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Abstract

The paper derives an exact unbiased estimator of the mean

squared error of the feasible generalised ridge regression

estimator for a linear regression coefficient. This provides the

basis for calculating the standard error of such an estimator in a

meaningful way.
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1. INTRODUCTION

Hoerl and Kennard (1970) suggest the method of ridge

regression to deal with the problem of multicollinear data.

Subsequently, a variety of ridge and ridge-type estimators have

been proposed and their properties derived and compared. However,

the practical application of these estimators has been limited by

the fact that they produce only point estimates - in general,

appropriate formulae for computing the associated "standard

errors" are unavailable.

The reason for this is that the expressions for the exact

first and second moments of these estimators are extremely

complex, and obtaining unbiased estimators of these moments (as

are needed to derive standard errors which are meaningful in

finite samples) seems to be a non-trivial task.

Although asymptotic standard errors for the feasible ridge

regression estimator are easily obtained, they are of limited use.

In particular, as they coincide with the least squares standard

errors, no distinction can be drawn between the relative estimated

efficiencies of the two estimators if this approach is pursued.

In the spirit of results obtained for the Stein-rule

estimator by Carter et al. (19**), this paper derives an unbiased

estimator of the exact mean squared error of the feasible ridge

estimator. The result obtained is of a simple form and is readily

computed. This facilitates the computation of meaningful standard

errors which have a proper finite-sample justification. We deal

only with the generalised feasible ridge estimator, but in

principle the same analytical approach could be applied to other

related estimators.
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2. GENERALISED RIDGE REGRESSION

Consider the model

(2.1) y = xp + u ; U N 0,a2I
n
)

where X is (nxp), and for convenience (and without loss of

generality) we take the model to be in canonical form, so that X'X

= A = diag.(Ai). The Ordinary Least Squares (OLS) estimator of g

is

(2.2) b = (X'X)
-1

X'y = A
-1

X'y

and this unbiased estimator has covariance matrix

(2.3) V(b) = a
2
A
-1 

,

for which an unbiased estimator is

(2.4) V(b) = sA
-1
/v ,

where v = (n-p) denotes degrees of freedom, and s = (y-Xb)'(y-Xb)

is the residual sum of squares.

The generalised ridge regression estimator of g is
A

(2.5) g = (A+K)
-1

X'y ,

where K = diag.(ki), and the k's are biasing parameters. The ith
A 

element of g is
A

(2.6) pi= Aibi/(Ai+ki)

where b. is the ith element of b.

(2.7)

A

If k
i 
is fixed then g

i 
has bias given by

A

ri(gi)

and Mean Squared Error (MSE):

(2.8) m(k)

2

k.P.

A3:+11c. 1
k )

2 2 2
X.a +k.g.

2
a.



In this case, the choice of ki which minimizes the MSE of hiis

2
k.= 

(.2/f3)  Hoerl and Kennard (1970) suggest a feasible version

of this optimalridge estimator:

(2.9)
A* 2 2
13.=[A.b./(A.b.+s/vdb. .

A*

Clearly, gi no longer minimises MSE - some of its exact finite

sample properties are derived by Dwivedi et al. (1980).

A*
For applied work, a major limitation of gi is that it

provides only a point estimate of the regression coefficient.

This problem is resolved in various ad hoc ways in practice (e.g.

Judge et al. (1988, pp.878-882)). One possibility is to use the
1

A*

OLS standard error (s/vA) as a standard error for g.. This is

legitimate asymptotically, but has no finite-sample justification

and provides no information about the gains or losses in measured

efficiency when ridge regression is used in preference to OLS.

Another approach that is sometimes adopted involves using

estimatorsofgi anda2 toestimatek.(as in (2.9)) and hence

A

(2.7) and (2.8). Although "standard errors" for the ei estimators

can be generated in this way, their obvious limitation is that

(2.7) and (2.8) are no longer the correct expressions for the

estimator's bias and mean squared error once ki is estimated.

Complete inference based on the feasible ridge estimator

requires knowledge of its sampling distribution. Dwivedi et al.

A*

(1980) derive the first two moments of gi, but the expressions

concerned are complex and unobservable. However, if unbiased

estimators of these two moments can be derived, then we have a

legitimate basis for constructing ridge regression standard
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errors. This task is considered in the next section. Our

objective is to provide exact finite sample measures, and hence

resolve -the difficulties currently facing an applied researcher

using feasible generalised ridge regression.

3. UNBIASED ESTIMATION OF THE BIAS AND MEAN SQUARED ERROR

(3.1)

A*

From (2.9), we observe that the bias of g. is

sb.A* 

1  1B(13 ) = Eppi-gi) -
2 jvA.b.+s

= -E
r sb
L 

bi

2  ]vA.b.+s
11 

from which it follows that an unbiased estimator of the bias is

(3.2)

where f. =
1

A A*

B(gi) =

2
A.b.

(  11 )

b.
_ 1 1

vf.+1k 1

It may be noticed that unbiased estimation

of the bias does not require normality of the disturbances.

