 1 . 2,,,v/2 v))-1
2] Ix[-i(m+1)+r,£(v+3)]2(va‘ /2) [r!l‘[i]]

]

2 2
. J‘ J20+we?)/2T" 2y (r-hev/241/2) g (A7)

0
Now, using the same change of variables as in the proof of Theorem 1, the

integral in (A.7) is

v
2*Thp [%ﬂ--h] ’

(1/2) [2/(29+v0'2)] (A.8)

and so, substituting (A.8) into (A.7), collecting terms and allowing for the

change from 6 to A completes the proof of Lemma Al. ) #

Proof of Corollary 2.

The desired expressions are directly obtained from Theorem 2 as
e ~ Mt(O,vcrz/(v-Z)IT) when T has an inverted gamma distribution with scale
parameter o and degrees of freedom parameter v. To establish Pt [E(y),Xb]

and p, E(y),Xb*| we merely need to note that
Mt

E(r) = vol/(v-2)

To obtain Pumt [E(y),Xb] we have from Lemma Al that

o«

T
J‘ P flxidr = P, )
0

o«

2.T 2 _
J- T Pijf('r)dt = vo Pijl/(v 2) ,
0]

(ZA/v)rl‘[%ﬂw-n-Z]

©
= Z

N r=0 r!(l+2)\/v)V/2+r*n-2F[%+n-2] x|z

I [l(m+i)+r;;-(v+ j)] ,
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i,jn = 0,1,2,..., and lx(.;.) is Pearson’s incomplete beta function with x
= cm/(v+cm). Substituting (A.6), (A.10) and (A.11) into equation (13)
of Theorem 1 completes the proof. ) #
Proof of Theorem 3.

First, g‘: = e’Me/v, where M =1 - XS_lX’ is an idempotent matrix of

rank v. So,

2
2
p[o-e,oe] Te oe]

2
E[e’Me - vE(Tz)] e

E[G']/vz

©

- l ’
L J' EN[G ]f('r)dr

Voo

2
G’ = (e’Me)2 - 2vE(t%)(e’ Me) + VZ(E(TZ)]

= E[G’] when e ~ N(O,rZIT). Under these conditions e’Me/-z:2 ~ x‘zl,

2
EN[ ] = (ve2)1* - v[ZE('rz)‘tz- [E(rz)] ] . (A.13)

Substituting (A.13) into (A.12) completes the derivation of p(o:,g‘:].

Secondly, we can write
2
* = ‘ ’
or (elMe1 + eICel)/(wm) (A.14)
where € = d + e, d = X(B-By By = RT is any solution of RB, =T, and C =

xs™ IR [RS-IR’ l—lRS_IX’ is an idempotent matrix of rank m. In writing (A.14)

we have used the fact that e’1Mel = e’Me, as d’M = 0.

So,

2 !z P ’ . 2 - z ’ ’
p[o'e,ce} = E{(clMel-relCel) 2(v+m)E(T )(elMe1+e1Cel)
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2
(v+m)2[E(rz)] }/(w»m)2

E{G”}/ (v+m)?
(-]

= [ j ' EN{G”}f('r)dt.]/(wm)z . ) (A.15)
o]

where EN{G”} = E{ ”} when e ~ N(O,TZIT). Under this assumption

' , 2 .2
(elMel+e1¢el)/r xv*rm;?\r and so,

EN{ ”} = t‘[(v+m)(v+m+2) + 4(v+m+2)7«t + 4A:] - 2(v+m)(v+m+2AT)E(-cz)

2
+ (me)z[E('rz)] . (A.16)

Substituting (A.16) into (A.15), noting that 7\1_ = 9/1-2. and integrating over

T completes the derivation of p[crz,o;z].

Finally, to establish p[zr:,o':] we write

-2 ’ ’ - ’ . G
o-e = {(elMel)(w»m) + [velCel melMel)llo'c][veICel/melMelJ}/[v(v+m)],

so that,

©

P[O‘:,;;] = [I 't“EN{G"’}f('r)dt]/[vz(v+m)2]

0

2 .
G = {(eiMel/‘rz)z(v-i»m)2 + vz(v+m)2[E(1:z)] st

- 2v(v#m)2[E(1:2)/rz](eiMel/tz) + [—m(2v+m)(eiMel/1:2)
2, 2 2 2., 2
+v (eICel/r ) + 2v (eiMel/-c )(eICel/r )
+ 2mV(V+m)[E(T2)/1.'2] (eiMel/-tz) - 2v2(v+m) [E('rz)/rz].
‘. 2 2 . 2
(eICel/r )]I[o’c][(ve'lCel/r )/(elMel/'r )J} .
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wil o 2
and EN{G } = E{G } when e ~ N(O,T lT).

