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MONOTONICITY AND CURVATURE – A BOOTSTRAPPING APPROACH

Johannes Sauer�

Abstract
This research contributes to the ongoing discussion on functional flexibility and theoretical 
consistency by comparing the empirical performance of two second order flexible functional 
forms - the Symmetric Generalized McFadden and the Transcendental Logarithmic. It pro-
poses an estimation procedure to enhance the domain of applicability for the Translog by a 
combination of matrix decomposition, classical non-linear estimation techniques as well as 
bootstrapping based resampling. The validity of the proposed procedure is exemplified by 
applying it to a sample of small-scale farmers. The results show that the range of theoretical 
consistency can be crucially enhanced for the Translog functional form by maintaining its 
flexibility and statistical significance. Hence, beside its empirical superiority by applying the 
outlined procedure the Translog can also catch up with respect to the range of functional 
consistency.

Keywords 
Econometric Modeling, Flexible Functional Forms, Theoretical Consistency, Bootstrapping 

1 Introduction 
As is well known in applied production economics flexible functional forms are considered as 
superior to model an empirical relationship. According to DIEWERT (1974) a functional form 
can be denoted as ‘flexible’ if its shape is only restricted by theoretical consistency. This 
implies the absence of unwanted a priori restrictions and is paraphrased by the metaphor of 
“providing an exhaustive characterization of all (economically) relevant aspects of a techno-
logy” (see FUSS et al., 1978). However, for most functional forms there is a fundamental 
trade-off between flexibility and theoretical consistency as well as the domain of applica-
bility. Following the classical econometric tradition this contribution proposes an estimation 
procedure to enhance the consistent domain of applicability for a second order flexible 
functional form by combining matrix decomposition, non-linear estimation techniques as well 
as bootstrapping based resampling. The validity of the econometric procedure is exemplified 
by using a curvature constrained estimation of the widely applied Transcendental Logarithmic 
functional form in order to enhance its theoretical consistency by maintaing its superior 
empirical applicability. 

2 The Problem 
The functional form of an econometric model as well as the specified probability distribution 
for the residual are the two major assumptions underlying the empirical investigation of 
economic hypotheses and are commonly considered as maintained hypotheses of the model. 
In production economics one basic question to be solved by econometric modeling is the one 
with respect to an adequate representation of the underlying technology T. 

� Assistant Professor Dr. Johannes Sauer, Royal Veterinary and Agricultural University, Institute for Food and 
Resource Economics, Rolighedsvej 25, 1958 Copenhagen, Denmark, js@foi.dk. The author is explicitly grateful 
to an anonymous reviewer for very valuable comments. 
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Proposition I: The technology � �� �yproducecanxxyT :,�  describes the set of feasible 
input-output vectors with  and � �nxxxx ,...,, 21� � �myyyy ,...,, 21�  respectively. T satisfies the 
usual properties of a theoretically well-defined production technology. 

Proposition II: The technology approximation � �� �yproducecanxxyT �� ˆ:ˆ,,��  ap-
proximates the set of feasible input-output vectors with � �nxxxx ,...,, 21� ,

and  respectively. The approximation T’ satisfies the usual properties of a 
theoretically well-defined production technology and  satisfies the usual statistical 
properties of a well-defined estimator. 

� �myyyy ,...,, 21�

� n���� ,...,,ˆ
21� �

�̂

Economic theory provides no a priori guidance with respect to the functional relationship. 
Lau’s criteria (LAU, 1978, 1986) with respect to the ex ante selection of an algebraic form are 
valuable for applied modelling but conclude in the magic triangle of functional choice: the 
researcher should not expect to find a functional form equally satisfying the principles of 
theoretical consistency, functional flexibility as well as an accurate domain of statistical appli-
cability. The literature on econometric modelling proposes two solutions to this severe 
problem (CHAMBERS, 1988; LAU, 1986): (1) to apply functional forms which could be made 
globally theoretical consistent by corresponding parameter restrictions, here the range of 
flexibility has to be investigated, or, (2) to opt for functional flexibility and check or impose 
theoretical consistency for the proximity of an approximation point - usually at the sample 
mean - only. A globally theoretical consistent as well as flexible functional form can be 
considered as an adequate representation of the production possibility set. Locally theoretical 
consistent as well as flexible functional forms can be considered as an i-th order differential 
approximation of the true production possibilities. 
Proposition III: A globally flexible and theoretically consistent constrained technology 
approximation 

� �
�
	



�
�



������� HessianglobaltheasHandinputsiwherensdH
dx
dyTyproducecanxxyT TT ����� 0;ˆ:ˆ,,  globally 

approximates the set of feasible input-output vectors with ,

 and  respectively. The approximation Tg’ globally 
satisfies the usual properties of a theoretically well-defined production technology.  

