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Abstract

This paper derives an unbiased estimator of the covariance matrix of
the "mixed regression estimator" suggested by Theil and Goldberger (1961)
for combining prior information with the sample information in regression
analysis. This derivation facilitates the construction of finite-sample
standard errors for the mixed estimators of the individual regression
coefficients. Comparisons are made between the unbiased covariance
estimator and conventional consistent estimators based on ordinary least
squares and generalised least squares formulae.
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1. INTRODUCTION

This paper considers the "mixed regression"” estimator proposed by Theil
and Goldberger (1961) as a means of combining stochastic prior information
with the available sample information when .estimating the parameters of the

linear regression model. This model is of the form
y = X8 +u;u~ N0, (1.1)

where X is (T x k), non-stochastic and of rank k. The uncertain prior

information about B is expressed as
r=RB +v; v~ NOyY (1.2)

where R is non-stochastic, (g x k) and of rank g(< k); r is non-stochastic
and (g x 1); ¢ is known and positive definite symmetric; and E(uv’) = 0.

The Ordinary Least Squares (OLS) estimator of B is
’ -1 ’
b=(X'X) X'y
2,4, -l
where V(b) = ¢(X’X)
and a consistent and unbiased estimator of V(b) is
Vib) = (i](x'xrl
v
where s = (y - Xb)/(y - Xb), and v = (T - k).

The Generalised Least Squares (GLS) estimator of B based on (1.1) and

(1.2) is

B=(X'X+ ozk’w_lR)'l(X’y + Ry )

V@) = ¢3X'X + o Ry R)L

A consistent estimator of V(B) is given by

Sxy _ s . s,, ~1,]-1
V(B)—[;][XX+;R¢ R] .




The estimator § in (1.6) is non-operational. The mixed regression
estimator is just the feasible counterpart to ﬁ:
g = [x'x + gk'w’lR]‘l[X'y + éR’w_lr]. (1.9)
Clearly, B is consistent for B, and it is easily shown to be unbiased
if v > 2. Moreover, its asymptotic distribution is the same as those of
both b and E This mixed regression estimator can be given a Bayesian

interpretation (e.g. Theil (1971; pp.670-672)), and following Theil (1963),

the prior share of information may be represented by

6 = k 4r. [;]R'w'lR[X'x + gk'w’lk] -1 (1.10)

As 6 > O.or 6 > 1, I§ collapses to the OLS or restricted least squares
estimators respectively.

Nagar and Kakwani (1964) made an early study of some of the finite-
sample properties of é, and Srivastava (1980) provides a full bibliography
of the study of this estimator. Of particular relevance here are the
results of Swamy and Mehta (1969) and Mehta and Swamy (1970). The former
relate to the derivation of an expression for V(fi), while the latter
considers the distribution of é Both of these results are of a complex
form and are not readily applicable. Moreover, V(é) is unobservable, of
course, and must be estimated if standard errors for the elements of [3 are
to be constructed.

Either \7(@) or {l(b) may be used as consistent estimators of V(r;). In
practice, the former is generally adopted, as an unbiased estimator of V(f})
has been unavailable. This gap in the literature is remedied in this paper.
In section 2 we derive an unbiased estimator of V(é). The measures of
variability obtained by using this estimator are compared with those based
on V(E’) and {/(b) in section 3; and some concluding remarks appear in section

4.




2. UNBIASED ESTIMATION OF THE COVARIANCE MATRIX

The approach used to derive an unbiased estimator of V(B) is similar to
that adopted by Srivastava and Giles (1989). Our principal result is given
in the following theorem.

Theorem 2.1.

Under the assumptions of section 1, an unbiased estimator of V(é) is
given by
v = [%] Jt) w”/ 2'l[x'nx + wd R’n/z-lR] "X'x[x'x + ws R‘w‘lk]"dw
s)? s o, -1)-1, -1 s o, -1)-1
+ [;] [X’X s R’y R] R’y R[X'X 5 R’y R] . (2.1
Proof. From (1.9) we observe that
@ -8 = [x'x + 2 R'w"R]'l[x'u +3 R'w"v] .
Recalling the independence of u and v, and of s and X’u, we have .

V@) = ﬁ:[[x’x +2 R’w_IR]-lX’X[X’X + 3 le"R]"]

s)? s -1.)-1,, -1 s -1.)-1
+E[[;] [xx+;Rw R] R’y R[XX«!»;R:/J R} ] (2.2)

Consider the first term on the RHS of (2.2). There exists a non-

singular matrix P such that

P'X'XP =1

P'RYIRP = A,
where A is a diagonal matrix whose diagonal elements are the roots of
IR’w-lR-AX’XI = 0. Of these k roots, g are positive and the remainder are
zero.

