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ABSTRACT 

In this paper, we derive the exact risk (under quadratic

loss) of pre-test estimators of the prediction vector and error

variance of a linear regression model whose errors are assumed to

be normally distributed but in fact follow a multivariate

Student-t distribution. The pre-test in question is one of the

validity of a set of exact linear restrictions on the model's
coefficient vector. We demonstrate how the known results for the

model with normal disturbances can be extended to this broader

case. Numerical evaluations of the risk expressions suggest that
misspecifying the error distribution in this way does not,

qualitatively, affect the risk properties of the estimators.

*
This work forms part of the author's Ph.D. research. My thanksto David Giles, Tony Rayner, Robin Carter, George Judge, JohnKnight, Peter Morgan, Kazuhiro Ohtani, Mike Veall and VictoriaZinde-Walsh for their constructive comments and suggestions. Iam also extremely grateful to Robert Davies for suggesting theuse of his algorithm AS155 and for providing his software.
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1. INTRODUCTION

The sampling properties of the estimators of the parameters

of the linear regression model, after a pre-test for linear

restrictions on the coefficient vector, have widely been examined

(see, for example, Clarke et al. [5,6], Giles [12], Giles and

Clarke [13], Judge and Bock [17], Mittelhammer [22], Ohtani

[24,25,26], Wallace [37]). All have assumed that the regression

errors are normally distributed. There is a large body of

literature, however, which suggests that some economic data series

may be generated by processes whose error distributions have thick

tails, or even infinite variances. Examples include price-change

analysis in the stock, financial and commodity markets (Fama

[9,10,11], Sharpe [29]), cash flow analysis (Granger and Orr

[14]), and demand analysis (Coursey and Nyquist [7]). Such

possibilities have led to studies of the robustness of the

traditional estimators and searches for 'robust' estimators.

Huber [15], Koenker [21], and Judge et al. [18] provide surveys of

this literature.

One distribution receiving considerable attention is the

multivariate Student-t (Mt) with zero mean vector. For this error

distribution, as shown by Singh [30,31], Thomas [33], and Zellner

[38], for example, the marginal distributions of the errors are

univariate Student-t and the errors are uncorrelated but are not

independent. For small values of 7, the degrees of freedom of the

distribution, the marginal distributions have thick tails; as 7

4 ., the pdf approaches a normal form; and when 7 — 1, the pdf is

Cauchy.
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Linear regression models with Mt errors have been considered

by some authors, including Judge et al. [19], King [20],

Nimmo-Smith [23], Singh [30,31], Ullah and Zinde-Walsh [36], and

Zellner [38]. Judge et al. [19] establish sampling properties of

the James-Stein [16] estimator of the location parameter vector

(and its positive part counterpart) under a squared error loss

measure and a Mt error density. They compare, via a Monte Carlo

experiment, the finite sample behaviour (empirical risks) for

their Stein-like, and some conventional robust, estimators. In

general, the risk characteristics for their Stein-like estimators

when the errors are nonnormal are found to be the same as for the

normal errors case.

In this paper we consider the question of the robustness, in

terms of risk under squared error loss, of the usual pre-test

estimators of the prediction vector]. and the error variance of a

linear regression model, after a pre-test for exact linear

restrictions on the coefficient vector using the traditional

F-ratio, when the errors follow a Mt distribution with 7 degrees

of freedom. In the next section we detail the model and give the

unrestricted and restricted estimators of the model's parameters.

Sections 3 and 4 present, discuss and evaluate the finite sample

risk functions of the various estimators of the prediction vector

and the error variance respectively. Some concluding remarks are

given in the final section, and the proofs of the theorems appear

in an appendix.

2. THE MODEL AND THE PARAMETER ESTIMATORS

Consider the linear regression model
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y Xfi + e, e Mt(0,02,IT), (1)

where y is a (Txl) vector of observations on the dependent

variable, X is a (Txk) non-stochastic design matrix of rank k(<T),

15 is a (kxl) vector of unknown parameters. The (Txl) vector of

disturbances, e, is assumed to follow the multivariate Student-t

(Mt) distribution

where

-(T+7)/2,
r* -1

f(e) = [1 + 2-- ed a > 0, 7 > 0 (2)
a
T

a2
- < E <

c* riT+71 r(7/2)]-1
2 JP

is a normalising constant, 7 and a2 are the degrees of freedom and

scale parameters of the distribution, and a: — 7a2/(7-2) is the

common variance of the ei's, i 1,...,T; 7 > 2.