� �nxxxx ,...,, 21�

� �myyyy ,...,, 21� � n���� ,...,,ˆ
21� �

Proposition IV: A locally flexible and theoretically consistent constrained technology 
approximation 

� �
�
	



�
�



������� HessianlocaltheasHwhereknobservatioleastatfornsdH
dx
dyTyproducecanxxyT 22 10;ˆ:ˆ,, ���

 locally approximates the set of feasible input-output vectors with ,

 and  respectively. The approximation Tl’ locally satis-

fies the usual properties of a theoretically well-defined production technology and  satisfies 
the usual statistical properties of a well-defined estimator. 

� �nxxxx ,...,, 21�

� �myyyy ,...,, 21� � n���� ,...,,ˆ
21� �

�̂

Figure 1 gives a brief overview of the most common flexible functional forms selected with 
respect to the frequency of empirical usage or the representation of systematic nodes in the 
development of functional representation. 
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Figure 1: Flexible Functional Forms 

Source: MOREV, 1996; FEGER, 2000 
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The most simple functional case - iii xxf �)(  - leads to the flexible form of the Quadratic, 
whereas the Transcendental Logarithmic (Translog) - jijiij xxxxf lnln)( �  - is the 
historically first invented flexible functional form incorporating the first order case of the 
Cobb Douglas (CD). Another early invented second order flexible functional form, the 
Generalized Leontief (GL), is based on  with respect to the second order 
effects. The introduction of the Symmetric Generalized McFadden (SGM) in the mid 80’s – 

following  for the second order effects - marks another 

milestone in the search for global flexibility. Figure 2 illustrates the different strengths and 
weaknesses of these functional forms with respect to the magic triangle of functional choice. 

2/12/1)( jijiij xxxxf �

�
�

�
�
�

�
� �

k
kkjíijkjiijk xvxxxxxf /( 	

Figure 2: Strengths and Weaknesses of Different Functional Forms 
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Following the Bayesian econometric tradition TERELL (1996) proposes the use of a Gibbs 
sampler to generate an initial sample from the posterior density for a prior ignoring regularity 
restrictions. By accept-reject sampling a final sample is then generated which consists only of 
parameter values adhering to these regularity conditions. Different extensions of this 
estimation method have been subsequently made (O’DONNEL et al., 2003; GRIFFITHS et al., 
2000, WOLFF et al., 2006). The following discussion contrasts the SGM as the ‘state-of-the-
art’ with respect to theoretical consistency and the TL as probably the ‘best empirical 
performer’ as numerous applied studies show. 

3 Theoretical Consistency: The Symmetric Generalized McFadden 
The SGM was introduced by DIEWERT and WALES in 1987 based on the initial formulation by 
McFadden (see DIEWERT and WALES, 1987). As the functional form of the Generalized 
Leontief, the SGM is linearily homogeneous in inputs by construction. Monotonicity - 

 - can be either imposed locally only, if globally restricted for monotonicity 
the property of second order flexibility is lost. The crucial feature of the SGM providing the 
reason for its common distinction as state of the art is the fact that if globally restricted for 
correct curvature by matrix decomposition the constrained curvature property applies glo-
bally. In the case of a production function this means investigating  and 

 to assure that the estimated function is quasi-concave resulting in a nega-
tive semi-definite bordered Hessian and consequently alternating determinants of its sub-
matrices D starting with a negative one: . However, one has to be aware that in 
this case the second order flexibility is restricted to only one point (see FEGER, 2000; RYAN 
and MAH, 1994; DIEWERT and WALES, 1987). A SGM production function can be formulated 
as follows 

0)/)( �iii dxxdf

22 /)( iii dxxfd

jijii dxdxxxfd /)(2

01 �� k
k D

� �
1

1 1
1 1

1
2

n n
n n

i i i i ij i ji j
i i

y x x� � �
�

	 	
	 	