So, the first term on the RHS of (2.2) is
ozPE[I + 2 A] “2ps

= PAP’, say,




where A = diag. (6i], and

2
5, = E[ il ] . (2.3)
1 1'+S 2

v i

When Ai = 0, [g] is an unbiased estimator of éi. To find an unbiased

estimator of 6i when Ai > 0, let hi(s) be a continuous function of s such
that Elshi(s)] = 6i. It follows that

2 dhi(s) 2 1
o E[vh.(s) + 2s ] =0 E[ ],
i ds s 2
1+= A

i

dh. (s) 1
E[vhi(s) +2s ;s - — 2] = 0.
1+= A,
v 1

(2.4)

As s is a complete sufficient statistic for 0‘2, it follows from (2.4)

that

dh. (s)
vh.(s) + 2s L
i ds

The differential equation (2.5) has solution

S v/2
hi(s) = s“V/2 J. w AT dw ,
2wi 1+—7\.i
0 vii

1 v/2-1
w

=_[ SA

—_dw ,
i 2

0 [l+— w)
v

and so an unbiased estimator of Bi is

- 1
s

Bi = Shi(S) =3 I

0

Accordingly, an unbiased estimator of PAP’ is




1
=%J wr/21 [x'x s wE R ¢‘1R] 'lx'x[X'x + Wi R w'lR] law.(2.8)
0

Now, the second term on the RHS of (2.2) does not involve any unknown

parameters, so an unbiased estimator of this expression is

s)? s _, -1 Y-1_, -1 s -1.)-1
[;][XX+;R¢ R]Rnﬁ R[XX+ SRy R] .

Combining (2.8) and (2.9) we get V(B) in (2.1) as an unbiased estimator of
V(B), as required. #
The square roots of the diagonal elements of V(B) provide appropriate

standard errors for the elements of B. Note that we may write

V(B) = PQP’ ,
where Q = diag.(q.), q, = (5, + &%), S is given by (2.7) and
i i i i i

- (sv)A,
ot = — 1

i s. V2 :
=N
vii
Similarly,

V(b) P[E I]P’
v

S s S =5, .
V(B) P[;(I+;A] ]P ;v >4,

Accordingly, to avoid data-dependencies, comparisons between the three
corresponding estimators of the variance of the ith. element of B may be

based on




v

1
w
5 J wa dw + ei(l-ei) ,
(o] 'l+l—6.i
i
i

SA.
where Bi = [m] is the prior information share for Bi, corresponding to
i

(1.10).

3. COMPARISONS OF COVARIANCE ESTIMATORS

From (2.10)-(2.12), g?LS < g(i)LS and g?l"s - g?LS and g‘; - g?LS as Oi -

0. Similarly, g(i;l's » 0 and g‘ij » 0 as ei > 1. This is reflected in Table 1

and Figures 1 and 2, where [g‘il/g?l's] and [gl;/g(i;LS] respectively are

evaluated for various values of ei and v. In interpreting these numbers it
must be remembered that ei = Gi(v). The integral in (2.12) is easily
determined by Romberg’s method using the FORTRAN routines QROMB, TRAPZD and
POLINT described by Press et al. (1986).

From Figure 1 and part (a) of Table 1 we see that g‘il s g(.l)LS. The
evaluated ratio can be intex;preted in two ways: it compares an unbiased
estimator with a consistent estimator of the variance of the mixed
regression estimator of Bi; and it also compares an unbiased estimator of
the varian;:e of éi with an unbiased estimator of the variance of bi' In
terms of the latter interpretation, the figures can be taken as estimated

relative efficiencies and they follow the expected pattern: i.e., mixed

regression estimation is more efficient than is OLS. Under the first inter-




pretation, these figures illustrate that the use of V(8) can result in
standard errors which are substantially smaller than those obtained by using
the OLS formula as a (large-sample) approximation.

From Figure 2 and part (b) of Table 1 we see that glij z g?LS, for all

degrees of freedom, and that the greatest difference between g‘; and g?]‘s
occurs when the prior information share is approximately 60%, regardless of
the degrees of freedom. Further, if v > 10 then this difference is less
than 10%, and if v > 30 it is less than 3%. So, only for problems involving
quite small degrees of freedom, and moderately strong prior information,
will the use of our unbiased estimator of V(é) result in standard errors

which differ markedly from those obtained from the usual consistent

estimator, V(@).
4. CONCLUSIONS

In problems where v > 30, the current practice of basing mixed
regression standard errors on the consistent covariance matrix estimator
s s . u GLS .

V(B) may seem to be justified. However, recalling that g = g; in Table

1, we see that this current practice has the important disadvantage of

resulting in standard errors which understate the variability of Bi on

average, and so are unduly "optimistic” in the impression they convey about
this estimator’s precision. The unbiased estimator of the covariance matrix
of the mixed regression estimator presented in this paper provides the basis
for calculating standard errors which can be justified in finite samples,
and which provide meaningful measures of that estimator's precision.
However, “the relative intractability of the exact distribution of the mixed
regression estimator precludes using these standard errors in any straight-

forward way to construct confidence intervals, etc.

October, 1989
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Table 1. Estimated Variance Ratios




RATIO OF VARIANCE ESTIMATES

FIGURE 1
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