Consider m independent linear restrictions on fl, summarized

by the hypothesis

H0: R/3 =r vs. H
1
: Rfl # r (3)

where R and r are (mxk) and (mxl) matrices of known constants, and

rank R = m(<k).

The unrestricted least squares estimator of p,

(X'X)4X'y, is also the unrestricted maximum likelihood

estimator (see, Singh [30,31], Thomas [33], Zellner [38]).

Furthermore, it is easy to show that the restricted least squares

- ,
estimator of fl,

* 
- (X'X) R'[R(X'X) R']

1 
(Rp-r), is also

the restricted maximum likelihood estimator of fl.

The usual F-ratio for testing the linear restrictions (3) is

F
v(11-4-0'[R(X'X)-1R1]-1 (Rij-r)

m(Y-X-4)'(Y-X7j)

(4)
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where v (T-k). Thomas [33], and Ullah and Phillips [35] show

that under Mt errors, F has a density function given by

-1 . +r)r(i +r) m m/2+r
f(F) [rOpr(-1)] z   (;-7-)

r—O

Fm/2+r-1
(20/7)r

m (m+v)/2+r 
20(1+—F) (1+--)
7

7/2+r (5)

where 8 — (Rfl-r)'[R(X'X)-1R']-1(10-0/202, and is a measure of the

hypothesis error. Note, first, that when Ho is true F F
m,v

(see, Zellner [38, p.401]). Secondly, when 7 4 w C MN(0,a2I
T
),

and (5) reduces to the non-central F density, Fm,v,o.

In deriving their result, Ullah and Phillips [35] use the
2

fact that if c 
Mt(0' 2°2T' 

) then we can write7- 

iTia/q (6)

where a and q2 are independently distributed as MN(0,a2IT) and x_21

respectively. This decomposition enables one to condition on q2

and work with normal random variates to obtain the conditional

density f(F1q2). This is found to be non-central 
F(m,v,A) 

with

non-centrality parameter

A 120 q2(10-r)'[R(X'X)-1R']-1(Rfl-r)
7 

2a27
(7)

The unconditional density of F, given by equation (5), is then

obtained by noting that

f(F) f f(F1q2)f(q2)dq2 , (8)
0

where f(e)
 
—

This approach contrasts with that employed by some other authors,
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including Zellner [38] and Singh [30,31]. These authors proceed

by regarding the error vector c as being randomly drawn from a

multivariate normal distribution with a random standard deviation

generated from the inverted gamma distribution. It does not

matter which approach is used, given the relationship between the

2
X , inverted gamma and gamma pdf's (see, for example, Zellner [39,

pp.369-373]). In the following sections, we employ the Ullah and

Phillips decomposition (6) to derive the risk expressions, under

an invariant quadratic loss function, of the component and the

pre-test estimators of Xfl and a:.

3. THE RISKS OF ALTERNATIVE ESTIMATORS OF E(y)

We define the pre-test estimator for E(y) Xfl as

A t ; if F > c
Xfl

Xfl ; if F c

X-4I(c,.)(F) + XeI
io,ci(F) (9)

where c = c(a) satisfies f dF
(m,v) 

— (1-a) and I
[a,b]

(F) is an
0

indicator function with value unity if F E [a,b], zero otherwise.

Further, if Xb is any estimator of E(y), then its risk function,

under quadratic loss, is

p[Xb,E(y)] E[Xb-E(y)]'[Xfl-E(y)]/02 , (10)

and is the relative mean squared error of Xb. We now derive the

risk expressions for the various estimators of E(y). Notice that

we are considering a situation involving model misspecification:

the F-ratio is being used to test Ho because the errors are

wrongly being assumed to be normally distributed.

(,
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3.1 Finite Sample Risk Functions

THEOREM 1.

Under the stated assumptions,

p(ifj,E(y)) k7/(7-2) (11)

P(XP E()) [7(k-n) + 2.9(9-2)1/( -2) (12)

+fl,E(y)) P('-i-2)(2P
202

-P
402
) + 7(k-mP

201
)1/(7-2) (13)

where

(20/7)r r(+r+a3-2)

a
1
a2a3 r!(1+20/7)

7/2+r+a
3
-2 r(+a

3 
-2)2 

. I421-(m+al) + r; 1(v+a2)) , (14)

is Pearson's incomplete beta function with u cm/(v+cm).

