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The Theory of Capital Utilization: Some Extensions

In an earlier paper (Betancourt and Clague, 1975) we developed a
theory of the firm's joint decision on the size of the caéital stock
and its rate of utilization. A CES production function was used to
show that the profitability of shift-work depends on the night-shift
wage premium, the capital intensity of the production process, the prices
of labor and capital, the elasticity of substitution between labor and
capital, the magnitude of economies of scale, and the elasticity of
demand. The present paper will discuss some controversies that have
arisen about the theory of utilization and will extend our theory in

some new directions.

In one section of our previous paper we assumed that the firm was
constrained to produce the same output under both the single-shift
and double-shift systems. This assumption was relaxed in a2 later section

of the paper, where we provided a numerical analysis of the profitability

of shift-work when output was free to vary. We pointed out that the

"condition for profitable shift-work was unaffected by the relaxagion of the
output'restraint if the degree of homogeneity of the production function
was constant, but we did not give an explicit analysis of this case.

Here we shall provide such an analysis. In the process we respond to

Millan's claim that the theory of shift-work is drastically altered by




the relaxation of the output constraint.

The shift-work profitability condition presented in our earlier
. paper differs somewhat from the profitability conditions given by Winston

(1974) and Millan (1974) in the treatment of the capital intensity variable.
We have worked with the share of capital cost in value added under
single-shift operation, while the other two authors worked with the
distribution parameter of the CES production function and the factor-
price ratio. Heré we shall compare the merits of these two approaches,
paying particular attention to the data requirements for empirical

application of each approach.

Finally, our theory was based on the assumption that the maintenance

requirements and depreciation of fixed capital did not depend on the

number of shifts worked. Here we shall generalize our theory to in-

corporate a variety of assumptions about depreciation and maintenance.

Section I summarizes the basic model and discusses the two apﬁroaches
to the treatment of capital intensity. Section II relaxes the output
restraint in the case where the degree of homogeneity of the production
function is constant, while in section III depreciation and maintenance

are made to depend on the number of shifts worked.
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The Basic Model and the Two Approaches to Capital Intensity.

The notation is the same as in our earlier paper. Let us define
stock of fixed capital

daily flow of labor services

r cost of owning a unit of capital stock for a day

wy "wage rate for a day-time shift i

A superscript refers to the system of operations (1 for one-shift

system, 2 for double-shift system) and a subscript (1 or 2) refers

to the day or night shift of system 2. Thus KzlLi , for example,
represents the capital-labor ratio on the first shift of the double-
shift system. 1In the basic model the firm is constrained to produce

the same output on the two systems. Shift-work is profitable, therefore,
only when total costs of system 2 are less than total costs of system 1,
or

rKl + w L1 > rK2 + w L2 + w L2
1 11 22

where v, refers to the night-time wagg. Since ex post substitution between
labor and capital is rules out, Lf = L% . Let us define o as the night-
shift wage premium Gu=w2/w1—l) and 6 as the share of capital costs in
combined labor and capital costs under system 1 (6=rK1/(rKl+wlLl)).

Then, dividing the above equation by its left-hand side and simplifying

yields:
2
1 >[___2er + (zm)]il (1-8) 1.1)
w1‘.1 Ll *

The R.H.S. of (1.1) is the ratio of costs of system 2 to those of

system 1; it is called the cost ratio (CR). The cost of capital r equals
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Py (i+d), where i is the interest rate, d is depreciation, and Py the
cost of a standard machine. Depreciation has been assumed independent
of the system of operations. This assumption will be relaxed in

section III.

