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by Shuhong Ma and Kara M. Kockelman

Transportation	system	improvements	do	not	provide	simply	travel	time	savings,	for	a	fixed	trip	table;	
they	affect	trip	destinations,	modes,	times	of	day,		and,	ultimately,	home	and	business	location	choices.	
This paper examines the welfare (or willingness-to-pay) impacts of system changes by bringing 
residential location choice into a three-layer nested logit model to more holistically anticipate the 
regional	welfare	impacts	of	various	system	shifts	using	logsum	differences	(which	quantify	changes	
in consumer surplus). Here, home value is a function of home price, size, and accessibility; and 
accessibility is a function of travel times and costs, vis-à-vis all mode and destination options. The 
model is applied to a sample of 60 Austin, Texas, zones to estimate home buyers’ welfare impacts 
across	various	scenarios,	with	different	transit	fares,	automobile	operating	costs,	travel	times,	and	
home prices. 

Results suggest that new locators’ choice probabilities for rural and suburban zones are more 
sensitive to changing regional access, while urban and central business zone choice probabilities 
are more impacted by home price shifts. Automobile costs play a more important role in residential 
location choices in these simulations than those of transit, as expected in a typical U.S. setting 
(where automobile travel dominates). When generalized costs of automobile travel are simulated 
to rise 20%, 40%, and 60% (throughout the region), estimated welfare impacts (using normalized 
differences	 in	 logit	 logsum	measures)	 for	 the	 typical	new	home	buying	household	 (with	$70,000	
in annual income and 2.4 household members) are estimated to be quite negative, at -$56,000,  
-$99,000, and -$132,000, respectively. In contrast, when auto’s generalized costs fall everywhere (by 
20%, 40%, and then 60%), welfare impacts are very positive (+$74,000, $172,500, and $320,000, 
respectively).	Such	findings	are	meaningful	for	policymakers,	planners,	and	others	when	anticipating	
the economic impacts of evolving transportation systems, in the face of new investments, rising 
travel demands, distance-based tolls, self-driving vehicles, and other changes.

INTRODUCTION
 
An understanding and consideration of residential location choice is fundamental to behavioral models 
of land use and, ultimately, travel demand (Bina et al. 2006) and community welfare.  Residential 
location choice decisions are influenced by a host of quantifiable and unquantifiable factors (e.g., 
Rossi 1955), including home attributes (like home price, size, and age), travel costs (or/and travel 
times), and access (to freeways and transit stations, schools, jobs, parks and shopping centers), and 
household demographics (like income and the presence of children) (Habib and Kockelman 2008). 
While challenging in execution, home (and business) location models are very valuable to the 
regional, long-run transportation planning process and to land use-transport policymaking (Ommere 
et al. 1999; Pinto 2002; Hollingworth and Miller 1996; Zhou and Kockelman 2011).

The location choice model presented here relies on the method of logsum differences1 under a 
three-layer nested logit (NL) structure (for location, destination, and mode choice), with systematic 
utility modeled as a combination of home price, home size, and neighborhood accessibility. By 
making assumptions about home price, access attributes, travel cost and travel time sensitivity, 
and all model parameters, one can compute choice probabilities for each alternative setting and 
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estimate welfare changes across scenarios (from equivalent variation or willingness-to-pay values), 
as experienced by households looking to locate in a region. While property valuation research 
has long examined the price impacts of local travel system changes (Mohring 1961, Allen 1981, 
Nelson 1982, Bajic 1983, Voith 1991, TenSiethoff  and Kockelman 2002), the approach pursued 
here takes the question of transportation improvements’ welfare impacts to a whole new level, 
using direct measures of welfare economics across multiple and often competing costs shifts (using 
differences in logsums [Ben-Akiva and Lerman 1985], normalized to reflect dollar values, much like 
a willingness-to-pay metric). The expected maximum utility of mode plus destination plus location 
and home choices depend on travel times and travel costs to all potential destinations. This approach 
is consistent with prior research, as cited in the paper (e.g., locators/movers pay much attention to 
work and school travel times, as well as access to major freeways and transit lines), but this paper’s 
recognition of the location choice behavior is very novel.