PROOF. is unbiased, so

pP,E(y)) — tr.[V(X)]/a2

— tr. [7a2X(X' X) 
-1
X' 1/[a2(7-2) I

where V(X4) is the variance-covariance matrix of X. (11) then

follows immediately.

Turning to the restricted estimator, we have

Bias (Xfi
*
) - X(X'Y) 1R'[R(X'X)

-1
R']

-1
(Rfl-r)

and V(Xe) ia2.KG(X'X)-1X'/(7-2), G I -(X'X)-1R'[R(X'X)-1R']-1R.

So,

p(X,13
*
,E(y)] (Rfl-r)'[R(X'X)

-1
R'j

-1
(Rfl-r)/a2 + 7(k-m)/(7-2)

and (12) follows directly, as (RP-rY[ROVX)-1R']-1(Rfl-r)/(72 — 20.

The proof of (13) is given in the Appendix. •
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Comparing (11), (12) and (13) we note directly:

(i) When 7 4 ., C MN(0,a
2
I
T
), P P where

a1a2a3 a1a2, 

P Pr.
a1a2 

(m+a v+a0) 
[F' (cm(v+a2))/[v(m+aid] (15)

, 

(11), (12) and (13) reduce to the well known expressions

(see, for example, Judge and Bock [17], Wallace [37]).

(ii) When a 4 1[0], c 4 0[.], P
al 3a2a 

4 0[1] for all

A

al, a2, a3 and 40,E(y)) 9 pP,E(y))[p(Xe,E(y))].

(iii) When the null hypothesis is true (8 — 0),

p(Xfl*,E(y))
7(k-m) <
7-2

p(Xi3,E(y))

where F Pr.[F
a1a2 

(m+a1'v+a2)

7(k-mF
20
)

7-2 < PP,E(y)) ih
7-2

(cm(v+a2))/[7(m+al)]].

(iv) As 0 4 ., the risk of Xfl* is unbounded, while

4
A

41,E(y)] 4 p[X13,E(y)] as P
a1 a2 a3 

4 0 for all al, a2, a3.

A

(v) When 8 — m7/(7-2), 414,E(y)) 4)0 ,E(y)) p(XB,E(y)).

Equality of the three risk functions results when 2P202 -

P402 - P201 — 0'

3.2 Numerical Evaluations of the Risk Functions

The risk function of the pre-test estimator depends on the

data and the unknown parameters only through 0 and so we have

evaluated the risk expressions for various choices of 7, a, m, k

and T.
2 

Some representative results, for various 7 values, appear

in Figures 1 to 4.

Comparing the figures, we see that a decrease in the value of

7 from the normal errors case (7 co) causes the estimator risk
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functions to shift upwards, a decrease in the rate at which the

risk of the pre-test estimator approaches that of the unrestricted

estimator, and an increase in the risk gain of the restricted

estimator over the unrestricted estimator for all 0 such that
*
,E(y)) < 40,E(y)). For the unrestricted and the restricted

estimators these changes occur because of the increase in the

estimators' variances as 7 decreases (the marginal distribution

has fatter tails). For the pre-test estimator, the increase in

its variance and its absolute bias (for relatively large 0) both

contribute to the observed differences. Our numerical evaluations

suggest that, in general, the difference between an estimator's

risk under normality and Mt errors is relatively insignificant for

a 7 value of at least 100.

Comparing the risk functions of the pre-test estimator and

its component estimators for a given 7, we find that the

conclusions observed when the errors are normally distributed hold

for all values of 7. When the null hypothesis is true the

pre-test estimator is risk inferior to the restricted estimator

but superior to the unrestricted estimator. However, the pre-test

estimator is dominated by the unrestricted estimator over a wide

range of 0, and by both of its component estimators over part of

the parameter space.
3 

Hence, no one of the estimators strictly

dominates the other two. This latter feature suggests choosing an
estimator according to some optimality criterion. Such a study is

beyond the scope of this paper (see, for example, Brook [3],

Ohtani and Toyoda [27], Ohtani [24], Toyoda and Wallace [34]).

So, aside from appropriate scaling, we find that the risk
properties of the estimators are robust to the choice of 7, and
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hence to the misspecification of the error term's distribution

being considered here.