The production function is assumed to be of the CES form. Output

under system 1 is
| -8/p
1 - -
x = [P + @-8) b’ ]
where B is the degree of homogeneity, © =1/(1+p) is the elasticity of
substitution, and sl js the flow of capital services under system 1.
We define the utilization rate u from the equation S=uK. The maximum
rate of utilization within a shift is denoted u*. Under our assumption
of no wear-and-tear depreciation, the firm will utilize all its capital
within a shift; hence Sl=u*K1. For system 2,
-B/p
2 _ 2 y-p - 2 \= P = x2
X 1 [G(S1 )y7P +(1 6)(Ll ) 1 XZ
where 82 = u*Kz. Cost minimization implies selection of the following
. 1 , :
capital labor ratios (see Henderson and Quandt, p. 86):

KL _fwy
T efe

Z
1

L r/Z 1"‘ 6
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Winston (1974) and Millan (1974) presented their shift-work
profitability condition in terms of & and wl/r. There is nothing
logically incorrect about this procedure but it may give rise to
confusion in empirical application because it is not obvious what value one
should take for 8. & of course is an economists' construct; it is estimated
from data rather than observed directly. The vaiue of §, moreover, is arbitrary,
: . world
for any value of & is consistent with the same set of real”data. This is because
8 depends on the units in which the factors are measured, and while
labor comes in natural units, the same is not true of machines.: Since
the price of the standard machine, Py, is set arbitrarily, the price
of capital, r, is also arbitrary. & is actually estimated from (1.2)
or (1.3), after the value of o has been estimated or assumed. The
choice of units for Py affects both r and the stock of capital K, and. this

1/

choice of units affects 6&(unless o=1, in which case § equals the éhare'O):—

The problem of estimating & can be avoided entirely by working with

®, as in Betancourt and Clague (1975). First divide (1.3) by (1.2) to

obtain

2 1
" K K o
- (242)
Ig. ‘EI

Since rKllwlL1 = 8/(1-8), we have

B . O
= (2+a)

1
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-2/

An expression can also be developed for Li/Ll in terms of 6, namely

2 /s o-1 o/1-0)
_1. =2 [8(24a) +(1-0)] 1.5)
L

-

Now substitute (1.4) and (1.5) into (1.1) to obtain

_1/8 o-1 .__1_.

152 (240) [0(242)  + (1-8)] 1°° (1.6)
The R.H.S. of (1.6) is the cost ratio. Since neither r nor & appear,

none of the variables in the cost ratio depends on units of measurement.

We are frequently‘interested in the effects on shift-work of factor
prices, since these prices can easily be influenced by govermmental
policy. 1In our analysis, factor prices affect the profitability of
shift-work through their effects on 6. As is well known, a féll in

wl/f will raise 8 if o<1, but will lower 6 if o>1.

In the discussion up to this point, the choice between using 6 or
6 in the shift-work profitability condition is a.matter of presentation
but not of substance. There is another issue involved here, however,
which is more substantive. We are interested in caiculating the effects
on the profitability of shift-work of a change in o. Since there is a |
greaf deal of uncertainty about the values of o‘in the real world, we
would like to be sure that any conclusions we might reah about the
profitability of shift-work would hold up under a variety of values for o.
The question arises as to what should be held constant when ¢ is changed.
If § is held constant, it can be seen from (1.2) that a change in o implies
a chapge in the capital-labor ratio at the initial set of factor prices.

Such a procedure does not isolate the effects of a change in o.
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On the other hand, holding 6 constant does hold K1/L1 constant
at the initial set of factor prices and hence isolates the effects of

the elasticity of substitution.

II. Relaxing the Output Restraint When the Degree of Homogeneity

of the Production Function is Constant.

In the basic.model the firm is constrained to pfoduce the same
output under single-shift and double~shift operation. This assumption
might be rationalized by supposing that the firm is an oligopolist
facing a kinked demand curve. If we assume instead that the firm
faces a smooth demand curve, thén norrally output will be different
under the two systems and the theory of shift-work mﬁst be generalizgd

to accommodate this fact.

Patricio Millan has asserted that the conclusions derived from the

basic model are radically altered when the output restraint is relaxed.