 �	 � 
 �
� �

� � � � x x
     [1] 

where as usual  and  denote inputs, ix jx y  is the output and ijii and ��� ,  are the parameters 
to be estimated. By applying either Lau’s technique (LAU, 1978) based on the Cholesky 
factorization H = -LBL’ (where L is a unit lower triangular matrix and B as a diagonal 
matrix), or the matrix decomposition following WILEY et al. (1973) H = -��’ (where H is 
replaced by the negative product of a lower triangular matrix times its transpose), the 
bordered Hessian can be constrained to a negative semi-definite matrix assuring quasi-
concavity of the estimated production function. 
Proposition V: A globally flexible and constrained technology approximation Tg’ of the type 

� � � �
1

k
'1 1

1 1

1ˆ ˆ' , , :  can produce y; ;  ' 0 for at least k=1
2 g

n n
n n

sgm i i i i ij i j sgm Ti j
i i k

dyT y x x y x x x x T
dx

� � � � �
�

	 	
	 	

� �
 �� �	 	 � 	� � �� �
 �
� �� �� �

� � � � T� A* A

globally approximates the set of feasible input-output vectors with ,

 and  respectively. The approximation Tg’ globally satis-
fies the property of a quasi-concave production technology. �

� �nxxxx ,...,, 21	

� �myyyy ,...,, 21	 � n���� ,...,,ˆ
21	 �

To exemplify the described functional properties, the following SGM production function was 
applied on an arbitrary chosen real world cross-sectional sample of 252 small-scale farmers 
producing maize by using the inputs s = seed, l = labour and f = fertilizer: 
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� � � � � �2 21
2

2
ss s sl s l sf s f ll l lf l f ff f

s s l l f f
s s l l f f

x x x x x x x x x
y x x x

x x x
� � � � � �

� � �
� � �

� � � � �
� � � �

� �

 [2] 

where the parameter i�  was set equal to the respective sample mean and each variable has 
been normalized by its mean (see DIEWERT and WALES, 1987). In a second step the same 
function was applied in a curvature constrained specification following the technique by 
WILEY et al.: 

� � � �
� �

� �
2 2

2

( ) ( ) ( ) ( )1 /
2 ( ) ( )

s s l l f f

ss ss s ss sl s l ss sf s f sl sl ll ll l

s s l l f f

sl sf ll lf l f sf sf lf lf ff ff f

y x x x

x x x x x x
x x x

x x x

� � �

� � �

� � � �

� 	
� � � 
� � � 
� � � 
� � 
� �
� 
 � �
� 
� 
� � 
� � � 
� � 
� � 
� �� �

[3]

where again i�  was set equal to the respective sample mean and each variable has been nor-
malized by its mean. The parameters ii�  and ij�  refer to the lower triangular matrix and its 
transpose respectively with i,j = seed, labour, and fertilizer. Table 1 and 2 summarize the 
estimation results: 

Table 1: Unconstrained SGM 
Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

sss -0.805 [-3.387]*** ssl 2.972 [34.531]*** ssf 0.997 [3.129]*** 
sll -1.527 [-3.654]*** slf 0.824 [1.686]* sff 0.197 [0.436] 
�s 0.474 [1.182] �l 0.315 [1.312] �f -0.187 [-0.817] 
adjR2 0.76 F-value 25.27 
QC (%) 37.31 M (%) 0

(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1 %-level; t-values in parentheses; (3) 
the parameters in the top two rows refer to the Hessian; (4) symmetry - (sij = sji); (5) QC – quasi-concavity, M – 
monotonicity 
Source: Own estimations 

Table 2: Constrained SGM 
Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

sss -1.921 [-8.351]*** ssl 1.441 [5.226]*** ssf 0.169 [0.531] 
sll -1.112 [-2.396]** slf -0.127 [-0.259] sff -0.015 [-0.034] 
�s 1.013 [2.339]** �l 0.329 [0.817] �f -0.033 [-0.086] 
adjR2 0.63 F-value 25.05 
QC (%) 100 M (%) 40.36 

