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1. Introduction

In a linear regression model, suppose that the process generating a

(Txl) vector of observations on a 
dependent variable y is

y = Xi3 + e , 
(1)

where X is a (Txk) full rank matri
x of non-stochastic variables an

d (3 is a

(kxl) vector of unknown parameter
s. We assume that the (Txl) vector

 of

regression disturbances e is distributed according to the la
ws of the class

of spherically symmetric distributi
ons which can be expressed as a 

variance

mixture of normals.
1 Further, assume that the probability density function

(pdf) of e exists and that E(e) = 0 and E(ee1 ) = cr2eIT. We write e -

SSD
N
(O
'
I
T
)
.
2

Consider also m independent linear 
restrictions on (3, summarised by t

he

hypotheses

Ho: = r vs. HI: Rt3 * r (2)

where R and r are (mxk) and (mxl) ma
trices of known constants and rank (

R) =

m (<k). The usual statistic for testing the li
near restrictions (2) is

v(Rb-r)' [RS 1R' 
1 
(Rb-r)- -

F - m(y-Xb)'(y-Xb)
(3)

-
where v = (T-k), S = (X' X), b = S

1 
X' iy s the unrestricted least squares

estimator of 0, and C-r2e = (y-Xb)' (y-Xb)/v is the unrestricted unbiased

2
estimator of cr

e
. The restricted least squares estimato

r of f3 which imposes

Ho is b* = b-S
-1
R' [RS

-1
R'

-1
(Rb-r) and the corresponding esti

mator of the

error variance is cr*2 = (y-XV)1(y-XV
)/(v+m). cr*

2 
is unbiased only when Ho

3
is true.

We are usually uncertain of the validity of the prior information, so

the common procedure is to (pre-)test 
Ho prior to estimating the parameters

2

of the model. This results in pre-test estimators of 
13 and cr

2 
say b and (ree'

respectively. The sampling properties of these estima
tors of the parameters

1



of the linear regression model, after a pre-test for linear restrictions on
the coefficient vector, have been widely examined (see, for example, Brook
(1972), Wallace (1977), Judge and Bock (1978), Ohtani (1988), Clarke, Giles
and Wallace (1987a,b), and Gelfand and Dey (1988)). All of these studies
assume that the regression disturbances are normally distributed, and it is
this assumption which is generalised here.

There is a large body of literature suggesting that some economic data
series may be generated by processes whose error distributions have fat
tails, or even infinite variances. Examples include price-change analysis
in the stock, financial and commodity markets (Fama (1963, 1965), Sharpe
(1971), Praetz (1972), Blattberg and Gonedes (1974) and Sutradhar and Ali
(1986)); cash flow analysis (Granger and Orr (1972)); and demand analysis
(Coursey and Nyquist (1988)). The possibility of non-normal regression
disturbances has led to searches for robust' estimators, resulting in such
estimators as the M-, L-, and R-estimators. See, for instance, Huber
(1981), Koenker (1982), Hampel et al. (1983) and Judge et al. (1985).

There have also been many studies of the robustness of traditional
estimators. In particular, these studies show that the least squares
estimator is sensitive to the form of the underlying distribution, because
it minimises squared deviations and so, gives a relatively heavy weight to
the tails of the distribution.

4
Various alternative distributions to

normality have been investigated . One that has received considerable
attention in the literature is the spherically symmetric family of distribu-
tions (and its parent distribution, the elliptically symmetric family).
Well known members are the normal and the multivariate Student-t distribu-
tions; the latter includes the Cauchy distribution.

The T-dimensional random vector e is said to have a (multivariate)
spherically symmetric distribution (SSD) if e and He have the same
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distribution for all (TxT) orthogonal matrices H. Hence, its distribution

is independent of direction from the origin and is a function only of

distance from the origin: that is, r = 
(e, e)"2. So, the joint pdf of e is

of the form

f(e) = 0(e' e) 
(4)

with respect to the Lebesgue measure on R
T
, where 0: [0,03)4[0,03) and

03

I T-
r 12)dr = (1/2)11T/2)n

-T/2
0(r . All non-normal SSD's have components

0
which are dependent but are 

uncorrelated: the normal distribution is the

only spherically symmetric law for 
which the observations are ind

ependent.

Discussions of this family of distributions are given by Kelker (1970),

Devlin et al. (1976), King (1979), Chmielewski (1981), and Muirhead (1982),

for instance.

This is a sensible extension of spherical normality to investigate as

first, it is a class of density functions whose contours of equal density

have the same spherical shape as the spherical normal; secondly we can

generate members which have fat and thin tails relative to those of the

normal; thirdly, all marginal and conditional densities of a spherical

random vector are also spherical
ly distributed and have the same

 shape; and

finally, a subclass of the spherically symmetric family, sa
y SSDN, can be

written in terms of a variance m
ixture of normal distributions:

03

f(e) = f
N
(e)f(r)d-r

0

(5)

where fN(e) is the pdf of e w
hen e N(0,T

2
IT) and f(t) is the pdf of

which is supported on 10,03). In this case cr.: = E(T2).