He claims that it is no longer true that multiple-shift plants are

always favored by an increase in capital intensity (§), a decrease in

the night-shift wage premium (a), and an increase in economies of scale

(8) (Millan, pp. 89, 95, 98, 111). It will be shown here that his

conciusions are wrong with respect § and a ; that is, these variables

have the same qualitative effects on the profitability of shift-work when the ot
_put restraint is relaxed in the manner indicated below. We do find that there :
conditions under which an increase in B favors shift-work, and unlike

3/

Millan we provide an economic rationazle for these results.




The analysis is greatly simplified if it is assumed that the demand
curve has a constant elasticity of demand (n) and the production functiom
has a constant degree of homogeneity (B). The latter assumption is
not fully satisfactory, for it implies that the average cost curve
approaches zero asymptotically as output expand§, but it seems never-

theless to be a useful approximation for theoretical purposes.
The following notation will be employed:

Hl, n2 = profits under systems 1 and 2

TCl, TC2 = total costs under systems 1 and 2

Xl, x2 = optimal outputs under systems 1 and 2

TCZ(Xl), for example, refers to total costs under system 2 at output

level X1

TR(X) = total revenue at output X

We further define m=H1/TR(X1) as the profit margin under system 1. Now

oD - el | ARG - actedh)
TR(X1) . AR(x1)

where AR is average revenue and AC is average cost. It is well known
that MR=AR(1-1/n), where n is the (absolute value of the) elasticity

of the demand curve and MR is marginal revenue. Similarly MC=AC(1~-1/€),
where € is the (absolute value cf the) elasticity of the average cost

curve #nd MC is marginal cost. It can be shown that € = B/ (B-1), where

4/

B is the (constant) degree of homogeneity of the production functioz.

Therefore AC=MC(e-1)/e =MC(R).




aclxh Mcl(xl).g B (5—1)
m=1-"F%) =l WREDn/@-1 -t a (2.1)

This is, the profit margin is reduced by an increase in 8 or an increase
in n. Now the second-order condition for profit maximization is that

the MR must cut the Mq from above, or that the élasticity of the MR curQe
be less than the elasticity of the MC curve. The elasticity of the MR
curve is n and that of the MC curve is B/(B-1). Thus the second-order
condition is that n<g/(B-1) or B<n/(n-1). 1In our simple model, then,
with both 8 and n constant, the second-order conditions imply that

the profit margin m be positive.
Next we develop an expression for n2/TR(xL) .

12 Trx2)-tc?(x2) _ TR(X?) _ 1e2(x? rc?(xly Tel(xh

TR(XL) TR (X1) TR(X1) tcZ(x!) Tcr@D TREY)

We show in the appendix that

31 - 1
TR (X2) _[xz 1-=n

TR(X) “{x'

Tc2(xI) X1}

2 b
Xl = 1cR TFEER
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where ICR is the inverse of the cost ratio, or ICR=TC1(X1)/TCZ(X1).
Note that with B constant, ICR is independent of the level of output.

Substituting these expressions into (2.2) gives

B(n-1)
nz n-B-fn -1
TRGED = ICR ICR (1-m)

=ICR®*P - ICR®*P (1-m)

2
I([ =m [ICR®¥P]

TR(X1)
where exp=B(n-1)/(n+B8-Bn). Since m=H1/TR(X1), we have

n2 -n! exp
Eﬁ?in = m[ICR - 1]

2 : '
and %T- IGRE¥P (2.8)
m? - Hl)/TR(Xl) and T112/M! are two measures of the profitability of
shift-work. We shall use (2.7) and (2.8) to show the effects of changes in
the parameters. The two measures behave similarly with respect to most

parameter changes, but there are some differences which will be noted

below. We shall start with (12-Tl)/TR(x1).

The first point to note about (2.7) is that the condition n2-nlso
is equivalent to the condition that the cost ratio (CR) be less than one.
This follows immediately from the fact that the second-order conditions
imply that both m and exp are positive. Hence (n12-11!) will be positive if
and only if ICR exceeds unity, which implies that the cost ratio be less

than one.