4. THE RISKS OF ALTERNATIVE ESTIMATORS OF a2.

Let the pre-test estimator of a
6 
2

 
be given as

a2 ; if F > c
A2 IC
a
e *2

a ; if F c

—2 *2
—al

c(c,.)
(F) + a

c I[0,c]
(F)

where c, F and 
I[a,b]

(F) are as previously defined. The risk

function, under quadratic loss, of any estimator 32 of a2 is

2
—2 2 —2 2

E(a -a ) /a4
e

and is the relative mean squared error of 772e. We now consider the

risks of the various estimators of a 2.

4.1 Finite Sample Risk Functions

THEOREM 2. Under the stated assumptions,

P(32c,(72e.)= 2(v+7-2)/[v(7-4)]

p(a:2,a:) 2[72(v+m)(v+m+7-2) + 407(7-2)(7-4)

+ 202(7-2)2(7-4)]/[(v+m)272(7-4)]

A
p(a

2
e,a

2
) f272674102(V4-7-2) (V1-2)(M+2V)(7-2)

"P040

(15)

(16)

+ v(7-2)(
In+2)P400 2v2(7-2)P220 2(7-4)(v+m)v(P021-P201)]

[m+2'1'601-1-vP421-(v+m)13402]
+ 407v(7-2)(7-4) )

+ 
402v(7-2)2(7-4)P8021/[72(7-4)v(v+m)1

(17)

PROOF. See the Appendix. •
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Remarks:

(i) When 7 4 co, e MN(0,a
2
I
T
), P

ala2a3 
4 P

ala2
, a
: 

a
2 
and so,

(15), (16) and (17) collapse to the risk functions derived by

Clarke et al. [6] when the errors are normally distributed.

(ii) p(;:,a:) converges to p(32c,a:) when a 1, and to p(a:2,a2)

when a 4 0.

(iii) p(;:,a:) 4 p(3:07:) as 4 co, while p(a:2,a:) is unbounded.

(iv) p(a,a
2
) < p(a ,a ) when the restrictions are valid.

—2 2

E

4.2 Numerical Evaluations of the Risk Functions

As in Section 3.2 we have evaluated the risk expressions, as

functions of 0, for the same values of 7, a, m, and v as before.

Figures 5 to 8 illustrate typical cases. Note that Figure 6,

which considers the risk functions when 7 — 5, is drawn on a

different scale from that of Figures 5, 7 and 8, so as to enable

the features for all four cases to be distinguishable. We have

included the pre-test estimator with a critical value of 1 for two

reasons. First, under the null, the risk of the pre-test

estimator attains a local minimum when c 1 (for all 7), and, in

some situations is also the global minimum. We discuss this

further below. Secondly, if one undertook the Stein-like strategy

of using an estimator which always selects the minimum of 32 or
*2
a then this corresponds to the pre-test estimator with c 1.

Consider first Figure 5, which illustrates the risk functions

of the estimators when the errors are normally distributed. We

see that there exists a family of pre-test estimators, with c E

(0,11 which strictly dominate the unrestricted estimator for all
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8, and the restricted estimator over part of this parameter

space.
4

This feature is not observed in the evaluations

undertaken by Clarke et al. [6] but is noted in subsequent work

by Ohtani [24]. Ohtani [24] considers the question of the optimal

significance level for the pre-test problem examined by Clarke et

al. [6] when the component estimators are based on the minimum

mean squared error principle. He compares the sampling properties

of the pre-test estimator with those of the Stein [32] estimator

(extended to the linear regression case) and shows first, that the

Stein estimator can be written as a pre-test estimator with

critical value v/(v+2), and secondly, that the numerical

evaluations suggest that the "Stein pre-test" estimator is optimal

in some sense. Further, Clarke [4] shows that in certain

situations the pre-test estimator, appropriately chosen, can

strictly dominate both of its component estimators for all 0. She

finds this typically occurs for small m, say 1 or 2, but does not

appear to depend on the value of v. In these cases, the risk of

the pre-test estimator with critical value unity corresponds to

the global minimum risk at the origin and . her numerical

evaluations suggest this feature also holds for 0 0 0.5

Turning to the consequences of decreasing the value of 7 from

infinity, we find that the risk functions change in a similar way

to that observed when estimating the prediction vector. That is,

the estimator risk functions shift upwards, there is a decrease in

the rate at which the risk of the pre-test estimator approaches

that of the unrestricted estimator, and there is an increase in

the risk gain of the restricted estimator over the unrestricted

-2 
estimator for all 0 such that p(a

*2
,a
2
) < p(a ,a

2 
). These effects

e e e e
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occur because of the increase in the variances of all the

estimators when 7 decreases and changes in the bias functions of

the restricted and pre-test estimators; the bias of the restricted

estimator decreases for all 8 while the bias function of the

pre-test estimator shifts down for relatively small 8 (which may

increase or decrease absolute bias) but becomes unbiased at a

slower rate.