Accessibility has long been theorized and proven a major determinant of residential location 
choice behavior (Alonso 1964, Zondag and Pieters 2006, and Lee and Waddell 2010), and some 
existing literature helps to illustrate its influence on home location choice. However, a more 
detailed and nuanced analysis is needed to explore the relationships among travel costs and times, 
accessibilities, and home-buyer/residential locator benefits. Moreover, the influence of each factor 
on house buyer benefits and the sensitivity of these benefits with changes in input variables merit 
examination. This work offers such a closer look, which should be of interest to policymakers and 
planners when seeking methods for more rigorous and defensible methods of evaluating project and 
policy impacts.  This work begins with a description of existing, related literature, followed by a 
description of methods and model specifications, regional examples, and key findings. 

BACKGROUND

Home location choice has been modeled in a variety of ways. Many rely on stand-alone choice models 
(e.g., NL, multinomial logit [MNL], and mixed logit specifications) for individual households, in 
isolation or as part of a larger land use model. For regional-scale modeling, many past models have 
kept track of household (and job) count totals at the zonal (aggregate) level. For example, Ben-Akiva 
and Bowman (1998) developed an integrated nested logit model for Bostonians’ residential location 
choices, along with members’ activity and travel schedules. They found that the NL structure did not 
fit the data quite as well as a work-trip-based comparison model. Lee and Waddell (2010) devised 
a two-layer NL model (decision to move or to stay, followed by location choice) and confirmed 
the model’s applicability with a case study in Seattle, Washington. Zhou and Kockelman (2011) 
explored a series of models for household and firm location choice around Austin, Texas, and found 
that that a three-layer NL structure, with location choice nested within home type choice, provided 
reasonable estimates. MNL models have also been popular. For example, Zhou and Kockelman 
(2008a) used such models to simulate location choices for three different household types using 
survey data of recent home buyers in Austin, Texas. They found that working households evaluate 
commute time differently when choosing their home location, with higher home-price-to-income 
ratios having a strong negative impact on their choice probabilities. 

Other papers have examined residential location choice within a larger land use framework. 
Dang et al. (2011) established a household residential location choice model for a mono-centric 
city to quantitatively explore the evolution of urban residential housing consumption based on data 
from a survey in Beijing, China. Findings indicate that the balance between commuting costs and 
housing costs is key in the residential location selection process, similar to findings from Yang 
(2006) and Zhou and Kockelman (2008b). Zhang and Kockelman (2015) developed a spatial general 
equilibrium model to explore the endogenous relations between urban sprawl, job decentralization, 
and traffic congestion, and compared the efficiency and welfare impacts of anti-congestion policies. 



69

JTRF Volume 55 No. 1, Spring 2016

Results indicate that firms tend to decentralize while households move toward the city center as 
congestion grows. 

To describe the relationship between land-use and residential location choice, many researchers 
have used an accessibility index (AI) as a parameter. Srour et al. (2002) used different accessibility 
indices to estimate residential location choice and noted that job accessibility affects residential 
land values positively in statistically and economically significant ways, with distance to the 
central business district (CBD) and household head’s workplace location playing important roles 
in residential location predictions. Zondag and Pieters (2006) built a move-stay choice model and a 
residential location choice model by home type (with data from The Netherlands), and showed that 
the role of accessibility is significant but small compared with the effect of demographic factors, 
neighborhood amenities, and dwelling attributes. Lee et al. (2010) proposed a time-space prism 
(TSP) accessibility measure, and applied it to residential location choice in the Central Puget Sound 
region. The study confirmed that accessibility is an important factor in residential location choice, 
with individual-specific work accessibility being the most critical consideration. Bina et al. (2006, 
2009) ranked the importance of housing and location attributes (home price, commute time to work, 
perception of crime rate, attractive neighborhood appearance, commute time to school, and access 
to major freeways are the top six) by using linear regression models which utilized an accessibility 
index calibrated from logsums from travel demand models of home-based work trips.

The rule-of-half (RoH) and logsum differences are two typical methods in transport economics 
to estimate welfare. In the case of modeling home location choice, RoH method cannot be used 
for the home buyer/mover benefits calculation since there is no added demand (with just one home 
per household, typically). However, random-utility maximization (RUM) assumptions (where 
decision-makers are assumed to choose the alternatives that benefit them most) are suitable for 
developing a location choice model, and the logsum differences can be used to determine home 
buyer/mover welfare under the assumption that each household chooses its home location to 
maximize its utility function involving all parameters considered. McFadden (1978, 1981) used 
logsum differences based on RUM assumptions (with Gumbel-type error terms) to estimate user 
benefits and losses when their travel (or others’ travel) context changes. Many applications using 
logsums as an evaluation measure have been conducted in Europe, the U.S., and other countries for 
policy (decision) making, land use modeling, and road (congestion) toll demand prediction (Jong 
et al. 2005; EXPEDITE Consortium, 2002; Odeck et al. 2003, Castiglione et al. 2003; Kalmanje 
and Kockelman 2004).  Logsum differences have also been used to evaluate land-use strategies in 
a climate change context.  Geurs et al. (2010) evaluated data from The Netherlands and showed 
that such access benefits (with user benefits calculated using logsum difference following access 
changes) from land-use policy strategies can be quite large compared with investment programs for 
road and public transport infrastructure, largely due to changes in trip production and destination 
utility, which are not measured in the standard rule-of-half benefit measure.