The second point, also quite straightforward, is that the relaxation
of the output restraint in no way alters the conclusion from the basic
model that (HZ—HI)/TR(Xl) is increased by an increase in 6, an increase
in o, or a decrease in o. This féllows from the fact that 6, o, and o
all enter (2.7) through ICR, and since m and exp are both positive,
anything which increases ICR must increase the R.H.S. of (2.7). ICR,

the relative cost of system 1, is increased by an increase in 8 , an
5/

increase in o, and a decreace in a (see equation (1.6)). (Fote that

the first two points about (n2-1m1) /TR(X1) apply equally to H2/H1.)

1
The third point about (2.7) is that the effects of B on @2-nHy /TR Y,
are no longer unambiguous. Under certain conditions an increase in 8 will
increase {I1%-71!)/TR(X1), rather than decrease it, as we are led to expect

from the basic model. The reasons for this are somewhat complicated and will be
taken up after the next paragraph.

For the analysis of the effects of n, it is more convenient to
use N2/M!, An increase in n increases exp in (2.8). Therefore an
increase in n pushes N2/N! further from unity, increasing n2/n!  when
that ratio exceeds one and reducing M2/n! when that ratio falls short

of one.

The effects of an increase in 8 on our two measures of profitability
of shift-work can be seen in Table 1. We start with a given level of

ICR*, or ICR under constant returns to scale. Since

1
-— - o -
2. @ e + -0 -

1.
2B

11
ICR = 8
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TABLE 1

Effects of Bon n2

1/
I. ICR*

ICR 2/
/TR (x1)=m
n2/TR(X})Y
@2-nl) /TR (x1)
n2/n1

1/
II. ICR* = 1.00

I?R 1 2/
nl/TR(X)=
n2/TR (XL 5?
(@2-11) /TR (x1)
n2/m!

1/

III. ICR*=1.20

ICR - 2/
! /TR (X1)=m
n2 /TR (x1)3/
(n2-m1) /IR (x1)
n2/m!

1/
Iv. ICR* = 1.40

ICR 2/ 1.355 1.279 1.219
m} /TR (x1)=m .300 .233 .167
n2/Tr(xH)3/ .609 .524 448
(n2-1nt) /TR(x1) .309 .290 .282
n2/m! 2.030 2.245 2.689

1/ (o-1)

Notes 1. ICR* = 2(2+n) 1[6(2+u)°-1 + (1-6)]
2, m=1- 8(n-1)/n
3. 1n2/TR(X1) = m.ICR ®¥P
n=3 throughout the table.




an increase in B with ICR* constant makes ICR fall. This result,
familiar from the basic model, is shown in row 1 of Table 1. An
increase in B also reduces the profit margin under system 1, since

m=1-B(n-1)/n (eguation (2.1)), as shown in row 2. Normally as B

rises, HZ/TR(Xl) (=m.ICR®*P) falls since both m and ICR fall. However,

since
g8 (n-1) - 1
€XP= n-g(n-1) 1 _1 _ 4
8 n-1

an increase in B increases exp, and in the bottom panel of Table 1

we see that when 8 goes from 1.35 to 1.45, HZ/TR(Xl) actually in-
creases. What is the economics underlying this result? An increase
in B makes the AC and MC curves steeper and increases the optimal
levels of output x! and x2. 1In the bottom panel of Table 1, AC2

lies below'AC1 and although the increase in B makes the two curves closer
for a given output, the steepening of the curves causes X2/Xl to rise

(This can also been seen from (2.5)). When the increase in X2/X1 is

large enough, it is quite possible for H2/TR(X1) to rise.

The value.cf (HZ—HI)/TR(Xl) is shown in the fourth row of Table 1.
This expression rises when B increases under two different sets of
circumstances. (a) In the top two panels, N%is less than Hl; an
increase in B reduces both HllTR(Xl) and HZ/TR(Xl); but the former
is larger in absolute value and falls by a larger absolute am&unt.