In Section 3.2, when comparing the risk functions of an

estimator of the prediction vector for different values of 7, we

found that, in general, there was little difference between the

normal risk functions and those when 7 — 100. However, when

estimating the error variance we find that relatively large

differences may still be evident for this gamma value, and even

for much larger values of 7, say 5,000 or 10,000.

Nevertheless, when comparing the risk functions of the

pre-test estimator and its component estimators for a given 7, the

conclusions for when the errors are normally distributed continue

to hold for all values of 7. Namely, there exists a family of

pre-test estimators, with c E (0,1] which strictly dominate the

unrestricted estimator for all 8. 7urther, some members of this

family,
6 

for some 7, also strictly dominate the restricted

estimator. The numerical evaluations suggest that the pre-test

estimator with critical value 1 strictly dominates all other

members of this family.7

Moreover, for some 7, the restricted estimator is also

strictly dominated by pre-test estimators with 1 < c <
•

Comparing equations (16) and (17) this will depend on m and v as

well as 7. For the cases analyzed we found, in general, that the
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restricted estimator is strictly dominated by all pre-test

estimators, except for those with c around 0 and c co, if 7 is

at most 15.

So, we have shown that, apart from appropriate scaling, the

risk properties of the estimators are robust to the choice of 7.

In particular, regardless of the value of 7, our recommendation is

to pre-test rather than to impose the restrictions without testing

their validity. Further, when using the least squares component

estimators, a critical value of 1 seems to be the appropriate

choice for the pre-test.

5. CONCLUSIONS

In this paper we have considered the sampling properties of

various estimators of the parameters of the linear regression

model, after a preliminary test of restrictions on the

coefficients, when the error vector follows a multivariate

Student-t distribution, but normality is wrongly assumed. The

results suggest that, qualitatively, the estimator properties

found for the model with normal errors carry over to this wider

case. So, these properties are robust to such possible mis-

specification of the error distribution. These results are of

interest to applied researchers working with data likely to follow

fat-tailed empirical distributions.
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FOOTNOTES

1. We consider estimation of the prediction vector rather than

the location vector so that our results are independent of

the design matrix.

2. We numerically evaluated the risk functions for v — 10, 16,

20, 30, m 1, 2, 3, 4, 5, a — 0.01, 0.05, 0.25, 0.30, 0.50,

0.75, 0.90 and that value associated with a critical value of

unity, 7 — 5, 10, 50, 100, 500, 1000, 5000, 10,000, 100,000,

w, and 0 E [0,3(0.1),3,20(0.5)]. Full results are available

on request. All evaluations were carried out using

double-precision FORTRAN on an AT computer. Davies' [8]

algorithm was used to evaluate the Pala2's and the

subroutines GAMMLN and BETAI from Press et al. [28] were

utilized to obtain the P 's. Using these programs we
ala2a3

found that the risk expressions were efficiently evaluated

with no observed convergence problems.

3. Except when 2P202 - 
P402 - P201 

— O. See Figure 2 for

example.

4. That the risk of the pre-test estimator can dominate both of

its components over any or all of the parameter space may

seem counter intuitive. We may believe that as the pre-test

estimator is a weighted sum of its component estimators then

its risk function should be enveloped by those of its

components. This, however, confuses the distinction between

a weighted sum of the moments of the component estimators and

the moments of their weighted sum.

5. The dominance of the pre-test estimator, for suitably chosen

c, over the unrestricted estimator for all 0, and over the
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restricted estimator for some or all 0, also occurs when

estimating the error variance after a pre-test for

homogeneity in the two-sample linear regression model. See,

for example, Bancroft [1], Bancroft and Han [2], Clarke [4],

Ohtani and Toyoda [27], and Toyoda and Wallace [34].

6. The exceptions are those pre-test estimators with critical

value around the neighbourhood of c — O.

7. It is straightforward to show that this feature holds under

the null for any 7, but the proof for 8 0 0 is not obvious.
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APPENDIX

The Proofs of THEOREMS 1. and 2. require the following lemma.