(3.3)

A* 

Similarly, the mean squared error of g ii s

A*

M(t3 )

sb
= E(bi-gi)

2 
+ E[  

vA.b.+s

.

2 2
- 
2Esb.(b.-g.)

1 1 
2L vA.b.+s

sb. 2 sb.(b.-g.)a
2
+ E 

1 x - 2E1 
 1 1 1 [ • -

2 2vA.b.+s ] vA.b.+s11 11

An unbiased estimator of the first term on the right hand

side of (3.3) is
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(3.4)
:I. X. 1

)

while an unbiased estimator for the second term is

(3.5) ( vx ) r  i. L. (vfl ]

For the third term, we observe that bi has a normal

distribution with mean gi and variance (a2/Xi) while (s/a2) has a

2
X -distribution with v degrees of freedom, independent of bi.

Using this result and integrating by parts:

(3.6)
E

sb.(b.-g.)
r  1 1 

2L vA.b.+s11

b.
a
2
[s a

vA
A. 

1 
ab.
( )

i

2
s(vA.b.-s)

a
2

1 1 
A. 

[ tvA.b+s12
11 '

Now suppose that g(s,bi) is absolutely continuous in s and is

such that

(3.7)
sb.(b.-g.)

E[s g(s,bi)] = Er  1 
2
1 1

L vA.b.+s
11

Integrating the left side of (3.7) by parts and using (3.6),

we get

5



or

ag(s,bi)
a2E[v g(s,b.) + 2s  

1 as

ag(s,b.)
4.E [v g(s,bi) + 2s  

as

=E
r  sb.(b.-g.) ]

2L vA.b.+s

2
a
2 s(vA.b.-s)

1= - E[  
2(vA.b.+s)2 j
a.

2
s(vA.b.-s)

a. 
2 ]

A.(vA.b.+s) 
2

a.

= 0.

As (s,bi) are jointly complete suficient statistics for

(a2,0.), this last equation suggests

(3.9)

2
ag(s,b.) s( vA.b.-s)

1 1 1 v g(s,bi) + 2s   +
as 2 2

1 1 i

= 0

This is a linear differential equation of first order and

first degree, with solution

(3.10) g(s,bi)

2
—f s (vA.b.-x)x

a. 
2 

0 A (vA.b.+x)
2

i 11

_ 1
2A.k 1 ) 0

1 (vfi-x)x
2

(vf.+x)2

dx

dx,

which provides the functional form of g(s,bi).

Substituting (3.10) in (3.7) we observe that an unbiased

estimator of the third term on the right hand side of (3.3) is

6



(3.11) -

Using (3.4

A*

MSE of g. is

(3.12)

, (3.5

A A*

M(gi) =

where J(v,fi) =

$
l r (vfi-x)x ]

dx.
0 L (vfi+x)2

and (3.11), an unbiased estimator of the

1 r (vfi-x)x
L (vf,+x)2

dx.

vf .

(vfi+1)
2 + v J(v,fi)]

A A*

The square root of M(f3) gives a meaningful standard error
A*

for gi. This expression is simple, especially when compared with

its population counterpart (see Dwivedi et al. (1980, p.206)). The

, A*

value of J(v,fi) is easily determined and M(f3) is expressed in

terms of quantities readily obtained from conventional regression

output.

Finally, (3.12) depends on the regressors through Ai and is

derived on the assumption that X'X has been diagonalised.

However, considering the orthogonal transformations that would be

used to achieve such a diagonalisation it is easily seen that V(b)

in (2.4) depends on the data in a corresponding way; that

"t-ratios" based on (2.9) and (3.12) are independent of this

assumption; and that the comparative evaluations considered in the

next section are perfectly general in the sense that they are not

in fact limited to the case of a diagonalised design matrix.

7



4. NUMERICAL EVALUATION

The numerical evaluation of (3.12) for any choice of v and fi

is straightforward - we have used the FORTRAN routines QROMB,

TRAPZD and POLINT given by Press et al. (1986) to implement

Romberg's method to determine J(v,fi). The relative estimated
A* A A* A Aefficiency of bi to gi is e = m(gi)/v(bi), where V(b) = (s/vAi),

and values of e are given in Table 1 for various choices of v and
1

t
i 
= (vf

i
)
2
. The latter quantity is the t-ratio for testing if g

= 0, so this parameterisation facilitates practical prescriptions.