So, we may have non-normal regression disturbances even if each ei

(i=1,...,T) is normally distributed when the variance of ei is itself a

3



random variable. In this paper we consider the family of SSD' s which can be
expressed in the form (5).

For instance, if f(r) is an inverted gamma density with, say, scale
parameter cr2 and degrees of freedom parameter v, then (5) is the pdf of a
multivariate Student-t (Mt) distribution. That is,

c -1
f(e) = v 11 v e24T

cr cr

-(T+v)/2

(6)

c = r(T+v/2)[(7Ev)
T/2r(v/2 )1-1

is the normalising constant and cr2 =
vcr2/(v-2) is the common variance of the ei's, i = 1,...,T, v > 2. The
marginal distributions are univariate Student-t and for small values of v
they have thicker tails than under normality; as v-'co the pdf approaches a
normal form; and when v = 1, the pdf is Cauchy.5

Many studies have investigated linear regression models with
spherically symmetric disturbances including Box (1952), Thomas (1970),
Zellner (1976), King (1979), Ullah and Zinde-Walsh (1984), Judge, Miyazaki
and Yancey (1985), Ullah and Phillips (1986), Sutradhar and All (1986),
Singh (1988), Sutradhar (1988).6 Box (1952) notes that the F-ratio (3),
under H is central F for all SSD's. The non-null distribution, how-

(m,v)
ever, depends on the specific form of the SSD. This is shown by Thomas
(1970). We provide an alternative derivation of the non-null distribution
for SSDN errors in Section 2. Unaware of Thomas's work, Ullah and Phillips
(1986) and Sutradhar (1988), assuming Mt errors, also derive the non-null
distribution of F.

Thomas also proves that the usual least squares estimator of (3 is the
linear minimum variance unbiased estimator and the maximum likelihood
estimator of g. See also Zellner (1976). King (1979) extends many of
Thomas's results. In particular, he shows that if a test has an optimal
power property for normal disturbances over all possible values of -r2 then

4



it maintains this property when the errors are SSDN. Consequently, the

F-ratio given by (3) is a UMPI size-
a test for SSDN regression dis

turbances.

Judge et al. (1985) establish sampling properties of the James-Stein

estimator of the location parameter vector (and its positive part counter-

part) under a squared error loss measure and a Mt error density. They

compare, via a Monte Carlo experiment, the finite sample behaviour

(empirical risks) for their Stein-like, and some conventional robust,

estimators. In general, the risk characteristics are found to be the
 same

as for the normal errors case. 
However, there are no analytical results

relating to the finite-sample properties of pre-test estimators when the

model's disturbances are non-normally distributed. Accordingly, in this

paper we derive the risk, under squared error loss, of the usual pre-test

estimators of the prediction vector7 and of the error variance 
of model (1)

after a pre-test of H
o 

when the regression disturbances are SSDN
(0,1

T
).

These risk functions depend on the 
form of f(t) and so to illustrate the

results we .numerically evaluate them
 for the important case of Mt erro

rs.

This enables us to investigate how 
departures from normality, as repres

ented

by the value of v, affect the risk f
unctions of the estimators. In the next

section we derive the non-null distribution of F for the general case of

SSDN errors. Sections 3 and 4 present, discuss and evaluate the finite

sample risk functions of the various est
imators of the prediction vector an

d

of the error variance respectively. Some concluding remarks are given in

the final section, and the proofs of the t
heorems appear in an appendix.

2. The non-null distribution of F

To determine the properties of the pre-test estimators, we need

knowledge of the distribution of the test statistic under the alternative

hypothesis.

5



Theorem 1. If e - SSD
N
(0
'

I
T
) then,

m v m 
to r 

,—+r - 
2

—+r -+r co
Om 

2 
v
2 
F 
2 ,, ui,f(F) = Z

m+v f e-i (T2)-rf(T)dr, (7)r=0 —+r
r!(v+mF) B (r-1-1+1 02 '2

2

where 0 = (Rig-r)'[12S-IR'l1[R(3-r)/2, and B(.;.) is the usual Beta function.

Proof. See the appendix.

Corollary 1. If e Mt(0,cr2v/(v-2)IT) then,

m v m
co (2A/v)rrrr)re v`F"2 f 41(F) = Z

m+vr=0 
 +rr!(1+2A/v)1)12+rBr+r, 1-lr 0

()
(v+mF) 22 2 2 

where A =

Proof. See the appendix.