(1) s-seed, l-labour, f-fertilizer, (2) *, **, ***: significance at 10-, 5- or 1 %-level; t-values in parentheses;  (3) 
the parameters in the top two rows refer to the Hessian; (4) symmetry - (sij = sji), concavity is imposed globally 
by constraining S to be nsd by S = -A*AT, monotonicity is imposed at the sample mean; (5) QC – quasi-
concavity, M – monotonicity 
Source: Own estimations 
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The overall model fit of the unconstrained as well as constrained specification seem to be in 
an acceptable range for cross-sectional data. In the unconstrained specification about 55 % of 
all estimated parameters showed to be significant at least at the 10 %-level, in the constrained 
specification this ratio falls to about 40 %. The estimated unconstrained SGM function 
showed to be quasi-concave for about 37 % of all observations but for none of the obser-
vations monoton in all inputs. The estimated constrained SGM function showed to be globally 
quasi-concave as expected and monoton in all inputs for about 40 % of all observations. 
Hence, our exemplary empirical application confirmed our previously made theoretical 
arguments: the functional form of the symmetric generalized McFadden is highly consistent 
in its constrained specification but fails to show satisfactorily empirical applicability by a 
relatively modest statistical significance of the model and the individual parameters estimated. 

4 Empirical Applicability: The Transcendental Logarithmic 
The locally flexible functional form following the Generalized Leontief is the Transcendental 
Logarithmic or Translog (see CHRISTENSEN et al., 1973). Due to the literature the Translog 
appears as probably the best investigated second order flexible functional form and surely the 
one with the most empirical applications as its empirical applicability in terms of statistical 
significance is outstanding (FEGER, 2000). A Translog production function can be formulated 
as follows 

0
1 1 1

1ln ln
2

n n n

i i ij i
i i j

jy x x� � �
� � �

� � �� �� x
       [4] 

where as usual  and  denote inputs, ix jx y  is the output and iji and ��  are the parameters to 
be estimated. Locally theoretical consistent as well as flexible functional forms can be 
considered as an i-th order differential approximation of the true production possibilities. 
Hence, the popular Translog is considered as a second order differential approximation of the 
true production possibilities. The theoretical properties of the second order Translog are well 
known (LAU, 1986): it is easily restrictable for global homogeneity as well as homotheticity, 
correct curvature can be implemented only locally if local flexibility should be preserved, the 
maintaining of global monotonicity is impossible without losing second order flexibility. 
Hence, the Translog functional form is fraught with the problem that theoretical consistency 
can not be imposed globally. RYAN and WALES (2000) argue that a sophisticated choice of the 
reference point could lead to satisfaction of consistency at most or even all data points in the 
sample. JORGENSON and FRAUMENI (1981) firstly propose the imposition of quasi-concavity 
through restricting the Hessian to be a negative semidefinite matrix. However, as in the case 
of the Generalized Leontief, the Hessian of the Translog is not structured in a way that the 
definiteness property is invariant towards changes in the exogenous variables. Following 
JORGENSON and FRAUMENI (1981) quasi-concavity can be imposed at a reference point 
(usually at the sample mean) by replacing the bordered Hessian by the negative product of a 
lower triangular matrix � times its transpose �’ according to the decomposition proposed by 
WILEY et al. (1973). Imposing curvature at the sample mean is then attained by setting 

( ')ij ij i ij i j� � � � �� � �� � �          [5] 

where i, j = 1, …, n, �ij = 1 if i = j and 0 otherwise and (��’)ij as the ij-th element of ��’ with 
� a lower triangular matrix. As our point of approximation is the sample mean all data points 
are divided by their mean transferring the approximation point to an (n + 1)-dimensional 
vector of ones. At this point the elements of H do not depend on the specific input bundle. 
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Proposition VI: A locally flexible and constrained technology approximation Tl’ of the type 

� � 0
1 1 1

1ˆ ˆ' , , :  can produce ;  ln ln ;  ' 0  for  at least observation k 1
2

n n n

tl i i ij i j tl k
i i j i

dyT y x x y y x x x T nsd
dx

� � � � �
� � �

� �� �� � 	 	 
 � �� 

� �� �

� �� � �

�
locally approximates the set of feasible input-output vectors with ,

 and  respectively. The approximation Tl’ locally 

satisfies the usual properties of a theoretically well-defined production technology and 
satisfies the usual statistical properties of a well-defined estimator. 

