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1. MOTIVATION:

There is a considerable body of literature relating to the

statistical consequences of "preliminary-test estimation", or

"inference based on conditional specification". Much of this

literature is referenced by Bancroft and Han (1977), and (with

special reference to econometric models) discussed by Judge and

Bock (1978; 1983), among others.

This literature emphasises the consequences of two-step

inference for the first two finite-sample moments of various point

estimators. Little is known about the corresponding consequences

for interval estimation or hypothesis testing,
1
 and multi-stage

pre-test estimation is virtually unexplored.2 In the case of

interval estimation, the available results relating to the

implications of pre-test strategies are based on Monte Carlo

experiments - exact analytic results require knowledge of the full

distribution function of the pre-test estimator of interest.

In fact, to the best of the author's knowledge, there are no

published results relating to the exact distribution function of

any pre-test estimator. This paper attempts to remedy this

situation by evaluating the exact distribution of the first

pre-test estimator to be discussed formally, by Bancroft (1944).

It seems fitting that this estimator should be chosen, and the

analysis reveals some interesting features of the way in which

pre-testing may affect interval, rather than point, estimation.
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2. THE PRE-TEST PROBLEM:

We consider the estimation of the scale parameter in a Normal

population with unknown mean, after a preliminary test of the

homogeneity of two independent samples drawn from this population.

This simple inference problem has wide application, such as in

the context of linear regression.

Consider two simple random samples,

N.

(x
j
. ) N(µ ,a.

2
)

i J

The usualunbiasedestimatorofc7.2 is

where

N.
1

s.
2

(xi,
nj i-1

x.

N.
1
N. E xij
j 1-1

2
x.)

j — 1,2.

n. — N. - 1 ; j — 1,2.
J J

2 2 2
Under our assumptions, (njsj )/ai Xn

statistics are independent; j — 1,2.

Now we wish to test the hypothesis

and these

2
H
O 
: a1

2 
— a

2 y. HA 
: a1

2 
> a

2
2 
.

—

As is well known, the statistic (si
2
/s2

2
) is F if Ho is true.

nl'n2

If H
0 

is accepted there is an incentive to pool the samples and

2 ,
estimate a

1
 by

2
s 
 
— (n1s1

2 
+ n2s2

2
)/(n1 + n2).

This leads to the "sometimes-pool", or pre-test, estimator of

a1
2
, as suggested first by Bancroft (1944):
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1 si
2

if (s
1
2
/s

2
2
) > A

2 2 2
if 

(s1
 
/s2 
) A

where A - A(a) is the critical F-value for a significance level of

A a. Bancroft determined the mean and variance of a •
12 
'

Clarke (1989) extends these results to the case of a two-sided

alternative hypothesis; and Toyoda and Wallace (1975), Ohtani and

Toyoda (1978), and Bancroft and Han (1985) discuss the optimal

choice of a under various criteria.
3

A ,
The sampling properties of al- differ from those of the

"never pool" estimator, s1
2
, and of the "always pool" estimator

A 2s
2
. In particular, al is biased in finite samples. Presumably,

misleading inferences may be drawn if one constructs confidence

A 
intervals centred on a

2
l , but with limits chosen as if no

pre-testing had occurred - a common enough situation. To examine
A ,

the consequences of this the full distribution function of al' is

required, a task to which we now turn.

3. THE EXACT DISTRIBUTION FUNCTION:

A We require an expression for Pr.(a
1
2 
< a), for any real a >

0. Now,

A 2 2Pr. (a12
 
< a) - Pr.(s

2 
< al(s1

2 
/s2) A)Pr.((si

2 
/s2) < A)

2 2+ Pr. (s12 < al(s1
2 
/s2) > A)Pr.[(si

2 
/s2) > A) (1)

2To simplify the notation, let v. s ; j - 1,2. By
J

independence, the joint density of vl and v2 is

4



where
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Secondly, consider Pr.(s
1
2 
< al(s

1
2
/s
2
2
) > A):

Pb Pr.(vi < al(v1/v2) > A).

Now, change variables:

So,

vi 
vl

(v2/v1).