We see that e < 1 for combinations of small values of v and

t.. Small values of ti are characteristic of the application of

OLS in the context of collinear data, and our results indicate

that in such cases the OLS standard errors understate the
A* precision of the estimates. If t g ii 0.5 then i s estimated to

be more efficient than b. for any v; and conversely if t a 0.8
1

A*then b
i 
is estimated to be more efficient than g

i 
for any v.

From (2.9), (31 = bitl./(1+t2i), so as v 402 or fi co, ji* bi

and e 1. This is supported by the results in Table 1 and also

when e is tabulated in terms of v and f. values. The results in

Table 1 also indicate that for the majority of combinations of v
A*and ti, b. is estimated to be efficient relative to gi, and the

maximum such efficiency gain is 46%. Regardless of v, this

maximum gain arises for t. between 1.2 and 1.6, and generally for
2t. = 1.4 (t. =a 2).

As noted already, in practice V(b) is often used to produce
A*

standard errors to use in association with gi. This can be

justified asymptotically, but in finite samples this can now be
A A

improved upon through the use of M(g). Comparing these two
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A*

approaches to measuring the precision of pi, our values for e show

that generally the use of OLS standard errors in conjunction with

ridge regression point estimates involves an overstatement of the

precision of these estimates, relative to that indicated by the

more appropriate measure derived in this paper. The figures in

Table 1 may be viewed as correction factors to compensate for this
1
_

overstatement - multiplying an OLS standard error by e2 yields an

appropriate standard error to use with the ridge estimator.

A*
It is interesting to note that, in terms of actual MSE, gi is

2 
efficient relative to b. if (X.13./2a

2 
) < 1. While it may be

i 3. 1.

tempting to estimate the left hand side of this expression to see

if the inequality, holds empirically, it is clear that this

strategy can be very misleading. For example, substituting the

least squares estimators of pi and a2 gives the condition t2i < 2.

Adjusting for the bias introduced by estimating in this way yields

the condition (v-2)t2i/v < 3. That this is an unsatisfactory

procedure can be seen by noting that these last two inequalities

involve the estimation of a condition relating to the true

relative efficiencies of the two estimators. In contrast, the

information in Table 1 relates to the relative estimated

A*

efficiencies of pi and bi. Dealing with the inequality relating
A*

to the actual MSE's of g
i 

and b
i 

properly involves testing if

2 
(Ag../2a

2 
) < 1 and choosing the estimator accordingly. This1 1

'
"preliminary-test" estimation strategy is discussed by Srivastava

and Giles (1984).

Another way of considering the practical implications of
1

* A* A*
our resultsistocomparet.with t. = f3/(M((3)), the1 1

*
ridge-regression analogue of the usual t-ratio. The quantity 7. =

1

9



(tt/ti) is the factor by which an OLS t-ratio should be scaled to

convert it to its ridge regression counterpart. Of course, tt is

not t-distributed, but it is still a measure of some practical

interest. Values of 71! appear in Table 2. We see that,

especially for small values of v and/or ti, a t-ratio based on

OLS is misleading in the sense that it suggests substantially

greater estimation precision than would be inferred from the value

of t*.

5. CONCLUDING REMARKS

This paper solves the problem of presenting a meaningful

measure of the precision associated with a point estimate obtained

by feasible generalised ridge regression. The practices generally

adopted by applied workers are unsatisfactory because either they

involve the estimation of a quantity which does not actually

measure the population precision; or they are based on expressions

which are uninformative because they are valid only

asymptotically. In contrast, we present a simple expression for

an unbiased estimator of the ridge estimator's mean squared error

which is exact in finite samples and whose square root provides a

meaningful standard error to be associated with a ridge regression

coefficient. The tabulated evaluations indicate the extent to

which standard errors and "t-ratios" based on least squares

results may differ from those .based on the procedure proposed

here. The calculations needed to compute the proposed standard

error are trivial, and can easily be incorporated into ridge

regression packages.

10
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Table 1: Values of e = ttl(g9/17(bi)

