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The Theory of Capital Utilization: Some Extensions

In an earlier paper (Betancourt and Clague, 1975) we developed a

theory of the firm's joint decision on the size of the capital stock

and its rate of utilization. A CES production function was used to

show that the ?rofitability of shift-work depends on the night-shift

wage premium, the capital intensity of the production process, the prices

of labor and capital, the elasticity of substitution between labor and

capital, the magnitude of economies of scale, and the elasticity of

demand. The present paper will discuss some controversies that have

arisen about the theory of utilization and will extend our theory in .

some new directions.

In one section of our previous paper we assumed that the firm was

constrained to produce the same output under both the single-shift

and. double-shift systems. This assumption was relaxed in a later section

of the paper, where we provided a numerical analysis of the profitability

of shift-work when output was free to vary. We pointed out, that the

*condition for profitable shift-work was unaffected by the relaxation of the

output restraint if the degree of homogeneity of the production function

was constant, but we did not give an explicit analysis of this case.

Here we shall provide such an analysis. In the process we respond to

Millan's claim that the theory of shift-work is drastically altered by



the relaxation of the output constraint.

The shift-work profitability condition presented in our earlier

paper differs somewhat from the profitability conditions given by Winston

(1974) and Millan (1974) in the treatment of the capital intensity variable.

We have worked with the share of capital cost in value added under

single-shift operation, while the other two authors worked with the

distribution parameter of the CES production function and the factor-

price ratio. Here we shall compare the merits of these two approaches,

paying particular attention to the data requirements for empirical

application of each approach.

Finally, our theory was based on the assumption that the maintenance

requirements and depreciation of fixed capital did not depend on the

number of shifts worked. Here we shall generalize our theory to in-

corporate a variety of assumptions about depreciation and maintenance.

Section I summarizes the basic model and discusses the two approaches

to the treatment of capital intensity. Section II relaxes the output

restraint in the case where the degree of homogeneity of the production

function is constant, while in section III depreciation and maintenance

are made to depend on the number of shifts worked.
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I. The Basic Model and the Two Approaches to Capital Intensity.

The notation is the same as in our earlier paper. Let us define

• stock of fixed capital

• daily flow of labor services

• cost of owning a unit of capital stock for a day

wl = "wage rate for a day-time shift

A superscript refers to the system of operations (1 for one-shift

system, 2 for double-shift system) and a subscript (1 or 2) refers

2to the day or night shift of system 2. Thus K2 /L , for example,

represents the capital-labor ratio on the first shift of the double-

shift system. In the basic model the firm is constrained to produce

the same output on the two systems. Shift-work is profitable, therefore,

only when total costs of system 2 are less than total costs of system 1,

or

2 2
rK1 + w1 L' rK2 + w1L1 + w L2 2

where w
2 
refers to the night-time wage. Since ex post substitution between

2
labor and capital is rules out, Ll = L2 . Let us define a as the night-

shift wage premium (a=w2/w1-1) and 0 as the share of capital costs in

combined labor and capital costs under system 1 (0=rKigrK4w1L1)).

Then, dividing the above equation by its left-hand side and simplifying

yields:

L
2

v2 (1-0)
1 >E77-1 

. k
77 k ' Ll

The R.H.S. of (1.1) is the ratio of costs of system 2 to those of

system 1; it is called the cost ratio (CR). The cost of capital r equals
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Pk(i+d), where i is the interest rate, d is depreciation, and Pk the

cost of a standard machine. Depreciation has been assumed independent

of the system of operations. This assumption will be relaxed in

'eection III.

The production function is assumed to be of the CES form. Output

under system 1 is

1 0
X = [6(s-)-. + (1-6) (L1)-fd ]

where 0 is the degree of homogeneity, a =1/(1+p) is the elasticity
 of

substitution, and S1 is the flow of capital services under system 1.