Using the results of Clarke, Giles and Wallace (1987a,b) we have

EN{G’”} = v{v+m)(v+2) + vz(V+m)2[E(rz)] 2/t - 2v2(v+m)2E(rz)/r2

T 2 T T 2.,T
- mv(2v+m)(v+2)P04 + v [m(m+2)P40 + 4(m+2)7\TP60 + 4>\TP80]

T
2* 2A1P4

3 T 2 2, 2),T
+ 2V [mP2 2] + 2mv (v+m)[E(T )/t ]POZ

2 2,,.2 T T
- 2v (v+m)[E(t )/t ][m!’zo + 2)\1_[’40] , (A.18)

and so, substituting (A.18) into (A.17), noting that AT O/'rz, completes

the derivation of p[oz,crz] and the proof of Theorem 3. #

Proof of Corollary 3.

This corollary follows from Theorem 3 in the same way that Corollary 2
was established from Theorem 2. The only additional information we require
is that

Ezh) = v/ [(V—Z)(v—4)]

and, from Lemma Al,
0
I <*Pt f(r)dt = vao'p, /[(V—Z)(V—4)].
1) 1jO
0




Footnotes

1.

This subc_lass of the spherically symmetric family is sometimes called
the compound normal family. See, for instance, Muirhead (1982).

We require the existence of the. first two moments if risk, under
squared error loss, is to be a meaningful basis for the comparison of
the estimators.

Note that these estimators of 0': correspond to the usual estimators of
the error variance for normally distributed regression disturbances.
The same is not true for the maximum likelihood (ML) or minimum mean
squared error (MMSE) estimators of a':: the ML and MMSE estimators of
0': when the errors are SSD depend on the specific form of the SSD.
See, for instance, Zellner (1976) and King (1979) for f‘urther
discussion and some examples.

Clearly, if the error distribution has an infinite variance (for
example, if it is the Cauchy distribution) then the least squares
estimator will have zero eff iciency.

We exclude this latter member by the assumption of finite variance.

King considers the wider class of elliptically symmetric disturbances
while Zellner, Ullah and Zinde-Walsh, Ullah and Phillips, Sutradhar and
Ali, Singh and Sutradhar investigate Mt errors.

We consider the estimationb of the prediction. vector rather than the
location vector so that our results are independent of +the design
matrix. This is equivalent to assuming orthonormal regressors in the B
space.

We numerically evaluated the risk functions for v = 10, 16, 20, 30; m =
1, 2, 3 4,5 « = 0.0, 0.05, 0.25, 0.30, 0.56, 0.75, 0.90 and that

value associated with a critical value of unity; v = 5, 10, 50, 100,

500, 1000, 5000, 10,000, 100,000, », and A € [0,3(0.1);3,20(0.5)].




Full results are available on request. All evaluations were carried
out using double-precision FORTRAN on an AT computer. Davies (1980)
algorithm was used to evaluate the Pij's and the subroutines GAMMLN and
BETAI from Press et al. (1986) .were utilized to obtain the Pijn’s'
Using these programs we found that the risk expressions were
efficiently evaluated with no observed convergence ﬁroblems.

That the risk of the pre-test estimator can dominate both of its
components over any or all of the parameter space may seem counter

intuitive. ~We may believe that as the pre-test estimator is a weighted

sum of its component estimators then its risk function should be

enveloped by those of its components. This, however, confuses the

distinction between a weighted sum of the moments of the component
estimators and the moments of their weight.ed sum. The dominance of the
pre-test estimator, for suitably chosen ¢, over the unrestricted
estimator for all A, and over the restricted estimator for some A, also
occurs when estimating the error variance after a pre-test for
homogeneity. See, for example, Bancroft (1944), Ohtani and Toyoda
(1978), and Toyoda and Wallace (1975).

Ohtani considers the question of the optimal significance level for the
pre-test problem examined by Clarke et al. (1987b) when the component
estimators are based on the minimum mean squared error principle. He
compares the sampling properties of the pre-test estimator‘ with those
of the Stein (1964) estimator (extended to the linear regression case)
and shows first, that the Stein estimator can be written ‘as a pre-test
estimator with critical value of v/(v+2), and secondly, that the
numerical evaluations suggest that the "Stein pre-test" estimator is

optimal in some sense. See also Gelfand and Dey (1988).




The exceptions are those pre-test estimators with a critical value in
the neighbourhood of ¢ = O.

It is straightforward to show that this feature holds under the null

hypothesis for any v, but the proof for A # O is not obvious.
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