While much research has been conducted on home location choice analysis, previous studies 
typically focus on what and how the factors affect the home buyer’s/mover’s decision. Additionally, 
the majority of home location choice studies are specific cities, districts, or zones based on SP 
(Stated Preference) or RP (Revealed Preference) datasets, under the assumption that people choose 
the home that enables them to achieve the largest utilities. The change in house buyer’s utilities and 
benefits needs to be examined more deeply in a welfare context. Adding to the previous research on 
location choice, this paper presents a three-layer NL model with destination-mode choice nested in 
location choice, using logsum differences to estimate household welfare.
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METHODOLOGY

As discussed above, home location choices regularly represent a trade-off between housing type 
(including variables of home price, size, and age) and site accessibility, with income, household 
size, presence of children, job locations, and other demographic factors also playing roles (Zondag 
and Pieters 2006; Dang et al. 2011; Zhou and Kockelman 2008a, 2011; Habib and Kockelman 
2008). Based on random-utility theory, logit-type models (McFadden 1978) have been widely 
used to explore this important household choice. The MNL framework has been the most common 
approach (Tu and Goldfinch 1996; Hunt et al. 1994; Sermons and Koppelman 2001; Zhou and 
Kockelman 2008a, 2008c), with the assumption that all unobserved factors (among competing home 
alternatives) are uncorrelated and homogeneous. NL models have also been applied here, often to 
predict both home location and home size (Habib and Kockelman 2008; Zondag and Pieters 2006; 
Lee and Waddell 2010) or activity-based accessibility (Ben-Akiva and Bowman 1998).

This study relies on both MNL and NL equations, with systematic utility values that combine 
home price, home size, and logsum accessibility metrics to specify (and then simulate) location 
choice behaviors. The study then uses logsum differences to quantify the welfare effects of 
transportation system changes, along with other model variations. These methods, model structure, 
and applications are described below.

Model Structure for Location Choice

In evaluating home location choice, it is useful to first determine the most important aspects and 
attributes of that choice, such as home price, number of bedrooms, number of living areas, home 
age, lot size, travel time to work and recreation, and so on. This paper uses each home’s price, size, 
and nested logsum-based accessibility metric (shown later, in Eq 7) as the critical choice attributes 
(consistent with recent research2), and employs an MNL specification to estimate the probability of 
choosing each location. A common practice in classifying household location is to use census tracts, 
zip codes, or traffic analysis zones (TAZs) (McFadden 1981; Habib and Kockelman 2008; Bina and 
Kockelman 2009) as the location choice set. This model assumes the region of study is divided into 
L location zones, with each zone serving as a location alternative, and as a potential trip destination 
for the logsums that characterize the origin zone’s accessibility. Since home-location access is based 
on a two-level logsum (for destination and mode choices), the home-choice model specification 
becomes a three-layer nested-logit model structure, as illustrated in Figure 1.

There are three distinct choice dimensions being modeled here, so the structure reflects three 
embedded nests. This NL specification allows clusters of similar options to exhibit correlated error 
terms (Ben-Akiva and Lerman 1985). From top to bottom are location choice, destination choice, 
and finally, mode choice. The top level is the MNL home location zone model, where the probability 
of each household choosing to reside in a zone is computed as a function of home price, home size, 
accessibility, and other variables. The middle level is a destination choice model (for any single trip) 
where people choose a destination for their typical trip to other zones (including origin zone) based 
on the logsums of mode choices (lowest level). Lastly, the lowest level of the NL structure is a mode 
choice model (for the trip between zones) by destination that accounts for the generalized cost (trav-
el cost and travel time) of each mode (only auto and public transit [bus] are considered here). Rea-
sonable behavioral parameter values, as tested by Lemp and Kockelman (2008), were used here to 
characterize preferences. Figure 1 also shows the associated scale parameters (the μ values).