(b) In the hottom panel, where n2>n!, the fall in n2/TR(x1) as B in-
creases is moderated by the increase in X2/X1, with the result that

(Hz—Hl)/TR(Xl) sometimes increases.
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The effectsof B on N2/N! are not quite so complicated. In the
top three panels n2/nl alwéys falls as B increases, while in the bottom
panel n2/n! uniformly rises with 8. The reason for the rise is the same
as (b) in the previous paragraph, namely, that as B increéses lexl
increases when ICR is large. The precise conditions under which this

6/

will occur can be obtained by differentiating (2.8):—

p{n2/mnt)
3B

(n-1)
[n-8(n-1) ]4

=ICR®¥P "{n 2n ICR*-gn2}

All the terms in the derivative are necessarily positive except the term
"{ }. Thus the sign of the derivative depends on this term, which will
be negative if

(ICR*)™ < 2

‘This condition is always satisfied if ICR* is less than one. It will

be violated only if ICR* and n are both large enough. If ICR*=1.26,

this occurs when n exceeds 3 and if ICR* = 1.41, this occurs when n

exceeds 2.

Ip summar&, the relaxation of the output restraint in the manner of
this section leaves a number of the conclusions of thé basic modei intaét.
It remains true that the profitability of shift-work, whether measured by
(HZ—HI)/TR(Xl) or N2/n!, is increased by an increase in 6,an increase in 0 ,

and a decrease in a. It also remains true that the condition n2>n!




holds if and only if the cost ratio is less than one. What does
change is that (HZ—HI)/TR(Xl) and N2/} may be increased by an
increase in B under certain circumstances. For N2/n! to increase
with B , ICR* must be fairly large ([1CR*]1™>2, to be exact). The

conditions under which (HZ—HI)/TR(Xl) is increased by B are mnot

easily summarized, but this much can be said?{ An increase in B

can never change a situation in which nl>12 into a situation in

7/ '
which N2>1)1” Finally, the relaxation of the output constraint brings
the elasticity of demand explicitly into the analyéis; the effects of

n can be summarized by saying that an increase in n pushes n2/m!

farther from unity.

III. A More General Treatment of Depreciation and Operating Costs.

In our previous analysis the cost of capital r, definzd as the
cost of owning and operating a unit of capital stock for year, was
assumed to be the same for the single-shift and double-shift systems.
This assumption could be justified by supposing that depréciation
was due entirely to obsolescence (and not at all to wear and tear),
and byAignoring machine-operating costs, such as maintenance, repair,

and fuel.

Baily (1974, p. 35) has introduced an "hourly use-related cost
of capital", which is the same for single-shift and double-shift
operation. Here we shall assume that hourly operatirg costs are a
rising function of total hours of machine use. Machine life will
become endogenous, since machines will be replaced when their operating

costs make them more expensive than new ones. Under either our assumptions




or Baily's, the cost of capital for system 2 (r2) will be higher than

the cost for system 1 (rl).

In section A below we shall make some specific assumptions about
operating costs, depreciation, and the interest rate and calculate

some illustrative values of r2/rl. Then in section B the cost ratio

will be generalized to incorporate the term ry/r;. Finally, we shall

see how much this changes the cost ratio.

A. Illustrative Values of ro/rl.

One approach to the firm's decision problem is to assume
maximization of the present value of profits over the life of the asset.
An equivalent approach, which is more convenient for our purposes, is
to convert all revenues and costs into constant annual flows. The
‘constant annual equivalent f of a variable level of costs (F¢) can
be computed by equating the present value of the two flows over the -
life of the asset (n):

-t V -t
(1) Fp (1+1)
t=1 t=1
-t -t
Hence f = (CFe(1+1) )/ D(1+i)