� �nxxxx ,...,, 21�

� �myyyy ,...,, 21� � n���� ,...,,ˆ
21�

�̂

To exemplify the described functional properties, the followig Translog production function 
was applied on the same cross-sectional sample of 252 small-scale farmers producing maize 
by using the inputs s = seed, l = labour and f = fertilizer: 

2 2 2
0 3

1 1 1 1 1 1ln ln ln ln ln ln ln ln ln ln ln ln ln
2 2 2 2 2 2s s l l f f s l s l s f ly x x x x x x x x x x x� � � �� 	 	 	 	 	 	 	 	 	 fx

 [6] 

where each variable has been normalized by its mean. In a second step the same function was 
applied in a curvature constrained specification following the technique illustrated above: 

� � � �

� � � � � �

� �

2 2
0

2
3

1 1ln ln ln ln ln ln
2 2

1 1 1ln ln ln ln ln
2 2 2
1 ln ln
2

� � � � � � � � � �

� � � � � � �

� �

� 	 	 	 	 �� � 	 � 	 �� � �� � 	 �

	 �� � �� � �� � 	 � 	 �� � � 	 �� � �

	 �� � �� � �

s s l l f f ss ss s s s s sl sl ll ll l l l l

sf sf lf lf ff ff f f f sl ss s l s l sf ss s f s f

sf sl lf ll l f l f

y x x x x x

x x x x x

x x
[7]

where again each variable has been normalized by its mean. The resulting normalized translog 
model in [7] is nonlinear in parameters and consequently linear estimation algorithms are 
ruled out even if the original function is linear in parameters. By this “local” procedure a 
satisfaction of consistency at most or even all data points in the sample can be reached. The 
transformation in [5] moves the observations towards the approximation point and thus in-
creases the likelihood of getting theoretically consistent results at least for a range of observ-
ations (RYAN and WALES, 2000). However, by imposing global consistency on the translog 
functional form DIEWERT and WALES (1987) note that the parameter matrix is restricted 
leading to seriously biased elasticity estimates. Hence, the translog function would lose its 
flexibility. Table 3 and 4 summarize the estimation results for the Translog: 

Table 3: Unconstrained Translog 
Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

ß0 -0.784 [-8.837]*** �ss 0.020 [58.429]*** �sf -0.053 [-4.023]*** 
ßs 0.543 [59.022]*** �ll 0.957 [1.653]* �lf 0.910 [2.318]** 
ßl 0.472 [1.619]* �ff 0.657 [6.048]*** 
ßf 0.238 [1.605]* �sl -0.079 [-2.887]*** 
adjR2 0.93 F-value 59.07 
QC (%) 22.2 M (%) 70.2

(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1 %-level; t-values in parentheses; (3) 
QC – quasi-concavity, M – monotonicity 
Source: Own estimations 
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Table 4: Constrained Translog 
Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

ß0 -1.217 [-36.249]*** �ss 0.904 [0.019] �sf 0.015 [13.589]*** 
ßs 1.428 [4.029]*** �ll 0.007 [0.158] �lf 0.003 [0.715] 
ßl 0.108 [1.742]* �ff 0.014 [98.492]*** 
ßf 0.428 [110.929]*** �sl 0.003 [0.204] 
adjR2 0.69 F-value 335.58 
QC (%) 86.9 M (%) 86.7

(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1 %-level; t-values in parentheses; (3) 
QC – quasi-concavity, M – monotonicity 
Source: Own estimations 

As expected, the overall model fit of the unconstrained specification is high whereas the fit of 
the constrained model seems to be in an acceptable range for cross-sectional data. In the 
unconstrained specification all estimated parameters showed to be significant at least at the 
10 %-level, in the constrained specification this ratio falls to about 60 %. The estimated un-
constrained TL function showed to be quasi-concave for only about 22 % of all observations 
but for 70 % of the observations monoton in all inputs. The estimated constrained TL function 
showed to be quasi-concave and monoton in all inputs for about 87 % of all observations. 
Hence, our exemplary empirical application confirmed our previously made theoretical argu-
ments: the unconstrained functional form of the Transcendental Logarithmic is applicable at a 
high range in its unconstrained specification but fails to show satisfactorily theoretical con-
sistency of the estimated model. By constraining the TL functional form the theoretical con-
sistency of the estimated model can be increased significantly but still fails for more than 
10 % of all observations. So far, the econometric techniques applied as well as the results with 
respect to the performance of the functional forms are in line with common practices and 
expectations. The next section introduces an econometric procedure to enhance the range of 
theoretical consistency of the Translog functional form by maintaining its superiority with 
respect to the range of empirical applicability. 