1 1P • - Pr.(v
1 
< a and y 5 -)/Pr.(y 5 -)
•A A

5
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Equations (2) and (3) are reached by the approach used by

A 

Bancroft (1944) in his evaluation of E(a
1
2 
). The next task is

to evaluate (2) and (3). This is achieved by using a Mellin

Transform (e.g. Oberhettinger (1970)) to intregrate analytically

with respect to ul in (2), and vl in (3). Details are given in

the Appendix. Applying Appendix equation (A7), the expression in

(2) simplifies to:

c 
A -n1 -1(n +n )

l 
, -

2 1
P
a 
- (n

2
u
2
+n
2
)
2 1 2

Pr.(u2A) 
u
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2 
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]'2(n

1
u
2
+n
2 4' 

/2du2 (4)
) 

01
2 

J

1

02

and that in (3) simplifies to:

in

1 
-1 F ni+n2): 

1

ni+n2+2). a( ni n2y
P
b 1 Y 

2

Pr.(y< 

2

-) 2 --2 ---2 4
-A 0 al a2

where:

(5)

*
cl 2c(a ) /(n1+n2)

(ni+n2)/2
cl = 2ca gyn2)

Substituting (4) and (5) in (1) we obtain the following

expression for the c.d.f. of Cl

A 2
Pr.(c < a) -

1
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As expected, this expression is a function of nl, n2, 0

A(a), but it is independent of the sample values.

4. NUMERICAL RESULTS:

1
2 2
, v2 and

It is not clear whether (6) can be simplified further by

analytic integration. In fact, the c.d.f. can readily be

evaluated numerically in this form, as only definite univariate

integrals are involved. This was achieved using the algorithms

for Simpson's rule and the gamma function given by Press et al.

(1986). Note that as the Kummer functions in (6) depend on the

variables of integration, repeated evaluation of these functions

is necessary within the integration algorithm.

The algorithm used to evaluate the Kummer functions is a

generalization of that suggested for the incomplete gamma function
by Press et al. In particular, the series representation, (A6),

is used if A < -(n
aI 
+ nn) in (4) or if

5 
A > 2/(n

1 
+ n

2
) in (5).2 

Otherwise the continued fraction representation, (A8), is used to

ensure rapid convergence.

A To illustrate the c.d.f. of a
1
2 
' 

(6) has been evaluated in

this way for a - 0.01, 0.05 and for all combinations of degrees of

freedom over the range ni [4(4)20]; i - 1,2. In each case ¢ -
22

) was varied ed(02 /01  
over the range (0.0,1.0). A selection of
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these results is shown in Figures 1-3. In each case the exact

distributions of both s
1
2 

and s
2 
are also plotted for comparison.

These two distributions were evaluated using the algorithm for the

distribution of linear combinations of chi-square random

variables, developed by Davies (1980). The applicability of this

algorithm is seen by noting that7

Pr.(s1
2 
< a) — Pr.(x

2 
) < n

1ac1
2
)(n

1
and,

2 2 2 2
Pr.(s

2 
< a) — Pr.(o

1
 X(n) + 02 X(n) 

< a(n
1 
+ n

2
)).

1 2

The corresponding density functions appear in Figures 4-6.

These were obtained by numerically differentiating the c.d.f.'s by

the method of central differences. The first two moments of each

estimator, in each case, are reported in Table 1. In the case of

A 
01
2 
, the relevant formulae are given by

8 
Bancroft (1944); those

for sl
2 
and s

2 
follow immediately from the properties of the

chi-square distribution.

The results shown illustrate the following characteristics of

this problem. First, the pre-test estimator has a uni-modal

density which reflects the underlying mixture of chi-square

variates. The never-pool estimator is, of course, independent of

0; while the always-pool estimator is a function of the hypothesis

error. As 0 4 1 (Ho is true), the negative bias in s
2 
vanishes

and its precision exceeds that of s1
2
. In this same situation,

the distribution of the pre-test estimator moves close to that of

2
. The extent to which it dis ffers depends, of course, on the

size of the pre-test, and therefore on the extent to which the

never-pool estimator is (inefficiently) incorporated. On the



other hand, as ¢ 4 0, 012 4 si2 (regardless of the value of a),

and this is reflected in the distributions.

In summary, the results shown here in terms of the full

distribution of the pre-test estimator provide useful support for

the well known results relating to the risk functions of this

estimator and its two component parts.