The annual cost of capital r is defined as Py (i+d+c), where Py
is the price of a standard machine;‘i is the interest rate, d is the
depreciation rate, and c is the rate of operating costs. The annual

depreciation change on a machine costing $1000 with life of 10 years.




would be $1000 (d) where d is computed from

10 10-t

I 4 (1+i) = 1.00

t=1
Here d equals .076, which means that if $76 is set aside every year
and invested at 6%, it will cumulate to $1000 in 10 years. The

combined interest and depreciation costs would be $1000(i+d)=$1000(.06+.076)

=$136. : -

Operating costs include maintenance, repair, and fuel. We shall
include under this rubric the costs associated with the breakdown of
8/ ’

machines. It seems quite reasonable to assume that operating costs,

especially the component related to machine failure, will increase

sharply with cumulated hours of operation. For purposes of our illustration,

we shall assume that operating costs for a standard machine (0OC) are a
quadratic function of cumulated hours of cperation (H):

2
_ H
oc "b(zooo )

where b is a constant which will be allowed to take on various values.
H is divided by 2000 to simplify the arithmetic. We shall assume that
a machine is normally operated 2000 hours a year under system 1 and
4000 hours a year under system 2. In this case, operating costs in
year t for system 1 (OC%) and for system 2(0C%) become OC% = bt2

and 0c? = b(2t)? = 4bt2,

The average annual operating cost over the life of the asset

($1000.c, where $1000 is the price of the machine) is computed by




equating the present value of the actual stream of operating costs

with the present value of a constant stream of costs:

5 1000c _ o oce
peq ()T L AHDT

Average operating costs for system 1 are a function of i and of asset life n:

n 2 n 1

A _ t
1000. c3(i,n) = b til T+t til I+t

Similarly, average operating costs for system 2 are

n 2 n
() = t 1
1000. cy(i,n) = 4b til (I+i) € til I+t

In Table 2 we sﬁow vélues of ¢; and c) as functions of n. i is set
at .06 and b is set at 1.0. The table shows that as n increases, both
cj and ¢, increase, and that at each n, ¢y is greater than cy. Now for
each system of operations, the life of the asset is selected so as to
minimize the average annual cbst of capital, r=Py(it+d+c). An increase
.in n lpwcrs d but raises c. The optimal nj is 12 yearé (rl=$l64.7)
and the optimal n, is 7 years (rp=$251.8). (See Table 2). ra/ry thus

 equals 1.53.

Table 3 shows the values of Iy, Ty and rz/rl, for various values
of 1 and b. A higher interest rate increasés the optimal life cof
assets, because it lowers the present value of high operating costs at
the end of the asset's life. This incréases the relative weight of i in

(i#4-d+c), which raises r- more than I,; thus r2/rl falls as i increases.




TABLE 2

The Optimal Life of Assets Under System 1 and System 2

1000c] (n) 1000co (n) 10004 (n) rl(n) r2(n)

13.99 ~ 55.96 143.4 217.4 259.3
18.16 72.64 119.1 197.3
22.79 . 91,17 101.0 183.8
27.86 111.43 87.0 174.9
33.33  133.32 75.9 169.2
39.19 156.75 66.8 166.0

45.40 181.60 59.3

51.95 207.78 '53.0

.06 throughout.

operating costs, d= depreciation, r=1000(it+d+c)




TABLE 3

Cost of Capital Under Various Values of i and b

i=.06




A higher value of b increases operating costs in every year, shortens

the optimal life of assets and raises rj; more than .