(8)

We note the following points:

(i) f
Mt
(F) is equivalent to the expressions derived by Ullah and

Phillips (1986) and Sutradhar (1988).

(ii) (7) and (8) both collapse to a non-central F pdf, F' with(m,v;Ar
m and v degrees of freedom and non-centrality parameter A, when
e N(0,c2I

T
).

(iii) When Ho is true F F(rn,v). (This information is also used in
analysing the pre-test estimators' sampling properties.)

3. The risk functions of alternative estimators of E(y).
We define the pre-test estimator for E(y) = xg as

Xb ; if F > c

Xb* ; if F c

Xb =

6



= XbI
(c,c0)

(F) + [0,c1
(F) (9)

where c = c(a) satisfies j* dF
(m,v) 

= (1-a) and Ita,b1
(F) is an indicator

0

function with value unity if F e 
[a.,13], zero otherwise. Then, if XII-. is any

estimator of E(y) its risk function,
 under quadratic loss, is

p[E(y),Xid = E[XE-E(y)]' [XE-Etyl]
 , (10)

which is the trace of the mean s
quared error matrix of XE. We now derive

the risk expressions for the various 
estimators of E(y).

Theorem 2. If e - SSDN
(OJ

T
) then,

p[E(y),X1] = kE(T2) 
(11)

p[E(y),XV] = (k-m)E(T2) + 20 
(12)

03

p[E(y),XL] = kE(T2) + 20 (2P0 
-P
T
40 

)f(t)cit
2 

0
03

f -r 2 P 
0 
f ( d T ,

2
0

(13)

where P.. = Pr.[ ' (cm(v+j))/(v(m+i))] and A = 0/T2, i,j =

ij F(m+i,v+j;A )

Proof. See the appendix.

Corollary 2. If e Mt(0,vcr2/(v-2)IT) then, for v > 2,

Pmt[E(Y),Xt] = o.2kv/(v-2) 
(14)

pmt [E(y),XV] = cr2[(k-m)v+2A(v-2)] /(P-2) 
(15)

pkit[E(y),Xb] = crIkv-mvP201+2A(v-2)(2P2
02-P4 ) /(v-2) , (16)

where

7



cc. (2A/v)rr 1!;-+r+n-2)
..  .1 r(m+n+r;!(v+ j)]
P =

X 2 2r=0

2

, and I(.;.) is Pearson's incomplete beta function with
x = cm/(v+cm).

Proof. See the appendix.

Comparing (11), (12) and (13) we note that each depends on f(t). In
addition,

(i) If e N(0,T
2
I
T
) then (11), (12) and (13) reduce to the well known

expressions

pN[E(y),Xt] = kcr2 
(17)

pN[E(y),XV] = T2[(k-m)+27t] 
(18)

p
N 
[E(y) Xb' = T

2 
[k+(4X-m)P

20
-2AP

40] ' (19)

where P.. = Pr. [F' (cm(v+j))/(v(m+i))].ij (m+i,v+j;X)

(See, for example, Wallace (1977) and Judge and Bock (1978)). •
(17), (18) and (19) can also be obtained directly from (14), (15) and
(16), respectively, as e N(0

' 
cr2I ) when v= co. In this case, P..T 

ijnP...

(ii) When a 1(0), c OW, P. -0 0(1) for all i, j and p[E(y),Xb]

p[E(y),Xb](p[E(y),Xb*]) .

(iii) When the null hypothesis is true (0 = 0),

p0[E(y),X1D1] = (k-m)E(T2) < po[E(y),Xb] = kE(r2)

8



co

— m T 
2
P* f(t)dr < p0 

[E(y) Xb] = kEN-2)
20  '

0

where P?. = Pr. [F (cm(v+j)) / (v(m+i)) .
1j (m+i,v+j)

(iv) When 0 4 co, the risk of Xb* is unbou
nded, while

p[E(y),Xb] 4 p[E(y),Xb] as P. 4 0 
for all i,j.

(v) p[E(y),Xb] = p[E(y),Xb*]
 when 0 = mE(T2)/2 = 0*. If e N(0,cr2IT)

then ON 
= mcr2/2, as is well documented in the literature; while if

e - Mt (0,vcr2/(v-2)IT) then E(T2) = vcr2/(v-2) >cr2 and 0*Mt

mvcr2/(2(v-2)) > 0*

So, if we assume normality when 
in fact the distribution of the errors

belongs to the wider class of SSDN' 
there is a range of 0 over which we

would choose the incorrect estimato
r. For example, if E(T2) > cr2 (that is,

the marginal distribution of e has fatter tails than under normality) then

we should select Xb* for 0 < 0* to 
minimize risk but if we assume normali

ty

then we would incorrectly choose Xb
 for 0 e (0;\111,0*).