We define the utilization rate u from the equation S=uK. The maximum

rate of utilization within a shift is denoted u*. Under our assumption

of no wear-and-tear depreciation, the firm will utilize all its 
capital

within a shift; hence S
1
=u*K1. For system 2,

-434

x2
1 
= [5 (s  )-P +(l-S) (L Pj= x2

1 1 2

where S
2
 = u*K2. Cost minimization implies selection of the follow

ing

1

capital labor ratios (see Henderson and Quandt, p. 86):

Kl- 6 la
r 1-6

K2 I (1,71+W2)/2 
2

  la (1(u*)J- =

L4 r/2 1- 2
1

(1.2)

(1.3)
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Winston (1974) and Milian (1974) presented tlgirshift-work

profitability condition in terms of 6 and w1/r. There is nothing

logically incorrect about this procedure but it may give rise to

confusion in empirical application because it is not obvious what value one

shOuld take for 6. 6 of course is an economists' construct; it is estimated

from data rather than observed directly. The value of 6, moreover, is arbitraryj
world

for any value of 6 is consistent with the same set of realAdata. This is because

6 depends on the mits in which the factors are measured, and while

labor comes in natural units, the same is not true of machines. Since

the price of the standard machine, Pk, is set arbitrarily, the price

of capital, r, is also arbitrary. 6 is actually estimated from (1.2)

or (1.3), after the value of a has been estimnted or assumed. The

choice of units for Pk affects both r and the stock of capital K, and this

choice of units affects 6(unless a=1, in which case 6 equals the share, 0).

The problem of estimating 6 can be avoided entirely by working with

0, as in Betancourt and Clague (1975). First divide (1.3) by (1.2) to

obtain

2 1' K K ,
-7- V-s)
L1 L

Since rKliwiLl = 0/(1-0), we have

. a
0 \*

• (241a)
1-8

(1.4)

1/



2/2 An expression can also be developed for L1/L1 in terms of 0, namely

2 —1/a a-1 a ill-a)
1EL. 2 [0(241a) -1-(1-9)]
Ll

Now substitute (1.4) and (1.5) into (1.1) to obtain

a-1
1 > 2 (2-1-a) r8(241a) (1-0)]

1

(1.5)

(1-6)

The R.H.S. of (1.6) is the cost ratio. Since neither r nor 6 appear,

none of the variables in the cost ratio depends on units of measurement.

We are frequently interested in the effects on shift-work of factor

prices, since these prices can easily be influenced by governmental

policy. In our analysis, factor prices affect the profitability of

shift-work through their effects on 8. As is well known, a fall in

w
1
fi will raise 8 if a<1, but will lower 0 if a>1.

In the discussion up to this point, the choice between using 0 or

6 in the shift-work profitability condition is a matter of presentation

but not of substance. There is another issue involved here, however,

which is more substantive. We are interested in calculating the effects

on the profitability of shift-work of a change in a. Since there is a

great deal of uncertainty about the values of a in the real world, we

would like to be sure that any conclusions we might ramh about the

profitability of shift-work would hold up under a variety of values for a.

The question arises as to what should be held constant when a is changed.

If 6 is held constant, it can be seen from (1.2) that a change in a implies

a change in the capital-labor ratio at the initial set of factor prices.

Such a procedure does not isolate the effects pf a change in a.
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On the other hand, holding 8 constant does hold Kl/L1 constant

at the initial set of factor prices and hence isolates the effects of

the elasticity of substitution.

II. Relaxing the Output Restraint When the Degree of Homogeneity

of the Production Function is Constant.

In the basic model the firm is constrained to produce the same

output under single-shift and double-shift operation. This assumption

might be rationalized by supposing that the firm is an oligopolist

facing a kinked demand curve. If we assume instead that the firm

faces a smooth demand curve, then normally output will be different .

under the two systems and the theory of shift-work must be generalized

to accommodate this fact.

Patricio Milian has asserted that the conclusions derived from the

basic model are radically altered when the output restraint is relaxed.

He claims that it is no longer true that multiple-shift plants are

always favored by an increase in capital intensity (6), a decrease in

the night-shift wage premium (a), and an increase in economies of scale

(13) (Milian, pp. 89, 95, 98, 111). It will be shown here that his

conclusions are wrong with respect 6 and a ; that is, these variables

have the same qualitative effects on the profitability of shift-work when the ot

put restraint is relaxed in the manner indicated below. We do find that there

conditions under which an increase in B favors shift-work, and unlike
3/

Millan we provide an economic rationale for these results.
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The analysis is greatly simplified if it is assumed that the demand

curve has a constant elasticity of demand (n) and the production functior.

has a constant degree of homogeneity (a). The latter assumption is

not fully satisfactory, for it implies that the average cost curve

approaches zero asymptotically as output expands, but it seems never-

theless to be a useful approximation for theoretical purposes.