In our scheme, it is not optimal for the firm to operate the
second shift at less than full capacity. The argument proving this

9/

assertion is rather complicated and will be relggated to a footnote.
Summary. In this section we have calculated illust?ative values
for rzlrl, on the'assumption that operating costs are proportional to the
square of cumulated hours of machine use. With i=.06, r2/r1 is about
1.5. Let us note the effects of two changes in assumptiﬁns.
(a) In our scheme, no allowance was made for technical improvement in
machines; incorporation of this phenomenon would reduce rZ/rl.
In the extreme, if machines were replaced solely because of
obsolescence and oper;ting costs were negligible, rzlrl would
equal 1.0,

If operating costs were proportional to the third or fourth power

(rather than the square) of cumulated hours of machine use, njp

would aéproach one-half of ny and r2/rl would increase. In the
extreme, machines might be assumed to operate perfectly until

a certain number of hours of use had been reached, at which point
they fall apart. Under this assumption, with i=.056, rj/r; would

equal 1.728,




B. The Cost Ratio When r2 Differs from r1

The condition that system 1 costs be greater than system 2

costs, for a given level of output, can be written

ry KL + wlLl > r2K2 + Wy Li (2+a)

) 2
15[ %i-z +(2r)) 2 (1-0)
1

(3.1)

where e=r1K1/(r1Kl+wlL1). This derivation parallels that of section I

above.) The capital-labor ratios are

Since rlK;/wlLl 6/(1-8), we have

o-1

) 5
K™ . I

2

The coundition X° = X1 implies (see footnote 2 above)

Li -1/8 o-1 o-1 o/ (1-0)

Lo PR (/) 40




Substituting (3.4) and (3.5) into (3.1) yields

-1/8 o-1 1-0 1/ (1-0)
1>2 (242 ) [6(2+a) (ry/xy) +(1-6)1] (3.6)

Table 4 shows the effect on the cost ratio of changes in r2/rl
The table illustrates the case of constant returns to scale, a night-
shift premium of 20 per cent and an elasticity of substitution of
0.5. With r2/rl = 1.0, shift-work is profitable as long as 6 is
greater than about 0.14. When ry/r;=1.50, shift-work is not profitable

until 0 reaches about 0.27.

TABLE 4

Effect of ry/rj con the Cost Ratio

Cost Ratio
r2/r1=1.0 ro9/r1=1.50 r2/rl=l.728

.10 1.0295 1.0621 - 1.0751
.20 . 9614 1.0247 1.0506
.30 ' .8955 .9880 1.0348

.40 .8321 .9521 1.0022

Note. - B=1, a=.50, o=.5 throughout
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In summary, the introduction of use-related operating
costs raises r2/rl and thereby reduces the profitability of shift-
work. Shift-work also involves changes in the capital-labor ratio
and in labor and capital productivity. These changes are strongly
influenced by the substitution of capital services for labor services.

Anything which raises rp/rj will diminish the extent of such substitution.

Finally, let us mention that all our models have been based on

the assumptions of perfect foresight, the absence of risk, and the
impossibility of ex post substitution between labor and capital. These

assumptions might be fruitfully relaxed in subsequent research.




APPENDIX

Derivation of Equations (2.3), (2.4), and (2.5)

We can write X=[a TCZ(X)]6 where a is a constant which depends/
on factor prices. Hence

1/8 '
c2(xd) _ [x? 2.4)
TcZ(xY)  |XT ’

This is equation (2.4) in the text. TFor future reference, note that
1-1
B8

mc2(x?y _ [x2
McZ(x1) xT

The demand curve may be written X = AP, Hence

1- (1/n),

wE) = G~ M x mreo = 7R

1.1
(1~ DX /n

(2.3)

1
1-mw
: TR(X2) _ [%2]"
Hence TR(X1L) Eid

This is equation (2.3) in the text. Note that

1 1 -1/n )
MR(XD) _ [x O [x
MR(XZ) " [’fﬁ} - [LXT] (a2)

With B congtant, the cost ratio (CR) is independent of the level
of output; that is, TCz(X)=CR . TCl(X). Let us define ICR as 1/CR, or
the inverse of the cost ratio. fhﬁs TCl(X)=ICR . TCZ(X). Hence
MCl(X)=ICR . MCZ(X). This holds for any level of output, including

1- 1
x. Thus Mcl(x!) _ Mclx MCZ(XI)MICR{Xz] =

MCZ(x2) MCZ(X1) MCZ(x?%) 3l B (A3)




where (Al) was used in the second step.