It is difficult to discuss further features of the risk functions

without numerically evaluating them. Hence, to illustrate the results we

assume Mt errors and evaluate the risk expressions (14),(15), and (16) for

various choices of v, a, m, k and T
 as functions of A. We consider risk

relative to o-2 and parameterise with respect to A
 rather than 0 to eliminate

the scale parameter cr
2
.
8 

So, the relative risk of an estimator
 Xi5 of E(y)

is R[E(y),Xid = p[E(y),X-1]/cr2. Some representative results, for var
ious v

values, appear in Figures 1 to 4.

Comparing the figures, we see that a
 decrease in the value of v from

the normal errors case (v = 03) causes
 an upward shift of the estimator risk

functions, a decrease in the rate at which the risk of the pre-test

9



estimator approaches that of the unrestricted estimator, and an increase in
the risk gain of the restricted estimator over the unrestricted estimator
for all A such that R [E(y),X1D*] < R [E(y),Xb] . For the unrestricted and the
restricted estimators these changes occur because of the increase in the
estimators' variances as v decreases (the marginal distribution has fatter
tails). For the pre-test estimator, the increase in its variance and its
absolute bias (for relatively large A) both contribute to the observed
differences. Our numerical evaluations suggest that, in general, the
difference between an estimator's risk under normality and Mt errors is
relatively insignificant for a v value of at least 100.

Comparing the risk functions of the pre-test estimator and its
component estimators for a given v we find that the conclusions observed
when the errors are normally distributed hold for all values of v. When the
null hypothesis is true the pre-test estimator is risk inferior to the
restricted estimator but superior to the unrestricted estimator. However,
the pre-test estimator is dominated by the unrestricted estimator over a
wide range of A, and by both of its component estimators over part of the
parameter space. Hence, no one of the estimators strictly dominates the
other two. This latter feature suggests choosing an estimator according to
some optimality criterion. Such a study is beyond the scope of this paper
(see, for example, Brook (1972), Ohtani and Toyoda (1978), Ohtani (1988),
FToyoda and Wallace (1975)). So, aside from appropriate scaling, we find that
the risk characteristics of the estimators are similar for all choices of v.

4. The risk functions of alternative estimators of cr
2
.

Let the pre-test estimator of Cr: be given by

Cr = ICT*2 ; if F c

2 (r
e 

; if F >

10



= (T
e(c,.)

(F) + Cr
*2

1 (F)
e (0,c]

where c, F and l[a,b](F
) are as previously defined. The risk, under

quadratic loss, of any 
estimator Ci2 of 0.2 is

e e

2

p(
e e

o',cr) = Eo
-2

(3-'
e '

2 -2

and is the mean squared 
error of CT . We now consider the 

risks of the

various estimators of cr2e.

Theorem 3. If e - SSD
N 
(0 I

T 
) then,

' 

2

p = [(v+2)E(t4) -
e e) 

v (E(T2)) /v

Pla'2 ,T*2) = [(v+m)(v+m+2)E(T4)-(v+m)2e e

+ 20 (0+2E(T2))] /(v+m)
2

p lcre2,;e2) = (v+m)2[(v+2)
E(T4)-v (E(T2))

co

+ [-m(v+2)(2v+m)T4PT4 
+ 2mv(v+m)E(T2)T2Pi

0 
02

0

(20)

(21)

+ v 
[m(m+2)-r4 

P
40 

+ 4(M+2)01'
2
P
T 

0 
+ 40

2
P
T

SO 
+ 2v

2 
I'
2 (MT2 

P
22

+201'
42
)

6 
T 

 T

- 
2v(v+m)E(T2)(mT2P20+2eP

t40)] 
f(t)d-r}/ [v(v+m)1 . 

(22)

Proof. See the appendix.

Corollary 3. If e Mt( 0,Cr2eIT), CT: = vcr2/(v-
2), v > 4, then

pmt 
(
0.2e,;.-e2) = 20

.e4(v+v_2
) (v(v-4)) 

(23)

Pmt (cr:07:) 
= 2cr4e [v2(v+m)(v+m+2) +

[v2(v-4)(v+m)1 
(24)

11



p (cr2 Mt = cr4 {2v2 (v +m)2 (v +1) -2) + mv2[-(v+2)(m+2v)(v-2)Pe e e 
040

+ v(v-2)(m+2)P
400 

+ 2v2(v-2)P
220

+2v(v+m)(v-4)(P021-
P2Ol

)]

+ 
1

4Avv(v-2)(v-4)[(m+2)P
601

-(v+ 1.
in- 402 + vP4211

+ 4A2v(v-2)
2(v-4)P8021

/[v2(v-4)v(v+m)1 
(25)

Proof. See the appendix.