5 Econometric Modeling and Results: Nested Intervals by Resampling 
A translog production function model is developed following [6] where the functional form is 
normalized by the means of the respective variables. After a first estimation the consistency 
of the estimated production function is tested by checking the first derivatives (monotonicity) 
as well as the eigenvalues of the Hessian matrix (quasi-concavity). Subsequently correct 
curvature is imposed locally following WILEY et al. (1973) and RYAN and WALES (1998) and 
the range of theoretical consistency is again investigated for the estimated function. In a next 
step bootstrapping techniques are applied to reveal the confidence intervals for the estimated 
parameters of the function. Based on these bias-corrected statistics, decile intervals for the 
individual parameter values are defined. A sequence of restricted estimations is then per-
formed for each parameter combination according to these parameter decile intervals and the 
most appropriate combination(s) of different parameter ranges are determined in terms of the 
theoretically consistent range of the estimated function. The proposed procedure is exem-
plified by using again the cross-sectional data set on small-scale farmers. 
Step1: estimation of an unconstrained model, and step 2: estimation of a curvature constraint 
model have been already documented by tables 3 and 4 in the preceeding section. Step 3 
involves the application of a simple bootstrapped estimation of the constrained model. 
Comprehensively described in the literature (EFRON, 1979; EFRON and TIBSHIRANI, 1993) the 
bootstrapping technique delivers confidence intervals for the individual parameter estimates. 
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If we suppose that n�  is an estimator of the parameter vector n�  including all parameters 
obtained by estimating [7] based on our original sample of 252 farmers , then 
we are able to approximate the statistical properties of 

),...,( 1 nxxX �

n�  by studying a sample of 1000 
bootstrap estimators Ccc mn ,...,1,)( �� . These are obtained by resampling our 252 observa-
tions – with replacement – from X  and recomputing n�  by using each generated sample. 
Finally the sampling characteristics of our vector of parameters is obtained from 

mm )100()1( ,...,��� �           [8] 

Table 5 summarizes the bias-corrected bootstrapped confidence intervals for the constrained 
TL parameters: 

Table 5: Bias-Corrected Bootstrapped Confidence Intervals 
Parameter 95 %-Confidence Interval Parameter 95 %-Confidence Interval 
ß0 [-1.218; -0.214] �ll [-0.061; 0.024] 
ßs [1.223; 1.776] �ff [0.009; 0.016] 
ßl [0.061; 0.185] �sl [0.029; 0.446] 
ßf [0.278; 0.449] �sf [-0.013; 0.023] 
�ss [0.688; 1.651] �lf [-0.009; 0.007] 

(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1 %-level; t-values in parentheses; (3) 
QC – quasi-concavity, M – monotonicity 
Source: Own estimations 

Table 6 gives the means of the bias-corrected parameter ranges (deciles) based on the boot-
strap estimates. Alternatively any other sub-division of the parameter ranges could be applied 
(e.g. quantilies, quartiles etc.): 

Table 6: Means of the Bias-Corrected Nested Parameter Intervals 
Decile
Parameter 1 2 3 4 5 6 7 8 9 10

ß0 -1.168 -1.067 -0.967 -0.866 -0.766 -0.666 -0.565 -0.465 -0.364 -0.264 
ßs 1.251 1.306 1.362 1.417 1.472 1.527 1.583 1.638 1.693 1.749 
ßl 0.067 0.079 0.092 0.104 0.117 0.129 0.142 0.154 0.167 0.179 
ßf 0.285 0.303 0.320 0.337 0.355 0.372 0.389 0.407 0.424 0.441 
�ss 0.736 0.832 0.929 1.025 1.121 1.218 1.314 1.410 1.507 1.603 
�ll -0.057 -0.048 -0.040 -0.031 -0.023 -0.014 -0.006 0.003 0.011 0.020 
�ff 0.010 0.010 0.011 0.012 0.012 0.013 0.013 0.014 0.015 0.015 
�sl 0.050 0.092 0.133 0.175 0.217 0.259 0.300 0.342 0.384 0.426 
�sf -0.011 -0.008 -0.004 0.000 0.003 0.007 0.011 0.014 0.018 0.022 
�lf -0.009 -0.007 -0.005 -0.004 -0.002 -0.001 0.001 0.003 0.004 0.006 