2LEMMA A.1. Let q
2

X7 A 

(Rj3 - r) ' 
[R(X'X)-1R, ]-1

(40 r)/2a2, and let Paa , given q2, be
12

defined by

Pr. [cm(v+a2)]/[v(m+aid]
a1a2 (nri-a

/'v+a2;A)

r-O

is Pearson's incomplete beta function with u cm/(v-i-cm),

and al, a2 - 0,1,2... . Then, for any real a4, a5:

r+a5 a4

E[(q2)a4Aa5P 1 (28/7) .2 .r(7,43+t-i-a4+a5)

ala2J r-O 
7/2+r+a4+a5

r! (1+20/7) r(1/2)

I )+r;1(v+.2„,))u 2 ./ - 2

PROOF.

E[(q2) 
a4a5 2 a4a5A P I - I (q ) A

ala2 0

f(e)de

r+a

(OM
r -0

(A.1)

-A
e  I (1(m+a,)+r;1(v+aJ).r! U2  1 - 2 Lr-O

-1
5(r!27/2r(7/2)) Iu[l(m+al)+r;1(v+a2)).

e0 :2 7/2+r+a +a -1 2
4 5 e-q 0+20)/27

dq
2
,J (q )

because A q20/7, Iu(.;.) does not depend on q2, and

f(e) [27/2r(7/2)] 1 e-q2/2(q2)7/2-1.
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Applying the transformation t q2(7+20)/(27), collecting terms

and noting that r(z) f t
z-1

e
-t
dt, the result follows directly.

0

Now, to establish (13) of THEOREM 1, we have:

PROOF. I(F) 1 -

*-4 -X(X'X)-1R'[R(X'X)-1R']-1(Xfl -X) (0--r),

A

SO, XP Xfl X-/J - Xfl - I[0,c](F)[X(X'X)-1R'[R(X'X)-1R']-1(0.-r)]

and, 44,E(y)] p[XLE(y)] + E(I*), (A.2)

where I — I
[0,c]

(F)12(R-fl--r)'[R(X'X)-1R']-1(Rfl-r)

- (R-fl--r)'[R(X'X)-1R']-1(0--01 /a2.

Following Ullah and Phillips [35], we note that R-fi-r Rfl-r +

R(X'X)
-1
X'c R(fl-fl) + R(X1X)

-1
X'c where /1 is any solution0

of Rflo r. Further, let

B [R(X'X)
-1
R']

-1
, A — R(X'Y) 1X!, C A' BA C2,

M =IT - X(X'X)-1X' — M2, and 6 — X(-fl0).

So, noting that AX

v(e-f-6)' C(c+6)/(meMe) and

R and MC — 0,

(A.3)

we have F

I
* 

— I
[0,c]

[v(c+6)'C(c+6)/(meMc)11.2(c+WC6-(c+6)'C(c+6)1/02

— I
[0,c] 

[(vb'Cb)/(mb'Mb)11-y(21fC6
1 
-b'Cb)/q21/a2, (A.4)

where b — a + 6
l 

6
1 

— Off-iand use is made of decomposition (6),

c V-ia/q. Now, observe that, given q2,

b — 
MN
(6
1
,a2I

T
), 

b'Mb a'Ma 2 b'Cb 2'
x, and -—vX

2 2 1.7 m;X
a 0 0

2
(A.5)
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where A = 6'1061
 
/a2 = q20/7. Further, given q2, the quadratic

forms b'Mb/(72 and b'Cb/a2 are independent and so, taking

expectations of (A.4), conditional on q2, we have

E(I*I q2) = 7l2E[I to ci ((vb' Cb)/(mb' Mb)) (b' C61)1q21

- E [Ito cl ((vb' Cb)/(mb' Mb)) (b' Cb) I q21/q2. (A.6)

First, using Lemma 1. of Clarke et al. [5] gives,

E[I ((vb'Cb)/(mb'Mb))(b'Cb)
a2

[0,c] (mP204-2AP40)* (A.7)

Secondly, we can write

E[Ito,c1((vb'Cb)/(mb'Mb))(b'C61)1q1 -

E[I[0,c]((vb*'b*)/(mb'Mb))(b*,6*
q

)1 2]
1 

where b = L'b, 81 - L'61 and LL' - C. Note that as C is

symmetric and idempotent, L'L Im and so, given q2, b*

*
MN(61,0

2 
Im). Then, using Theorem 1 of Judge and Bock [17,p.321],

noting that A = 4'4/2a2, we have

E[I
[0,c]