Each of the risk functions in Theorem 3 depends on f(r). We also note,
from comparing these risk functions, that:

(i) If e N(0
'

cr2I
T
) then (20), (21) and (22) collapse to the expressions

derived by Clarke et al. (1987b):

P (Cr
2,3:.2) = 20_4/v

p
N
(T2 ,cr*2) = 2c4(2A2+4A+v+m)/(v+m)2

p
N
(cr otr ) = cr414vA2P

80 
+ 4vA[(m+2)P

60
+vP

42
-(v+m)P

40

2 "2

+ 2(V+M)
2
-2mv(v+m)(P

20
-P
02

)-m(v+2)(m+2v)P
04
+2mv

2
P
22

+ mv(m+2)P
40
}/[v(v+m)1

(26)

(27)

(28)

(26), (27) and (28) also follow, respectively, from (23), (24) and
(25) as e N(0,o-2IT) when v = In this case, Pun = Pii.

(ii) pi
2

,Cree
tT 

"2)

a -0 0.

converges to picr
e
,cr
e

2 —2)
when a 1, and to r, cr2,o-*2 whene e

(iii) p(cr ,o-) pi2 —2
cr
e
,cr
e
) as 0 co, while 4r2,cr*2) is unbounded.

e e
e e

2 "2 

( e re
2 .2) 

e
2-2< p(cr ,cr

e
) when the restricti

(iv) PcrC
ons are valid.

12



To illustrate the results we have numerically evaluated, relative to

(Te
, the risk expressions pmticr

e,cre) p mt(cr e,cr:) and p mticr
 e, e) as functions

4 
2 ̂.2 2 2 2 "2

of A, for the values of v, a, 
m and v as before. So the relative risk of an

estimator (re 
of cr

2 
is Rio- ,cr = p (crz :Cita- 4 . Figures 5 to 8 depict typical

e e e e e e
—2 2 —2

cases. We note that Figure 6, which considers the risk functions when

v = 5, is drawn on a differe
nt scale from that of Figure

s 5, 7 . and 8, to

enable the features for all four
 cases to be distinguishable.

Consider first Figure 5, which illustrates the risk functions of the

estimators when the errors are normally distributed. We see that there

exists a family of pre-test estimators, with c E (0,1), which strictly

dominate the unrestricted estimator for all A, and dominate the restricted

estimator over part of this par
ameter space.9 This feature is not observed

in the evaluations undertaken by Clarke et al. (1987b) but is noted in

subsequent work by Ohtani (1988
).10

Turning to the consequences of
 decreasing the value of v fro

m infinity,

we find that the risk functions change in a similar way to that obser
ved

when estimating the prediction vector. That is, the estimator risk

functions shift upwards, there
 is a decrease in the rate at which the risk

of the pre-test estimator appr
oaches that of the unrestricted

 estimator, and

there is an increase in the risk gain of the restricted estimator over the

unrestricted estimator for all A such that R(o.
2
,cr*
e e R tcr2,;:2) .• e e

These

effects occur because of the increase in the variance of all of the

estimators when v decreases and changes in the bias functions of the

restricted and pre-test estimators. The bias of the restricted estimator

decreases for all A • while the bias function of the
 pre-test estimator shifts

down for relatively small A (which
 may increase or decrease a

bsolute bias)

but becomes unbiased at a slower rat
e.

13



In Section 3, when comparing the risk functions of an estimator of the
prediction vector for different values of v, we found that, in general,
there was little difference between the normal risk function and those for
v = 100. However, when estimating the error variance we find that the
differences may be up to 207. for this v value and only become relatively
insignificant for much larger values of v, say 10,000.

Nevertheless, when comparing the risk functions of the pre-test
estimator and its component estimators for a given v, the conclusions for
when the errors are normally distributed continue to hold for all values of
v. Namely, there exists a family of pre-test estimators, with c E (0,1]
which strictly dominate the unrestricted estimator for all A. Further, some
members of this family,

11 
for some v, also strictly dominate the restricted

estimator. The numerical evaluations suggest that the pre-test estimator
with critical value 1 strictly dominates all other members of this family.12

Moreover, for some v, the restricted estimator is also strictly
dominated by those pre-test estimators with 1 < c < co. Comparing equations
(24) and (25) this will depend on m and v as well as v. For the cases
analyzed we find, in general, that the restricted estimator is strictly
dominated by all pre-test estimators, except for those with c around 0 and c
= co, if v is at most 15.

These numerical evaluations show that, apart from appropriate scaling,
the risk properties of the estimators are qualitatively similar for all
values of v. Regardless of the value of v, our recommendation is to
pre-test rather than to impose the restrictions without testing their
validity, particularly if v is believed to be relatively small. Further,
when using the least squares component estimators, a critical value of one
seems to be the appropriate choice for the pre-test.