The following notation will be employed:

Hi, 112

TC
1 TC

2

• profits under systems 1 and 2

• total costs under systems 1 and 2

1 2X , X = optimal outputs under systems 1 and 2

2, 1.TC ), for example, refers to total costs under system 2 at output

level X1

TR(X). = total revenue at output X

We further define m=0/TR(X1) as the profit margin under system 1. .NOX.7

M TR(X1) TC1(X1) _ AR(X1) - AC1(X.1)
TR(X1) AR(X1)

where AR is average 'revenue and AC is average cost. It is well known

that MR=AR(1-1/n), where n is the (absolute value of the) elasticity

of the demand curve and ra is marginal revenue. Similarly MC=AC(1-1/c),

where c is the (absolute value of the) elasticity of the average cost

curve ond MC is marginal cost. It can be shown that c = a/(-1), where
4/

a is the (constant) degree of homogeneity of the production function.

Therefore AC=MC(c-1)/c =MC(a).
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Hence

Acl(xl) mcl(x1).13 a(n-1)
m = - ARCM- = 1 - MR(X1)n/(n-1) - 1 -

(2.1)

This is, the profit margin is reduced by an increase in a or an increase

in n. Now the second-order condition for profit maximization is that

the MR. must cut the MC frollabove, or that the elasticity of the MR c
urve

be less than the elasticity of the Me curve The elasticity of the MR

curve is n and that of the MC curve is ag13-1). Thus the second-order

condition is that n<13/(8-1) or 13<n/(n-l). In our simple model, then,

with both 13 and n constant, the second-order conditions Imply that

the profit margin in be positive.

Next we develop an expression for 112/TR(X1).

112 TR(X2)-TC2(X2) TR(X2) TC2(X2) 2c2(x1%) TC1(X1) 

TR(X ) TR(X1) TR(X1) TO-(X1) TCI(X1) TR(XI)

We show in the appendix that

TR(X2) rx2
=

TR(X )

Tc2(x2) _fx211/13
TC2(X1) 1)-Tri

X2
= ICR 

n+13-n
f3n

(2.2)

(2.3)

(2.4)

(2.5)
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where ICR is the inverse of the cost ratio, or ICR=TC1 (X1) iTC2 (X1) .

Note that with a constant, ICR. is independent of the level of output.

Substituting these expressions into (2.2) gives

E2

TR(X )

P.(1-1)
n-a-f3n n+a-an -1

= ICR ICR ICR (1-m)

=ICRexP - ICRexP (1-m)

E2

TR(X1) =m iICR
exPi

where exp=f3(n-1)/(n1-13-an). Since m=171/TR(X1), we have

E2 _El

TR(X )
m[icRexP - 1]

and = IdRexp

(2.6)

(2.7)

(2.8)

111)/TR(X1) and 112/111 are two measures of the profitability of

shift-work. We shall use (2.7) and (2.8) to show the effects of changes in

the parameters. The two measures behave similarly with respect to most

parameter changes, but there are some differences which will be noted

below. We shall start with (112-0)/TR(X1) 

The first point to note about (2.7) is that the condition 112-411>0

is equivalent to the condition that the cost ratio (CR) be less than one.

This follows immediately from the fact that the second-order condition9

imply that both m and exp are positive. Hence (112_E1x) will be positive if

and only if ICR exceeds unity, which implies that the cost ratio be less

than one.
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The second point, also quite straightforward, is that the relaxation

of the output restraint in no way alters the conclusion from the basic

model that 02_0)/TR(xl) is increased by an increase in 0, an increase

in a, or a decrease in a. This follows from the fact that 0, a, and a

all enter (2.7) through ICR, and since ul and exp are both positive,

anything which increases ICR must increase the R.H.S. of (2.7). ICR,

the relative cost of system 1, is increased by an increase in 6 , an
5/

increase in a, and a decrease in a (see equation (1.6)). (Note that

the first two points about (112-10)/TR(X1) apply equally to H2/0.)