Profit maximization implies that MR(x1)=Mcl(xl) and MR(x2)=tcZ(x2).

Thus (A2) can be set equal to (A3), yielding

1/n 1 -1

2 2 B
X X
[ﬂ] ~IeR [iI]

<
xI ©

This is equation (2.5) in the text.




Footnotes

1
The dependence of & on the units of measurement is not alwvays

realized. Winston (1974,p. 541) incorrectly states that &/(1-68)
is relative shares.

Since X! = 2X§,

l _ [N
( [5 <§T> Py a-81 alh

2 2 -p
[6 &)™P + (1 -8)] @)
E? . 1

\

1 w
. 16
§lur == 355}

w1(2+a) 5
1-8

c-1 + (1 - 6)

§{u* 3o-1 +(1-8)

5(125) D+ (1-8)

6 . ,1-6
ST 5 ) (240)0 - 1 4 (1-8)

o-1 g
[0(2+a)  + (1-6)] 1-0 -




3 We plan to give a detailed critique of Millan's work in a comment
on the final version of his parer.

4 We can write TC(X) = (u}()l/B where yp is a constant vhich depends
on factor prices. Now ‘

L
B

X -1

ac - ul/®

B
B -1

<%4m{@'2x

5 These results contradict those of Millan (1974), who stated that
under certain conditions an increase in § would favor single-shift
plants. But an increase in § with factor prices and ¢ constant implies
an increase in @, and (2.7) and (2.8) imply that an increase in 86 must
always increase (N12-II!)/TR(X1) and N2/N!. These two equations alsc
make clear that Millan is wrong in stating that an increase in o might
favor multiple-shift plants.

6 Recall that if y=af(x), then dy/dx = £'(x) . fna.y. Define
 (1-8) (n-1) _ 8(n-1)
eX= n-B(n-1) 20 exp= 7Ty

d(ex) __ -(n-1) d(exp) _ __n(n-1)
a8 B2 2 T [n-8(n-1)]2

a(m?/nly _ex n(n-1) exp %) €XP -(n-1)
—55 — =2 (A2 (=D T2 2n(ICR*), (ICR*) “4(ICR¥*)" "%, o (D) ]2 2n2,28%

am2/nl) _.e ‘ exp (n-1) *
T 28X (ICR*) © TR eeDT {n 2n ICR gn 2}

> .
7 This follows directly from the facts that N2<n! as ICR 21 and that
ICR is reduced by an increase in B.

8 We are taking the flow of revenuée to be constant. When machine
breakdown reduces actuzl production, we shall treat this as an increase
in operating costs rather than a loss in revenue.




9 ff utilization on the second shift of the double-shift system (u%)
is set less than u¥*, the firm must buy a somewhat larger capital stock
in order to produce the came output with the same labor input. The new
K2 must be 2.0/(l+u%/u*) times the old. Now the new operating costs
per vear would be

2 2
0c~ = b[l+uZ/u*)t]
¢ 2

and thé new annual equivalent operating costs would be
n n -
r t2/@+)E)/ T 1/ (1)
t=1 t=1

ep(i,n,u?) = bh2/un? (

2 .
This formula was used to determine rz(i, uz).

The problem now is to see whether a decline in u% below u* would
lower r by more than it raises K2, Clearly a reduction in u? would
not be worthwhile if the percentage increase in %2 exceeded the percentage
reduction in rp. Moreover, for each successive reduction in u% the gaing
diminish (since u% is squared in the expression for c (i, ng, u%) and
the costs increase (the percentage increase in K increases as u% declines);
therefore if the first reduction in uj is not profitable, no subsequent
reduction will be. Changing u%/u* from 1.0 to .99 was unprofitable in
every case in Table 1. It follows that the optimal u%/u* must be greater
than .99, or for practical purposes must be 1.0.
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