14



5. Conclusions

In this paper we have considered the sampling properties of various

estimators of the linear regression model, after a preliminary test of

restrictions on the coefficients, when the regression disturbances are

spherically symmetric. The risk expressions wer
e numerically evaluated f

or

the case of Mt errors, 
and these results suggested that, qualitatively, the

estimator properties are si
milar for all values of v.

Our analysis assumes that the
 researcher estimates th

e parameters of

the model separately whe
reas one usually wishes to simulta

neously estimate

Xj3 and c:. This suggests considering a
 joint risk function for xg and cr:.

This problem remains to 
be investigated, not only 

for our choice of error

distribution, but generally 
in the pre-test literature.

15



Appendix

Proof of Theorem I.

We note equation (5) and so,

co

f(F) = f f
N
(F)f(T)d-r , 

(Al)
0

where f
N
(F) is the joint density function of F when e N(0,T2IT), which is

F'
mv; . 

Using this and (Al) gives the result directly.AT(,)

Proof of Corollary 1.

To obtain Corollary 1 from Theorem 1 let f(r) be an inverted gamma
density function with scale parameter cr2 and degrees of freedom parameter v.
Then,

f(T) = [2/r(v/2)1 (vcr212) v/2,- (11+1)e—vcr2/21.2

and so,
(A.2)

111 . V m
co 

. ....
r 2*rs0 m v- F-2 f

Mt
(F)=  

 m+v 
f 

e
-[20+vcr21/2-r2 zZ  

(T ) di,r=0 r
r!(v+mF) 2 + 13 11-2+r•-v-11-10 0t 2 '2 j 12 j

where B(.;.) is the usual Beta function.

Let T
2
= 1/Z so that the integral in (A.3) becomes

co
1 -[20+vo-2]Z/2 r+v/2-1

dZe

0

= 2 1 
r+v/2 

fw
e
-t
t
r+v/2-1

dt2
20+vcr

2
-I 

0

with the change of variable t = [20+vcr2JZ/2.
co

Now, f e
-t
t
f-1

dt = r(f) so (A.3) becomes
0

(A.3)
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m v m
to

—+r — —+r- 1
11,0-
I v/2 r r) 2 

r+v/2
O
r
rn 
2 

v
2
F 
2 2  [

f
Mt
(F) = Z m+v 2

r=0 —+r r 1-2) 20+vo-
2 B r

r!( v+mF ) 12 '2

Collecting terms and allowing for the change from 0 to A completes the

proof.

Proof of Theorem 2.

First,

p[E(y),X13] = tr [v(Xb)]

= kE(T2)

as E(ee' ) = E(t2)IT, and b is unbiased.

Secondly,

p [E(y),XV] = E(Xb*-E(y)) ' (XV-E(y))

= E (XS
-I
X' -XS

-I
R' IRS

-I
R' 1

1
RS

-1
X1 )e

+ (143-r)' IRS 1R' 1-1(r(3-r))

= (k-m)E(T2) + 20 ,

as Xb* - E(y) = XS-1X' e - XS
-1
R' IRS 1R' 1

-1 
[(RP-r)+RS IX' , and

0 = (143-r)' [RS-1R' ]-1(R(3-r)/2.

SO

Finally, to derive the risk of Xb we have that

Xb = Xb - XS
-I
R' [RS

-I
R'

-1
(Rb-r)If0,c1

(F) '

p [E(y),Xbl = p [E(y),Xb] + Ef [2(143-r)1 1-1(Rb-r)

- (Rb-r)' [RS
-1
R' 1

-1
(Rb-r)] I[0,ci(F)1

= p [E(y),Xb] + EIG1 . (A.4)
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Now, let EN{G} = EfG1 when e - N(0,T2IT) so that

co

E{G} = f EN{G1(i)dt .

o
Then, using the results of, for instance, Judge and Bock (1978) we have

E
N
{G} = 212X (2PT —PT ) — MPT

T 20 40 20] ' (A.5)

where A = (R13-rY IRS 1R' )_1(0-W21-2. Substituting (A.5) into (A.4), andT

noting that 0 = AT/1-2, yields the expression p [E(y),Xbi #

To establish some of the remaining results we require the following

lemma:

Lemma Al. If T ".• IG(cr2,v) then e - Mt(0,vcr2/(v-2)IT) and

2 h co (2Alv )r1"15-4-r-h)
co

J
(2T )

h PT 
iif(T)CiT = M Z

0 r=0 r!(1+2A/v ) 
v/2+r -hr (-)

2

x I 
X 2 
p.(m+i)+r;

h,i, j = 0,1,2,.. .

Proof.