4 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 4.00 5.00

1 0.97 1.14 1.25 1.32 1.37 1.39 1.40 1.37 1.34 1.30 1.27 1.20 1.15 1.09 1.06

2 0.77 1.01 1.17 1.29 1.36 1.41 1.44 1.42 1.39 1.35 1.32 1.24 1.18 1.11 1.07

3 0.64 0.90 1.10 1.25 1.34 1.40 1.45 1.44 1.41 1.38 1.34 1.26 1.20 1.12 1.08

4 0.55 0.83 1.05 1.21 1.32 1.39 1.45 1.45 1.43 1.39 1.35 1.27 1.21 1.13 1.09

5 0.49 0.78 1.01 1.18 1.30 1.37 1.45 1.46 1.44 1.40 1.36 1.28 1.21 1.13 1.09

6 0.44 0.74 0.98 1.15 1.28 1.36 1.44 1.46 1.44 1.41 1.37 1.28 1.22 1.14 1.09

7 0.41 0.71 0.95 1.13 1.26 1.35 1.44 1.46 1.44 1.41 1.37 1.29 1.22 1.14 1.09

8 0.38 0.69 0.93 1.12 1.25 1.34 1.44 1.46 1.45 1.41 1.38 1.29 1.23 1.14 1.09

9 0.36 0.67 0.91 1.10 1.24 1.34 1.44 1.46 1.45 1.42 1.38 1.29 1.23 1.14 1.10

10 0.35 0.65 0.90 1.09 1.23 1.33 1.43 1.46 1.45 1.42 1.38 1.30 1.23 1.14 1.10

12 0.32 0.63 0.88 1.07 1.22 1.32 1.43 1.46 1.45 1.42 1.39 1.30 1.23 1.15 1.10

14 0.30 0.61 0.86 1.06 1.21 1.31 1.42 1.46 1.45 1.42 1.39 1.30 1.24 1.15 1.10

16 0.29 0.60 0.85 1.05 1.20 1.30 1.42 1.46 1.45 1.42 1.39 1.31 1.24 1.15 1.10

18 0.28 0.59 0.84 1.04 1.19 1.30 1.42 1.46 1.45 1.42 1.39 1.31 1.24 1.15 1.10

20 0.27 0.58 0.83 1.04 1.19 1.29 1.42 1.45 1.45 1.43 1.39 1.31 1.24 1.15 1.10

25 0.26 0.56 0.82 1.02 1.18 1.29 1.41 1.45 1.45 1.43 1.39 1.31 1.24 1.15 1.10

30 0.25 0.55 0.81 1.01 1.17 1.28 1.41 1.45 1.45 1.43 1.40 1.31 1.24 1.15 1.10

35 0.24 0.55 0.80 1.01 1.16 1.28 1.41 1.45 1.45 1.43 1.40 1.31 1.24 1.15 1.10

Table Z: Values of yt = (t/t1)

ti 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 4.00 5.00

1 0.20 0.28 0.37 0.45 0.52 0.59 0.70 0.78 0.83 0.87 0.90 0.94 0.97 0.98 0.99

2 0.18 0.27 0.36 0.44 0.52 0.59 0.71 0.79 0.85 0.89 0.92 0.96 0.98 0.99 1.00

3 0.16 0.25 0.35 0.44 0.52 0.59 0.71 0.80 0.86 0.90 0.93 0.97 0.98 0.99 1.00

4 0.15 0.24 0.34 0.43 0.51 0.59 0.71 0.80 0.86 0.90 0.93 0.97 0.99 1.00 1.00

5 0.14 0.23 0.33 0.42 0.51 0.59 0.71 0.80 0.86 0.90 0.93 0.97 0.99 1.00 1.00

6 0.13 0.23 0.32 0.42 0.51 0.58 0.71 0.80 0.86 0.91 0.94 0.98 0.99 1.00 1.00

7 0.13 0.22 0.32 0.42 0.50 0.58 0.71 0.80 0.86 0.91 0.94 0.98 0.9(' 1.00 1.00

8 0.12 0.22 0.32 0.41 0.50 0.58 0.71 0.80 0.86 0.91 0.94 0.98 1.00 1.00 1.00

9 0.12 0.22 0.31 0.41 0.50 0.58 0.71 0.80 0.86 0.91 0.94 0.98 1.00 1.00 1.00

10 0.12 0.21 0.31 0.41 0.50 0.58 0.71 0.80 0.87 0.91 0.94 0.98 1.00 1.00 1.00

12 0.11 0.21 0.31 0.40 0.49 0.57 0.71 0.80 0.87 0.91 0.94 0.98 1.00 1.00 1.00

14 0.11 0.21 0.31 0.40 0.49 0.57 0.70 0.80 0.87 0.91 0.94 0.98 1.00 1.02 1.00

16 0.11 0.20 0.30 0.40 0.49 0.57 0.70 0.80 0.87 0.91 0.94 0.98 1.00 1.00 1.00

18 0.11 0.20 0.30 0.40 0.49 0.57 0.70 0.80 0.87 0.91 0.94 0.99 1.00 1.00 1.00

20 0.10 0.20 0.30 0.40 0.49 0.57 0.70 0.80 0.87 0.91 0.94 0.99 1.00 1.00 1.00

25 0.10 0.20 0.30 0.39 0.49 0.57 0.70 0.80 0.87 0.91 0.94 0.99 1.00 1.00 1.00

30 0.10 0.20 0.30 0.39 0.48 0.57 0.70 0.80 0.87 0.91 0.94 0.99 1.00 1.00 1.00

35 0.10 0.20 0.29 0.39 0.48 0.57 0.70 0.80 0.87 0.91 0.95 0.99 1.00 1.00 1.00
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