Source: Own estimations

Step 4: using these parameter deciles a sequence of restricted estimations is then performed 
based on different combinations of parameter ranges. By this procedure the parameter 
confidence intervals are ‘searched’ for the crucial values for which the overall functional 
consistency fails. According to this trial-and-error procedure - comparable to the use of nested 
intervals – the most appropriate combination(s) of different parameter ranges are determined 
in terms of the theoretically consistent range of the estimated TL function. By applying this 
interval procedure on our empirical case study the cross parameter sf�  was detected as most 
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crucial for functional consistency (intervals 1-9). Table A1 summarizes the constrained 
regression results (see appendix). The nested intervals following parameter search resulted in 
the parameter region defined by the deciles 1 to 8 for sf�  as the region implying the highest 
functional consistency. This econometric procedure could be also applied by using pro-
grammed macros in statistical software. Finally in step 5 the constrained TL model in [7] is 
now re-estimated by restricting sf�  to the crucial range following the previously defined 
intervals. The constrained TL model is specified and estimated by restricting the crucial para-
meter sf�  to the found nested interval, hence, for our example � �016.0;009.0�sf� . However, 
analogue to the 2SLS estimation procedure the standard errors for the constrained regressions 
of the second stage have to be adjusted as the variance of the final error term  is not exactly 
equal to the variance of the original . This can be simply done by multiplying each standard 
error of the coefficients estimated in the second stage with the correction factor 

iu�

iu

uu �� ˆ/ˆ �  (see 
e.g. GUJARATI, 2003: 773). Table 7 summarizes the final TL model1:
As becomes evident, by this estimation procedure the theoretical consistency of the Trans-
cendental Logarithmic can be crucially enhanced by maintaining its statistical superiority and 
consequently its high range of empirical applicability. Table 8 documents this by comparing 
the usually constrained as well as the nested interval constrained TL production functions. 

Table 7: Constrained Translog by Nested Intervals 
Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

Para-
meter

Estimate 
[t-statistics] 

ß0 -1.349 [-273.246]*** �ss 0.005 [0.142] �sf 0.016 [10.560]*** 
ßs 0.493 [30.374]*** �ll 0.007 [1.192] �lf 0.004 [5.389]*** 
ßl 0.108 [13.129]*** �ff 0.014 [742.377]*** 
ßf 0.428 [836.115]*** �sl -0.034 [-1.541]* 
nested parameter restriction: � �0.009;0.016sf� � �

adjR2 0.93 F-value 336.01 
QC (%) 92.1 M (%) 98.8

(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1 %-level; t-values in parentheses; (3) 
QC – quasi-concavity, M – monotonicity; (4) corrected standard errors 
Source: Own estimations 

The range of theoretical consistency is enhanced by up to 14 % (monotonicity), the overall 
statistical significance could be even improved by up to 35 % for the model. The functional 
regularity (i.e. monotonicity, diminishing marginal returns and quasi-concavity) increased by 
up to 6 %. 

1 For the chosen example the estimate for the restricted parameter �sf is on the upper boundary of the defined 
regular parameter space. ANDREWS (1999, 2000) discusses different methods to adjust the standard error for the 
parameter in question with respect to this rather complex case which we do not follow here for the sake of clarity 
of argumentation.
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Table 8: Constrained TL Comparison
TL usually
constrained

TL nested interval
constrained

relative
improvement (%)

adj R2 0.69 0.93 34.78

parameter significance (%) 60 70 17

monotonicity 86.7 98.8 13.96

quasi-concavity (%) 86.9 92.1 5.98

regularity 86.9 92.1 5.98

Source: Own estimations

Corollary: a locally flexible and constrained technology approximation Tl’ of the type

� �
� �
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1 1 1_

1 2

1ˆ ˆ, , : can produce ; ln ln ; ' 0 for at least observation k 1;
2'

; for at least one parameter

n n n

i i ij i j tl k
i i j itl nest

dyy x x y y x x x T nsd
dxT

� � � � 	

� � �

 
 


� �

 
 
 � � 
 
� �


 � �
� ��� �

� �� �

locally approximates the set of feasible input-output vectors with ,

and respectively. The approximation Tl’ locally
satisfies the usual properties of a theoretically well-defined production technology for a high
range of observations and satisfies the usual statistical properties of a well-defined
estimator.
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 � n���� ,...,,ˆ
21
 �

�̂

The estimation results show that the proposed method leads to a significantly enlarged re-
gularity range for the translog functional form. As a global imposition of functional regularity
implies the loss of functional flexibility for the translog form, the outlined procedure based on
classical econometric methods proved to be an alternative technique to such based on
Bayesian econometrics.