The third point about (2.7) is that the effects of 0 on (112-111)/TR(X/),

are no longer unambiguous. Under certain conditions an increase in will

increase (112-111)/TR(X1),- rather than decrease it, as we are led to expect

from the basic model. The reasons for this are somewhat complicated and will bi

taken up after the next paragraph.

For the analysis of the effects of n, it is more convenient to •

use 112/111. An increase in n increases exp in (2.8). Therefore an

increase in n pushes 112/111 further from unity, increasing 112/111 when

that ratio exceeds one and reducing 112/111 when that ratio falls shoit

of one.

. The effects of an increase in on our two measures of profitability

of shift-work can be seen in Table 1. We start with a given level of

ICR*, or ICR under constant returns to scale. Since

1 _1 1 
1 -1

IT -1 
a-1ICR = 2 . 2 . (24a). [0(241a) = 2 1 . ICR*



- 12 -

TABLE 1

Effects of 8on 112 and 111

1/

I. ICR* = .80- a=1.05 B.1.15 a=1.25 0=1.35 s=1.45

ICR 2/ .774 .731 .696 .668 .645

111/TR(X1)=m .300 .233 .167 .100 .033

112/TR(k1)-3/ .165 .083 .027 .003 .000

02_,111)/TR(xl) -.135 -.150 -.139 -.097 -.033

112/0 .550 .357 .164 .027 .000

1/

II. ICR* = 1.00

ICR 2/ .968 .914 .871 .836 .806

111/TR(X1)=3 .300 .233 .167 .100 .033

112/TR(X1)2/ .278 .173 .083 .020 .000

(112_111)/TR(xl) -.022 -.060 -.083 -.080 -.033 .

112/0. .926 .743 .500 .198 .002

1/
III. ICR*=1.20-

ICR -, 2/ 1.161 1.096 1.045 1.003 .968

111/TR(C1)=m .300 .233 .167 .100 .033

112/TR(X1)3/ .425 .316 .207 .102 .013

(112.411)/TR(X1) .125 .082 .041 .002 -.020

112/111 1.417 1.353 1.244 1.024 .386

1/

IV. ICR* = 1.40

ICR 2/ 1.355 1.279 1.219 1.170 1.129

111/TR(X1)=Dn- .300 .233 .167 .100 .033

112/TR(X1)2/ .609 .524 .448 .410 1.125

(112_111)/TR(xl) .309 .290 .282 .310 1.092

112/1/1 2.030 2.245 2.689 4.100 33.76

-1 
1/0-1)

Notes. 1. ICR* = 2(2-itc) [0(2+20a-1 + (1-0]

2. in = 1.-
3. 112/TR(X1) = ins ICR exP

n=3 throughout the table.
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an increase in with ICR* constant makes ICR fall. This result,

familiar from the basic model, is shown in row 1 of Table 1. An

increase in 13. also reduces the profit margin under system 1, since

m=1-(n-1)/n (equation (2.1)), as shown in row 2. Normally as 13

rises 112/TR(X1) (-.ICR) falls since both in and ICR fall. However,

since

a (n-1) 1 
exP= n-a(n-1) - 1 1 - 1

$ n-1

an increase in a increases exp, and in the bottom panel of Table 1

we see that 'Olen f3 goes from 1.35 to 1.45, 112/TR(X1) actually in-

creases. What is the economics underlying this result? An increase

in 0 makes the AC and MC curves steeper and increases the optimal

levels of output X1 and X2. In the bottom panel of Table 1, AC
2

lies below
-
AC
1 

and although the increase in a makes the two curves closer

for a given output, the steepening of the curves causes X2/X1 to :rise

(This can also been seen from (2.5)). When the increase in X2/X1 is

large enough, it is quite possible for 112/TR(X1) to rise.

The value of (112_1/1 )/TR(X1) is shown in the fourth row of Table 1.

This expression rises when f3 increases under two different sets of

circumstances. (a) In the top two panels, 112is less than 111; an

increase in 0 reduces both 111/TR(X1) and 112/TR(X1), but the former

is larger in absolute value and falls by a larger absolute amount.