5. IMPLICATIONS FOR CONFIDENCE INTERVALS:

The value in determining the full distribution of ;12 goes

further than the results of the previous section. Given this

information, we can now determine the extent to which pre-testing

affects the true confidence level associated with any confidence

intervals which may be constructed for a12.

, A 2
Recall that al amounts to the use of either si

2 
or s

2 
as the

point estimator of a12, depending on whether Ho is rejected or

accepted. In the former case, a 95% (say) confidence interval for

a1
2 
would be constructed using limits based on the (wrong)

assumption that the distribution of the estimator is just that of

2,
sl •

A 2 A 2
nlal 2 

< nlal 
<

2
x(n1) X

2
(n )L 1

2
where: Pr.(x

2
(n

1 
) < x

u
(n

1
)) — 0.975

(7)

2
Pr.(x

2
(n

1 
) < x

L(n1
)) — 0.025 .

In the latter case, the corresponding confidence interval for c12

would be constructed using limits based on the (wrong) assumption

that the distribution of the estimator is just that of s2:
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where:

A 2
(ni+n2)al

2 <°l
Xu(ni+n2)

2
Pr .(x

2
(n1+n2) < xu(ni+n2)) — 0.975

2
Pr.(x

2
(ni+n2) < xL(n1-'n2)) — 0.025 .

Clearly, given that the distribution of ;12 differs from

those of either s1
2 
or s

2
, the probability contents of the

- 2
2

2
XL(nl+n2)

(8)

intervals (7) and (8) will differ from the nominal 95% which has

been set. Also, it is clear that when assessing the extent to

which the true confidence level departs from the nominal level,

two comparisons are necessary (unless 0 — 1) because the

distribution of s
2 

departs from the assumed x
2
(n1+n2) if Ho is

false.
9 

So, in Figures 7-9, a comparison is first made between

s1
2 
and a1

2
, where the interval for the latter is determined by

A 2
'

(7); and then between s
2 
and a

1 
where the interval for the

pre-test estimator is now determined by (8).

In Figure 7, the size of the pre-test is 5%; in Figure 8,

A — 1(a — 0.4726), the "optimal' choice suggested by Toyoda and

Wallace (1975); and in Figure 9 a— 0.37, the "optimal" choice

suggested by Bancroft and Han (1985) for this choice of degrees of

freedom. (The degrees of freedom used in Figures 7 and 8 match

those in Toyoda and Wallace's illustration.)

All three figures show that as 0 -4 0 the probability content

of interval (7) converges to the nominal confidence level. Of

course, as 0 4 1 the probability content of interval (8) differs

from this nominal level increasingly, the larger is a. In all

three figures we see that as long as the null hypothesis is not

"too false", confidence intervals based on pre-testing have higher 

10



probability content than that based on the never-pool estimator.

In this same situaticn, confidence intervals based on pre-testing

have lower probability content than that based on the always-pool

estimator. Depending on the size of the pre-test, quite

substantial discrepancies can arise.

Conversely, if the null hypothesis is "very false", although

confidence intervals based on pre-testing have probability content

below the nominally stated level, their true confidence level is

markedly greater than the true confidence level of the

always-pool estimator.

plausible.

Three additional interesting results deserve mention. First,

in Figure 7 with a — 0.05, there is no situation in which the

pre-test confidence interval has higher probability content than

those of both the ne-:er-pool and always-pool intervals. Secondly,

in Figures 8 and 9 the confidence level for the interval based on

pre-testing is never less than that for the never-pool confidence

interval. Thirdly, there is a range of 0 values in both Figures 8

and 9 where the confidence level of intervals based on pre-testing

exceeds the confidence levels of intervals based on both the

never-pool and always-pool estimators.

The special interest of these last three results is that they

are analogous to the results of Toyoda and Wallace (1975), Ohtani

and Toyoda (1978), and Bancroft and Han (1985), where their

discussion is in terms of the point estimation of a12, and the

associated risk functions. In short, their suggestions regarding

the optimal choice of the size of the pre-test appear to be

These results are all intuitively

11



equally relevant in the context of interval estimation as well as

point estimation.

6. CONCLUSIONS:

In this paper the exact distribution function of a simple

pre-test estimator has been determined and evaluated, and from

this the corresponding density function has been obtained. A

limited number of situations has been considered, so the numerical

results given here should be interpreted as being merely

illustrative. Work in progress evaluates these distributions in a

wide range of situations.