7 Conclusions
This paper proposes a new procedure for the curvature constrained estimation of the widely
used Transcendental Logarithmic functional form in order to enhance its theoretical con-
sistency by maintaing its superior empirical applicability. By using an applied example the
performance of the TL is compared to the Symmetric Generalized McFadden as the reference
for a global curvature consistent functional form. As expected, whereas the TL shows the
better empirical performance it scores relatively poor on the functional range of theoretical
consistency. The opposite was found for the SGM. By performing a nested interval search on
the crucial parameter(s), restricting the latter to a range of values showing the highest range of
consistency and estimating the functional form by using the usual Hessian decomposition
technique, the theoretical consistency of the TL could be crucially enhanced by maintaining
its statistical significance and avoiding a loss of functional flexibility. The empirical results
show that the applied estimation procedure – the combination of matrix decomposition,
restricted non-linear estimation and nested parameter intervals based on stochastic resampling
– can critically contribute to increase the theoretical adherence of a second order flexible
model without having to rely on using Bayesian econometric techniques.
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Appendix

Table A1: Functional Consistency and Empirical Applicability per Parameter
Interval1

sf	 -Deciles 1-9 1-8 1-7 1-6 1-5 1-4 1-3 1-2
adjR2 0.92 0.92 0.93 0.93 0.94 0.95 0.95 0.96
M (%) 98.81 98.81 98.81 98.81 98.81 98.81 98.81 98.81
QC (%) 90.08 92.06 92.06 91.67 91.27 91.27 89.68 89.68
R (%) 90.08 92.06 92.06 91.67 91.27 91.27 89.68 89.68

sf	 -Deciles 2-9 3-9 4-9 5-9 6-9 7-9 8-9
adjR2 0.92 0.92 0.92 0.92 0.92 0.92 0.92
M (%) 98.81 98.81 98.81 98.81 98.81 98.81 98.81
QC (%) 90.08 90.08 90.08 90.08 90.08 90.08 90.08
R (%) 90.08 90.08 90.08 90.08 90.08 90.08 90.08

sf	 -Deciles 2-8 3-8 4-8 5-8 6-8 7-8
adjR2 0.92 0.92 0.92 0.92 0.92 0.92
M (%) 98.81 98.81 98.81 98.81 98.81 98.81
QC (%) 92.06 92.06 92.06 92.06 92.06 92.06
R (%) 92.06 92.06 92.06 92.06 92.06 92.06

sf	 -Deciles 2-7 3-7 4-7 5-7 6-7
adjR2 0.93 0.93 0.93 0.93 0.93
M (%) 98.81 98.81 98.81 98.81 98.81
QC (%) 92.06 92.06 92.06 92.06 92.06
R (%) 92.06 92.06 92.06 92.06 92.06

sf	 -Deciles 2-6 3-6 4-6 5-6
adjR2 0.94 0.93 0.93 0.93
M (%) 98.81 98.81 98.81 98.81
QC (%) 91.67 92.06 92.06 92.06
R (%) 91.67 92.06 92.06 92.06

sf	 -Deciles 2-5 3-5 4-5
adjR2 0.94 0.94 0.94
M (%) 98.81 98.81 98.81
QC (%) 91.27 91.27 91.27
R (%) 91.27 91.27 91.27

sf	 -Deciles 2-4 3-4
adjR2 0.95 0.95
M (%) 98.81 98.81
QC (%) 91.27 91.27
R (%) 91.27 91.27

sf	 -Deciles 2-3
adjR2 0.95
M (%) 98.81
QC (%) 89.68
R (%) 89.68

(1) QC – quasi-concavity, M – monotonicity, R – regularity
Source: Own estimations
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