(b) In the bottom panel, where 112>111, the fall in 112/TR(X1) as fi in-

creases is moderated by the increase in X
2/X1, with the result that

(H2.411 )/TR(X1) sometimes increases.



-14 -

The effectsof e. on 112/H1 are not quite so complicated. In the

top three panels 112/111 always falls as a increases, while in the bottom

panel 112/111 uniformly rises with a. The reason for the rise is the same

2 1
as (b) in the previous paragraph, namely, that as a increases X /X

increases when ICR is large. The precise conditions under which this
6/

will occur can be obtained by differentiating (2.8).

D,012/10)
  -ICRexPDa

(n-1)
[n-f3 (n-1)]

In kn ICR*-2,n21

All the terms in the derivative are necessarily positive except the term

Si
I..1 • Thus the sign of the derivative depends on this term, which will

be negative if

(ICR*)n < 2

This condition is always satisfied if ICR* is less than one. It will

be violated only if ICR* and n are both large enough. If ICR*=1.26,

this occurs when n exceeds 3 and if ICR* = 1.41, this occurs when n

exceeds 2.

In summary, the relaxation of the output restraint in the manner of

this section leaves a number of the conclusions of the basic model intact.

It remains true that the profitability of shift-work, whether measured by

(112_111 )/TR(X1) or 112/111, is increased by an increase in 0,an increase in a

and a decrease in a. It also remains true that the condition 112>ill
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holds if and only if the cost ratio is less tha
n one. What does

change is that (1[
2_111 )/TR(X1) and 112/111 may be increased by an

increase in a under certain circumstances. For 112/111 to increase

with f3 , ICR* must be fairly large (jICR*1 11>2, to be exact). The

conditions under which 
02_111 )/TR(X1) is increased by (3 are not

easily summarized, but this much can be said An increase in a

can never change a situation in which 111>112 into 
a situation in

7/
which 112>HY- Finally, the relaxation of the output con

straint brings

the elasticity of demand explicitly into the an
alysis; the effects of

n can be summarized by saying that an increase i
n n pushes 112/1t1

farther from unity.

III. A More General Treatment of Depr
eciation and Operating Costs.

In our previous analysis the cost of c
apital r, defined as the

cost of owning and operating a unit of 
capital stock for year, was

assumed to be the same for the single-s
hift and double-shift systems.

This assumption could be justified by 
supposing that depreciation

was due entirely to obsolescence (and
 not at all to wear and tear),

and by. ignoring machine-operating cos
ts, such as maintenance, repair,

and fuel.

Baily (1974, p. 35) has introduced an 
"hourly use-related cost

of capital", which is the same for single
-shift and double-shift

operation. Here we shall assume that hourly operati
rg costs are a

rising function of total hours of machine 
use. Machine life will

become endogenous, since machines will be 
replaced when their operating

costs make them more expensive than new one
s. Under either our assumptions
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or Bally's, the cost of capital for system 2 (r2) will be higher than

the cost for system 1 (r1).

In section A below we shall make some specific assumptions about

operating costs, depreciation, and the intcrest rate and calculate

some illustrative values of r2/r1. Then in section B the cost ratio

will be generalized to incorporate the term -r2/1.1. Finally, we shall

see how much this changes the cost ratio.

A. Illustrative Values of r2/r1.

One approach to the firm's decision problem is to assume

maximization of the present value of profits over the life of the asset.

An equivalent approach, which is more convenient for our purposes, is

to convert all revenues and costs into constant annual flows. The

-constant annual equivalent of a variable level of costs (Ft) can

be computed by equating the present value of the two flows over the -

life of the asset (n):

Hence

-t n -t

E f(I+i) = E Ft(l+i)

t=1 t=1

-t -t
f = (EFt(3.-1-i) E (1+i)

The annual cost of capital r is defined as Pk(ii-d+c), where Pk

is the price of a standard machine, i is the interest rate, d
 is the

depreciation rate, and c is the rate of operating costs. The annual

depreciation change on a machine costing $1000 with life of 10 year
s
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would be $1000 (d) where d is computed from

10 10-t
E d (1+i)
t=1

=1.00

Here d equals .076, which means that if $76 is set aside every year

and invested at 6%, it will cumulate to $1000 in 10 years. The

combined interest and depreciation costs would be $1000(i+d)=$1000(.06+.076)

=$136.