((vb'Cb)/(mb'Mb))(b'C.51)1q1 = 
2a2AP20' 

(A.8)

Substituting (A.7) and (A.8) appropriately in (A.6) yields

E(I*I q2) = 7[(4A-m) 
P20 2AP401/q2'

The unconditional expectation then follows as

E(I ) = E(elq2)f(q2)dq2
0

- 
714E[(q2)-1AP

20]
--4(q2)-1P

20]
-
2E[(q2)-

1AP40]}

- [20(7-2)(-2P202-P4O2) - m7132011/(7-2)
using LEMMA 1 repeatedly and defining

(A.9)
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(20/7)r r(7/2+r+a3-2)

Pa a a 7/2+r+a3-2 .III[1(m+al)+r;1(v+a2)). (A.10)= E 
1 2 3 r-O

r!(1+20/7) r(7/2+a3-2)
A

Substituting (A.8) in (A.2) yields 443,E(y)) as stated.

Turning now to THEOREM 2 and considering first ) we have

So

32 - c'Mc/v 7a'Magvq2)

2 2

+ v2(q2) - 2(7-2)vq2(a'Ma/a2))/

tv2(q2)21

2 
2 

2 -2Now, given q, a'Ma/a x
v 

and, therefore, the risk of a

conditional on q2 is

2p(32,021,42) [(7_2)2(v4.2)+v(e.
) 2(7-2)vq2]/[v(q21c c ,

The unconditional risk is then obtained by noting that

p(32,02) p(320721(12)f(q2)de,

E E C E l
0

2

E(1/q2) - (7-2)
-1
, and E(1/q2) [(7-2)(7-4)]

-1
. (A.11)

Secondly, by a similar argument,

-1 -1 -*2
a
 
- [eMc+(R-4-r)'[R(X'X) R'] (R/3-01/(v+m)

- 7[b'Mb+b'Cb]/[(v+m)q2]

using previous notation. So,

2 2p(o*2,a2)
- Ef(7-2)2[(b'Mb+b'Cb)/a2] + (q2) (v+m)2 -

2
2 (v+m) q2(-y- 2) [ (b' Mb+b' Cb)/a2]1/[ (q2) (v+m)2]

and, as (b'Mb+b'Cb)/a2 ,1x12 v;), , given q2, we have

*221 2p(a 0,7q ) 1
0)

_-.2
)(1 [(V+MV+M-1-2)-1-4A(V+M+2)+4A21E i

2 2(q2) (v+m)2 2074111.41(72._
) 2)(v+m+2A)1/[(q2) (v+m)2].
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The unconditional risk is then obtained by integrating over

noting that A q20/7.

Thirdly, to derive p(;:,c7:) we write,

A2 —2 *2 —2

cre 'Ye ((lc 0E)I[0,c](F)

— (v+m) (b'Mb)+[vb' Cb-mb' Mb] I 
[0 , c

and so,

[q2v(v+m)]

2
q

vb'Cb)/(mb'Mb))1/

2 2

2a2) 
2

p(ac, = Ef(7-2)2(v+m)2(b'Mb/a2) + (q
2
) V

,2
(1.74111

2

- 2q2v(v+m)2(-y-2)(b'Mb/a2)+[(-y-2)2[v2(b'Cb/a2)

2

+ 2v2(b'Mb/a2)(b'Cb/a2) - m(m+2v)(b'Mb/a2)

- 2q2v(v+m)(7-2)(vb'Cb/a2 
/[0

- 
c]

mb'Mb/a2)] ((vb'Cb)/(mb'Mb)11, 

/[ev(v+m)]2.

Then, using (A.5) and the results from the Appendix of Clarke

et al. [5], we have

2p crA26 ,a26 1 q2) f(v+m) 2 [ (v+2)(7-2)2+(q2) v 2q2v(7-2)]

+ (7-2)2[mv(m+2)P40 - m(v+2)(m+2v)PO4 + 2mv2P22]

- 2mvq2(v+m)
(7-2)(P20-P02) 

+ 4vA(7-2)[(m+2)(7- 
2)P60

+ v(7-2)P + 4vA2(7-
2)2%4/42 

- 
(v+m)q2P40]

2

[ (q2) V(V+1021

P(;:,a:)and follows by integrating over (12 using LEMMA 1, (A.10)

and (A.11) appropriately. •
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