If T •-• IG(o-2, v) then

op co
—A1 , 2,h T ,

T ) P . .ftT)cli = 
f (T2)h 

CO
 e I

l 
xr/r1) (r!)-1

1 j T

0 0 
r=0

. I -(m+i 1)+r;--(v+ j)] (r(N))-1 2(vcr 2 /2)P 1,/2
X 2 2

-(v+1)-MT
2
/2T

2
,

.r e GT

(A.6)
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co
= E OrI [1-(m+i)+1-; 1-(v+j)12(vos2/2)V/2

X 2 2
r=0

co

I
(20+VT

2
)/2T

2

(t
2
)
—(r—h+v/2+1/2)

. e dt

0

(A.7)

Now, using the same change of variables as in the proo
f of Theorem 1, the

integral in (A.7) is

(1/2) [2/(20+vo-2)] 2 r
( 
—2+r-1-1 (A.8)

and so, substituting (A.8) into (A.7), collecting terms and al
lowing for the

change from 0 to A completes the proof of Lemma Al.

Proof of Corollary 2.

The desired expressions are directly obtained from Theorem 2 as

e Mt(0,vcr2/(v-2)IT) when T has an inverted gamma distribut
ion with scale

parameter a'
2 
and degrees of freedom parameter v. To establish pmt [E(y),Xb]

and p 
Mt 

[E(y)
' 
XV] we merely need to note that

E(T2) = vcr2/(v-2) (A.9)

To obtain plvit [E(y),X1] we have from Lemma Al that

and

where

03

T
P. .f (T )dr =
ij Pi j2

co

f 
T
2 T
P. .f(r)cit =

2

1.1 Pijli

0

(A.10)

(A.11)

co ( 2A/v 1rr (-11-4-r+n-22
P

n 
= Z   I [1(m+i)+r; L(v+ j)

ij 
1 ,

2
r=0 r!(1+2A/v)

v/2+r+n-2 -v+n-2) x 2
2
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i,j,n = 0,1,2,..., and Ix(.; . ) is Pearson's incomplete beta function with x

= cm/(v+cm). Substituting (A.6), (A.10) and (A.11) into equation (13)

of Theorem 1 completes the proof.

Proof of Theorem 3.

First, C.;.2e = e' Me/v, where M = I - XS-1X' is a
n idempotent matrix of

rank v. So,

2"Z') t.2 2l2
pic ,cr

e e 
E ir 0.

e e

2

= E (e' Me - vE(T2)) /v2

= E ) /v2

co

V 

1
EN (G )(IT

2

0

where

(A.12)

G' = (e' Me)2 - 2vE(T2)(e' Me) + v2 (E(T2))

and E
N
(G' = E(GI) when e N(0,T2IT

). Under these conditions e' Me/T2 Xv2,

and so
2

EN (G1 ) = (V+2)T4 — V[2E(T2)T2— (E(T2)) •

Substituting (A.13) into (A.12) completes th
e derivation of p (cr2e,C;e2)

Secondly, we can write

cr*
2 
= (e' Me + e' Ce )/(v+m)

e 1 1 1 1

(A.13)

(A.14)

where el = d + e, d = X(f3-130), (30 = Rr is 
any solution of Rgo = r, and C =

XS
-1R, [Rs-1R, [-1Rs--1._,X is an idempotent matrix of rank m. In writing (A.14)

we have used the fact that eliMel = e' Me, 
as d' M = 0.

So,

+2,01 = E{(e' Me1 
+es Ce

1 
)2 - 2(v+m)E(T2)(e' Me1 

+e' Ce
e e 1 1 1 1 1
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2

+ (V+M) (E(T2)) 1/(V+111)2

= EfG"1/(V+M)2

co

= [ EN{G"}f(T )(id /( v+m)2 ,

0
(A.15)

where EN{G"} = E{G"} when e N(0,T2IT). under this assumption

(el Mei+elCel)/T
2 
^ X

2
and so,v+m;AT

E
N
fG"1 = T4 [(v+m)(v+m+2) + 4(v+m+2)A. + 4X 2] - 2(V+M)(V+M+2A

T)E(T2)T T

+ (V+111)2 (E(T2)) 2 (A.16)

Substituting (A.16) into (A.15), noting that AT = 0/T
2
, and integrating over

t completes the derivation of p 
1
cr2e,crl

Finally, to establish 2 crA 
e
2

T e' 
) we writeP ( 

;2e = f(elmel)(v+m) Nei Mel) 1[0,c] 
(ye I Cei/mel Mei) 11 [v(v+m)]

so that,

where

0-2; =
ice 

03

[ 1-4EN{G" (t)d-d/ [v2(v+m)1

0

2
= (e 1 Mei/T2 )2 (V+M)2 + v2(V+M)2 (E(T2)) IT4

- 2v(v+m)2 (E(T2)/T2) (e'
1 
Me

1 
tr2) + [-m(2v+m)(e' Me

1 
/t2)1 

+ v2(eiCe1/T2) + 2v2(elMe1tt-2)(e1Ce1/T2)

„+ 2MV(V+M) 
(MT2 )/T 2

)(el Me1tr2) - 2v2(v+m) (E(T2)/T2) .