Operating costs include maintenance, repair, and fuel. We shall

include under this rubric the costs associated with the breakdown of
8/

machines. It seems quite reasonable to assume that operating costs,

especially the component related to machine failure, will increase

sharply with cumulated hours of operation. For purposes of our illustration,

we shall assume that operating costs for a standard machine (0C) are a

quadratic function of cumulated hours of operation (H):

OC = b( 
H  
)
2

2000
•

where b is a constant which will be allowed to take on various values.

H is divided by' 2000 to simplify the arithmetic. We shall assume that

a machine is normally operated 2000 hours a year under system 1 and

4000 hours a year under system 2. In this case, operating costs in

year t for system 1 (04) and for system 2(0q) become 1OCt bt2

and 04 = b(2t)2 = 4bt2.

The average annual operating cost over the life of the asset

($1000.c, where $1000 is the price of the machine) is computed by
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equating the present value of the actual stream of operating costs

with the present value of a constant stream of costs:

1000c OCt
(1+i)t 

E
t=1 i=1

Average operating costs for system 1 are a function of i and of asset life n:

rfl ,2
1000. = bi E I E 

1

t=i (1+i) t=1

Similarly, average operating costs for system 2 are

ri 

1.2 
1 1000. c2(i,n) = 4b 

E (1;--77TE-) t_Ei (1+i)tt=1

In Table 2 we show values of cl and c2 as functions of n. i is set

at .06 and b is set at 1.0. The table shows that as n increases, both

cl and c2 increase, and that at each n, c2 is greater than cl. Now for

each system of operations, the life of the asset is selected so as to

minimize the average annual cost of capital, r=Pk(i+d+c). An increase

in n lowers d but raises c. The optimal ni is 12 years (r1=$164.7)

and the optimal n2 is 7 years (r2=$251.8). (See Table 2). r2ir1 thus

equals 1.53.

Table 3 shows the values of ri, r2 and r2/r1, for various values

of i and b. A higher interest rate increases the optimal life of

assets, because it lowers the present value of high operating costs at

the end of the asset's life. This increases the relative weight of i in

(i+d+c), which raises rl more than r2; thus r2/ri falls as i increases.
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TABLE 2

The Optimal Life of Assets Under System 1 and System 2

n 1000c1(n) 1000c7(n) 1000d(n) rl(n) r2(n) 

6 13.99 55.96 143.4 217.4 259.3

7 18.16 72.64 119.1 197.3 251.8

8 22.79 . 91.17 101.0 183.8 252.2

9 27.86 111.43 87.0 174.9- 258.5

10 33.33 133.32 75.9 169.2 269.2

11 39.19 156.75 66.8 166.0 283.5

. 12 45.40 181.60 59.3 .164.71 300.9
i 

13 51.95 207.78 53.0 164.9 320.7

Note: i = .06 throughout. •

= operating costs, d= depreciation, r=1000(1+d+c)
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TABLE 3

Cost of Capital Under Various Values of i and b

A. i=.O6

EL la r2 la r2/ri 

b=:6 143 15 214 9 1.50_

b=1.0 165 11 252 7 1.53

b=1.8 196 10 304 6 1.55

B. i=.10 

b=.6 165 16 235 9 1.42

b=1.0 186 13 272 8 1.46

b=1.8 217 10 325 6 1.50

- C. i=.14 

b=.6 191 17 257 10 1.35

b=1.0 211 14 .294 8 1.40

b=1.8 240 11 348 6 1.45
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A higher value of b increases operating costs in every year, shortens

the optimal life of assets and raises r2 more than rl.

In our scheme, it is not optimal for the firm to operate the

second shift at less than full capacity. The argument proving this

assertion is rather complicated and will be relegated to a footnote.
9/

Summary. In this section we have calculated illustrative values

.for r2/r1, on the assumption that operating costs are proportional to the

square of cumulated hours of machine use. With 1=.06, r2fr1 is about

1.5. Let us note the effects of two changes in assumptions.

(a) In our scheme, no allowance was made for technical improvement in

machines; incorporation of this phenomenon would reduce r2/ri.