The distributional results enable us to examine the extent to

which pre-testing affects the properties of interval estimates,

rather than just point estimates. Again, the numerical results

reported are purely illustrative at this stage.

One especially interesting feature of the results is

however, that their qualitative features are precisely analogous

to those of the existing results for pre-test point estimation,

even as far as the matter of optimal pre-test size is concerned.

This point is currently being explored further by the author, both

in the context of the problem discussed here, and in relation to

other simple pre-test estimators.

(Revised, June, 1988)
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TABLE 1

MOMENTS OF DENSITIES

OF ALTERNATIVE ESTIMATORS

(a
1
2 
- 1.0, n

1 
- 12, n

2 
- 12)

E(s
2
) E(si

(a - 0.01) (a - 0.05)

0.1 0.550 1.000 0.988 0.999

0.5 0.750 1.000 0.816 0.901

1.0 1.000 1.000 1.007 1.028

var(s
2
) var(s1

2
)

A 2
var(al )

(a - 0.01) (a-0.05)

0.1 0.042 0.167 0.183 0.169

0.5 0.052 0.167 0.117 0.238

1.0 0.083 0.167 0.089 0.104
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APPENDIX

The Incomplete Gamma Function, defined as

jt 
7(a;t) - x

a-1
e
-x
dx

has several equivalent representations:

where:

( -Ni
i(a;t) ta z  

J-0 j!(a+i)

a -t r(a)ti 
- te E 

r(a+j+1)
j-0

- (ta/a)1ya,a+1;-t)

1F1 " 
(d c.z)

r(c) r(d+n) (zni
r(d) ǹ o r(c+n) n!

Re(a) > 0

which is a Kummer-type Confluent Hypergeometric Function. (See

Oberhettinger (1970; pp.265-268). In addition, 7(a;t) can be

expressed in terms of Whittaker Functions, or in terms of

continued fractions;

7(a;t) r(a) 1 1-a 1 2-a 2e-ttaf ...)
t+ 1+ t+ 1+ t+

for t >0.

(A4)

Computationally, the advantages of these different

representations depend on the relative magnitudes of the arguments

of 7. (See Press et al. 1986; pp.160-163).)

Now, the relevant Mellin Transform used to simplify (2) and

(3) is a generalisation of 7(a;t). Define

14



I(a,b;t f
t 

n-l-bxx e dx

which =ay be written as:

I(a,b;t) ta E (-bt)J 

J-0 i i(ati)

a -be-te 
Er(a)(bt)J

r(a+j+1)

(ta/a)1ya,a+1;-bt)

-bt
t
a( 1 1-a 1 2-a 2 r(a)-e
bt+ 1+ bt+ 1+ bt+

The expressions in (AS-A8) are easily derived from (Al) to (A4) by

an appropriate change of variable. Again, the computational

merits of the different forms of I(a,b;t) depend on the relative

magnitudes of the arguments.
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FOOTNOTES

am grateful to Robert Davies for supplying FORTRAN code for

his algorithm AS155; to Judith Clarke for several helpful

discussions, and for preparing the figures, and to

participants in seminars at McMaster University, the

University of Guelph and the University of Western Ontario

for their comments.

I. However, see King and Giles (1984), Ohtani (1987a,b), Ohtani

and Toyoda (1985), and Toyoda and Ohtani (1986).

2. A recent exception is Ozcam and Judge (1988).

3. Toyoda and Wallace formulate the problem with HA 
• 01

2
 
<

2
2
'

as do Ohtani and Toyoda.

4. Of course, in Bancroft's case improper integrals replace

those with respect to ul in (2) and vl in (3).

5. These ranges corresponds to t < (a+1) in the notation of the

Appendix, and are chosen in accordance with the suggestion by

Press et al. (1986; p.161).

6. This was achieved by setting al
2 

— 1.0 and varying 02
2
•

7. Clearly, the distribution of s
1
2 

is independent of
2
2 

and

holds under Ho and HA; while that of s
2 
depends on (0, and

hence on the extent to which the null hypothesis is false.
A

8. Bancroft's formula for the variance of 01
2
, and that given by

Bancroft and Han (1985), each contain different typographical

errors.

9. This means, of course, that the nominal confidence level for

any interval based on s2 is valid only if Ho is true.
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