((veiCei/r2)/(e' /r2)) 1 ,
(el Cei/r2)1

I[0,c) 1Me 
1

(A.17)
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f {and E
N 

G"' = E G"' when e - N(0,121.r).

Using the results of Clarke, Giles and Wal
lace (1987a,b) we have

= v(v+m)2(v+2) 
v2(v+m)2(E(T2)) 2/1.4 2v2(v+m)2E(T2)/T2

- mv(2v+m)(v+2)PT04 
+ v2[m(m+2)PT40 + 4(m+2)ATPT60 + 4A2PTT 80

+ 2v3 imPt
2 
+ 2A P 2) + 2inv2(v+m) (E(T2)/-c2) PT02

2 T 

- 2v2(v+m) (E(T2)/1. (mPT20 2A-rPT40) 
(A.18)

and so, substituting (A.18) into (A.17), noting that AT = 0/T2, completes

the derivation of p (cr2e,;e2) and the proof of The
orem 3.

Proof of Corollary 3.

This corollary follows from Theorem 3 in the s
ame way that Corollary 2

was established from Theorem 2. The only additional information we require

is that

E(T4) = v2c34/[(v-2)(1,-4)]

and, from Lemma Al,

f TAPT .f(t)d-r = v2cr4P P. /
1 j JO
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Footnotes

1. This subclass of the spherically symmetric family is sometimes called

the compound normal family. See, for instance, Muirhead (1982).

2. We require the existence of the. first two moments if risk, under

squared error loss, is to be a meaningful basis for the comparison of

the estimators.

3. Note that these estimators of cr
2

e 
correspond to the usual estimators of

the error variance for normally distributed regression disturbances.

The same is not true for the maximum likelihood (ML) or minimum mean

squared error (MMSE) estimators of cr2: the ML and MMSE estimators of

cr
2 

when the errors are SSD depend on the specific form of the SSD.

See, for instance, Zellner (1976) and King (1979) for further

discussion and some examples.

4. Clearly, if the error distribution has an infinite variance (for

example, if it is the Cauchy distribution) then the least squares

estimator will have zero efficiency.

5. We exclude this latter member by the assumption of finite variance.

6. King considers the wider class of elliptically symmetric disturbances

while Zellner, Ullah and Zinde-Walsh, Ullah and Phillips, Sutradhar and

Ali, Singh and Sutradhar investigate Mt errors.

7. We consider the estimation of the prediction vector rather than the

location vector so that our results are independent of • the design

matrix. This is equivalent to assuming orthonormal regressors in the 13

space.

8. We numerically evaluated the risk functions for v = 10, 16, 20, 30; m =

1, 2, 3, 4, 5; a = 0.01, 0.05, 0.25, 0.30, 0.50, 0.75, 0.90 and that

value associated with a critical value of unity; v = 5, 10, 50, 100,

500, 1000, 5000, 10,000, 100,000, co, and A e [0,3(0.0;3,20(0.5)).
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Full results are available on request. All evaluations were carried

out using double-precision FORTRAN on an AT computer. Davies (1980)

algorithm was used to evaluate the P. .'s and the subroutines GAMMLN and
1J

BETAI from Press et al. (1986) . were utilized to obtain the Pun's.

Using these programs we found that the risk expressions were

efficiently evaluated with no observed convergence problems.

9. That the risk of the pre-test estimator can dominate both of its

components over any or all of the parameter space may seem counter

intuitive. We may believe that as the pre-test estimator is a weighted

sum of its component estimators then its risk function should be

enveloped by those. of its components. This, however, confuses the

distinction between a weighted sum of the moments of the component

estimators and the moments of their weighted sum. The dominance of the

pre-test estimator, for suitably chosen c, over the unrestricted

estimator for all A, and over the restricted estimator for some A, also

occurs when estimating the error variance after a pre-test for

homogeneity. See, for example, Bancroft (1944), Ohtani and Toyoda

(1978), and Toyoda and Wallace (1975).

10. Ohtani considers the question of the optimal significance level for the

pre-test problem examined by Clarke et al. (1987b) when the component

estimators are based on the minimum mean squared error principle. He

compares the sampling properties of the pre-test estimator with those

of the Stein (1964) estimator (extended to the linear regression case)

and shows first, that the Stein estimator can be written as a pre-test

estimator with critical value of v/(v+2), and secondly, that the

numerical evaluations suggest that the "Stein pre-test" estimator is

optimal in some sense. See also Gelfand and Dey (1988).
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11. The exceptions are those pre-test estimators with a critical value in

the neighbourhood of c = 0.

12. It is straightforward to show that this feature holds under the null

hypothesis for any v, but the proof .for 0 is not obvious.
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