In the extreme, if machines were replaced solely because of

obsolescence and operating costs were negligible, r2/r1 would

equal 1.0.

(b) If operating costs were proportional to the third or fourth power

(rather than the square) of cumulated hours of machine use, n2

would approach one-half of n an r /r, would increase.1 -d 2 In the

extreme, machines might be assumed to operate perfectly until

a certain number of hours of use had been reached, at which point

they fall apart. Under this assumption, with i=.06, r2/11 would

equal 1.728,
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B. The Cost Ratio When r2  Differs from ri 

The condition that system 1 costs be greater than system 2

costs, for a given level of output, can be written

r1 K1 4. wiLl > r2K2 
w1 

L2 (24a)
1

V2 
2

> [ 2=z. +(24.00 (1-0" L
1

(3.1)

where 0=riK1RriKl+wiL1). This derivation parallels that of section I

above.) The capital-labor ratios are

a
a-1

( *)wril]

a 
a-3 K2

r2 (u*).
K2 6 WI. (24a ) 

Since r / 1L1 = 0/(1-0), we have

r2K2 _ 0 [Ell
;±17 57 l-0 r2

1

a
(2+a)

2

The cor.dition X
2 = X1 implies (see footnote 2 above)

(3.2)

(3.3)

(3.4)

2L —1/a a-1 a-1 a/(l-0) (3.5)

= 2 [0(2+a) (ri/r2) +(1-0)]
Ll
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Substituting (3.4) and (3.5) into (3.1) yields

a-1 1-a 11(1-a)
1 > 2 (2.41m)[6(24a) (r2/r1) 4-(I-0)] (3.6)

Table 4 shows the effect on the cost ratio of changes in rgri

The table illustrates the case of constant returns to scale, a night-

shift premium of 20 per cent and an elasticity of substitution of

0.5. With r2/r1 = 1.0, shift-work is profitable as long as 0 is

greater than about 0.14. When r2/r1=1.50, shift-work is not profitable

until 6 reaches about 0.27,

0= .10

.0= .20

6= .30

0= .40

TABLE 4

Effect of r2/r1 on the Cost Ratio

Cost Ratio

r2/r =1.0

1.0295

.9614

.8955

.8321

r2/r1=1.50 r2/r1=1.728

1.0621 1.0751

1.0247 1.0506

.9880 1.0348

.9521 1.0022

Note. 13=1, a=.50, a=.5 throughout
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In summary, the introduction of use-related operating

costs raises r2/r1 
and thereby reduces the profitability of shift-

work. Shift-work also involves changes in the capital-labor ratio

and in labor and capital productivity. These changes are strongly

influenced by the substitution of capital services for labor services.

Anything which raises r2fri will diminish the extent of such substitution.

Finally, let us mention that all our models have been based on

the assumptions of perfect foresight, the absence of risk, and the

impossibility of cpost substitution between labor and capital. These

assumptions might be fruitfully relaxed in subsequent research.



APPENDIX

Derivation of Equations 2.4), and (2.5)

We can write X=[a. TC2(X)) where a is a constant which depends

on factor prices. Hence

1/0
TC2(X2) [K2
TC2(X1)

(2.4)

This is equation (2.4) in the text. For future reference, note that

1 -

MC2(X2) = [X2]
Ncz(ci) Tr

The demand curve may be written X = AP-11. Hence

TR(X) = 4)- 
1/n

TR(X2) {X2r
Hence 

ir
TR(xl)

1 - (l/n)
X ; MR(X) =

This is equation (2.3) in the text. Note that

-1/n l/n

MR(x1)1x11 1x21
NR(X2) 07(-211

(A1)

(1- 1-1)x-lIn

• (2.3)

(A2)

With 13 constant, the cost ratio (CR) is independent of the level

of output; that is, TC
2(X)=CR . TC1(X). Let us define ICR as 1/CR, or

the inverse of the cost ratio. Thus TC1(X)=ICR . TC2(X). Hence

MC1(X)=ICR . MC2(X). This holds for any level of output, including

X1. Thus mc1(x1) = mcl(xl) mc2(x1)_ 11- 1

MC2W;) MC2(X1) MC2(X2) 
ICR[ X

X1 
(A3)



where (Al) was used in the second step.

Profit maximization implies that MR(X1)=MC1(X1) and MR(X.2)
=140(X2).

Thus (h2) can be set equal to (A3), yielding

Hence

1/n
,2 ,2[2,1 =ICR [I]

x2 n+0-13n
= ICR

This is equation (2.5) in the text.

1 1
a

(2.5)



Footnotes

1
The dependence of 6 on the units of measurement is not always

realized. Winston (1974,p. 541) incorrectly states that 6/(1-6)
is relative shares.

2 Since X1 = 2X2

[6 oly-p + (1 .... (s)) (L1)-p
-1-,I-

[6 (2-7s-)P 4- (1 - 6)] (L1)
L41

=2

a a• wl 6 
{u* 

a -1 + (1 — a) p6 ---r 1-6 / 
=2

Sfu* 
w1(2+a) S )a-1 +(1-6) Ll1-6

1
But rK 0

1 1-0wIL

Hence

wl 
a-1 ( 6 )a

I `RS-IF-

[ 

0 1-6
-1,0 sciv (-0+ (1-0

„ „1-6,
— 1 + (1-6

2
1/13 

a-I a
1 - = 2 [0(2+a) + (1-0] 1-a
Ll

a
a-1



3 We plan to give a detailed critique of Millan's work in a comment
on the final version of his paper.

4 We can write TC(X) = (pX)1/R where p is a constant which depends
on factor prices. Now

1-
0

dX AC - pl/x 
-1 

0 _ 
=c = - dAC X $ -1

' a -1)1;4 X.6 - 2.X
0

5 These results contradict those of Milan (1974), who stated that
under certain conditions an increase in d would favor single-shift
plants. But an increase in (5 with factor prices and a constant implies
an increase in 6, and (2.7) and (2.8) imply that an increase in 0 must

..always increase 02./11 )/TR(X1) and 112/111. These two equations also
make clear that Milian is wrong in stating that an increase in a might
favor multiple-shift plants.

6 Recall that if y=af(x), then dy/dx = fi(x) . kna.y. Define

0.-0(n-1)
ex- n-0(n-1)

13(n-1) 
and exp-

n-13 (n-1)

d(ex) -(n-1) 
da [11...(n...1)]2 and d(exp) n(n-l) 

df3 [n-13(n-1)]2

9(ll2/0) .2ex n(n-1) 
2,n(ICR*).(ICR*)e -F(ICR*)exP. (n-1)

DO n-gn-1)]z [n-s(n-1)]

(n-1)  fn in ICR* in 21
902/0 

) -2ex(ICR*)exP
[n-a (n-1) ]313.

kn2.2ex

7 This follows directly from the facts that 112<II1 as ICR < 1 and that
ICR is reduced by an increase in f3.

8 We are taking the flow of revenue to be constant. When machine
breakdown reduces actual production, we shall treat this as an increase
in operating costs rather than a loss in revenue.
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If utilization on the second shift of the double-shift system (u2)

Is set less than u*, the firm must buy a somewhat larger capital stock

in order to produce the same output with the same labor input. The new

K2 must be 2.0/(14-u2/u*) times the old. Now the new operating costs
2

per year would be

2 2
OC = b [1-1-11;/u*) t]

and the new annual equivalent operating costs would be

c2(i,n,u2) = b(liu2/u*) 
2 ( (i+i) t) E (i+i) t

2 t=1 t=1

2
This formula was used to determine rg,

4 
(1.

9 
u2).

The problem now is to see whether a decline in u below u* would

lower r2 by more than it raises K2. Clearly a reduction in u3 would

not be worthwhile if the percentage increase in K2 exceeded the percentage

reduction in r2. Moreover, for each successive reduction in u3 the gains
9

diminish (since u2 is squared in the expression for c,(i, n2, 19) and2
the costs increase (the percentage inr.;rease in K2 increases as u3 declines)

therefore if the first reduction in u is not profitable, no subsequent

reduction will be. Changing uPu* from 1.0 to .99 was unprofitable in

every case in Table 1. It follows that the optimal uPu* must be greater

than .99, or for practical purposes must be 1.0.
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