71

JTRF Volume 55 No. 1, Spring 2016

Figure 1:   Nested Logit Model Structure on Home Location Choice

Logsum Method for User Benefits Estimation

As discussed in the literature review, use of logsum differences is a relatively more recent approach 
for anticipating consumer surplus changes than the more traditional rule-of-half method.3  It also 
comes with much more of a disaggregate perspective on choice dynamics, and requires the presence 
of competing choice alternatives (versus a single demand market, for example, as is common in 
more traditional rule-of-half applications). Logsum differences have been used for welfare analyses 
of land use and environmental policies and in home location choice studies (USDOT 2004; Geurs 
et al. 2010; Lee et al. 2010). When using a logit model with RUM assumptions (i.e., that people 
anticipate and select the alternative that offers them maximum utility), consumer surplus changes 
are calculated as the difference between the expected consumer surplus levels E(CSn) before and 
after the change (i.e., across scenarios), reflecting all alternatives, as follows:

(1) 

where superscript 0 and 1 refer to before and after the change, αn represents the marginal utility of 
income for person n (can also be expressed as dUn/dYn, where Yn is the income of person n), Un is 
the overall utility for person n, Vni is the representative utility (or indirect utility, often expressed as 
a function of travel time and cost) for person n to experience alternative i. Thus, Uni is the overall 
utility for person n choosing alternative i, and Vni denotes the systematic or representative utility for 
person n choosing alternative i.
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In this model, determining the probabilities of a home buyer choosing each location alternative 
is a key step. These probabilities are estimated by evaluating the characteristics of each alternative 
in order to assess an indirect utility associated with the alternative. In an MNL model, this may be 
expressed using Eqs (2) and (3).

(2)
   

 
 
                                          

 
(3) Vi = β1 · Xi1 + β2 · Xi2 + β3 · Xi3 + ··· + βn · Xin

where Pi is the probability of a user/consumer choosing alternative i from alternative choice set K; 
Vi is the representative utility(indirect utility) of alternative i, which is usually a linear function of 
attributes Xi (as shown in equation 3); and	βi is utility coefficient for each attribute.
 
MODEL SPECIFICATION

Some assumptions and simplifications are made in this NL model structure. For the top level, the 
sole variables assumed here to affect the location choice are accessibility, home price, and home 
size. In the second choice stage, the only variables affecting destination choice probabilities are 
the logsums for (auto and transit) mode options. At the bottom level, the only variables assumed 
to affect mode choices are travel time and travel cost (along with alternative-specific constants, or 
ASCs, for each mode).

Based on the previous discussion of the NL model structure and calculation of logsum 
differences, key modeling equations (for generalized trip costs, systematic utilities, and inclusive 
value parameters of the nested choices and choice probabilities) are as follows:

(4) GCldm = VOTT · TIMEldm + COSTldm     Generalized costs                                             

(5) Vldm = ASCm – GCldm   Systematic utilities     

(6)  Expected max. utilities   
  

(7)     Accessibility indices  
            

Each trip’s generalized cost (GCldm) is a linear function of travel time (TIME) and travel cost 
(COST) – which includes any tolls plus (other) operating costs − between each (potential) home 
zone l (1:L) and each destination zone d, via mode m (for transit and auto), with all values of travel 
time (VOTT) assumed to be $12/hr here (consistent with FHWA guidance [2015] and Lemp and 
Kockelman’s [2011] simulations). The systematic utilities (Vldm) of these alternatives (shown in Eq 
5 and 6) are measured in dollars, and include the appropriate mode’s ASC (assumed to be 0 for the 
auto mode and -1.1 for transit, as used by Kockelman and Lemp [2011]). The expected utility of 
a destination zone, d, as shown in Eq. 6, lacks an attractiveness factor.  Usually, destination zones 
differ in the number of work, shopping, recreation, and other opportunities they offer (though TAZ 
boundary decisions often have a target population or population range in mind, so they are often 
roughly equivalent in terms of household trip generation). To avoid introducing land use effects, 
from variations in jobs (by type) or other attraction features, the models used here presume equal 
attractiveness, for household trip making, across all 60 zones, ceteris paribus. Travel times and costs 
vary, however, by mode and to each destination zone, given a starting (home) zone.  So destination 
zones are not equally attractive once travel costs are taken into account.
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Equation 7’s accessibility metric, AIl, is the logsum, Γl, which denotes the inclusive value or 
expected maximum utility of the two-level (destination and mode) choices available to a home 
zone l. This term requires no normalizing coefficient, since the utilities, V, are already measured in 
dollars. Finally, at top level of the effectively three-level NL framework, the household’s expected 
choice probability of each location is as follows:

(8) 

(9) Ul = αl · Pl + α2 · SFl + α3 · AIl

where Pr(.) represents the probability of a particular choice (home location choice); U denotes the 
expected maximum utility of the top level alternative; SF denotes the square footage (home size); 
and P denotes the home price. The α1,	α2, and α3 are indirect utility slope parameters on home 
price, home size, and accessibility, which vary with each potential home zone l. In the following 
example, the values of α1 and α2 were calculated using Zhou and Kockelman’s (2011) work,4 and 
α3 was assumed to be the same AI coefficient (0.635) found in Lee and Waddell’s (2010) paper, 
based on a logsum (for work trips) to all destination zones.

μ1,	μ2,	μ3 serve as the three choice-levels’ utility scaling parameters for the mode, destination, 
and location choices. These are the inverse of the logit model’s inclusive value coefficients, as 
defined in Ben-Akiva and Lerman (1985), and they serve as coefficients in the utility expression. 
Consistent with McFadden’s random-utility theory, the scale parameters are usually assumed to 
fall from the lowest to the highest level nest (see, e.g., Kockelman and Lemp 20115). Here, scale 
parameters of 1.2 (μ1) in the lowest, 1.1 (μ2) in the middle nest, and 1.0 (μ3) in the upper level nest 
were assumed. These are falling (from the lowest to the highest level nest), and the inverse of each 
lies between 0 and 1, consistent with RUM assumptions (Ben-Akiva and Lerman 1985).

Estimates of consumer surplus changes (ΔCS) for each scenario (as compared with the starting 
or base case setting) were computed as well. Normalized logsums of systematic utilities are used 
here as the basis for estimating those welfare changes, as follows:

(10)                     

Here, CS can be measured between any two scenarios, but this paper looks primarily at the 
change in consumer surplus as measured in reference to the base scenario. Here, αn represents the 
marginal utility of income for person n, assumed to be the reciprocal of α1’s absolute value, so all αn 

are set to $10,000/0.0357 = $280,112. 

NUMERICAL EXAMPLES

In order to fully appreciate the consumer surplus changes (home buyer welfare effects) as a result 
of the changes in access, home price, and other factors, the NL model was applied to a variety of 
scenarios, which vary.  For example, the generalized costs of either mode, auto’s operating cost 
and travel time, home prices, and VOTT. The travel time and cost data used in this example come 
from TAZ-based skim files6 of Austin, Texas’ Capital Area Metropolitan Planning Organization 
(CAMPO) for a three-county network in the year 2000. Sixty (60) of the original 1,074 TAZs 
were strategically selected as a representative sample of the larger region’s location alternatives. 
Therefore, the AI of one zone is an average access from its zone to the other 1,073 zones and can be 
calculated using Eq (7).
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Table 1 shows the types and distribution of these 60 zones, which reflect four types of land use: 
rural, suburban, urban, and central business district (CBD) zones (according to CAMPO definitions). 
Here, CBD zones are assumed to have the highest home prices and rural zones the lowest, due to 
land-rent increases typical of more central/accessible locations. For simplicity, the home prices are 
assumed to be $200,000, $300,000, $600,000, and $1,000,000 in the rural, suburban, urban, and 
CBD zones (not far from Austin’s actual home prices.) Similarly, home sizes are assumed to fall 
with increased density, with 3,000 ft2, 2,500 ft2, 2,000 ft2, and 1,500 ft2 serving as the interior/built 
space for rural, suburban, urban, and CBD homes. Accessibility metrics are much harder to guess 
at, and were estimated as logsums using actual travel times and travel costs between the 60 zones 
(travel costs referred to here as “fares,” for the transit alternative, and reflecting tolls and vehicle 
operating costs in the case of the automobile7). Table 2 shows the main variables and parameters 
used in the example, and Table 3 shows the base scenario for the 60 zones. 

Table 1:  Austin’s TAZ Sample
Rural Suburban Urban CBD Totals

County

Hays 4 4 2 0 10

Travis 9 15 12 2 38

Williamson 4 5 3 0 12

Totals 17 24 17 2 60

Under this base scenario, probabilities of location choices are calculated via Equation 8, with 
the rural and suburban zones’ share being larger due to their relatively higher utilities. The shares of 
residents in the four types of zones are 0.480, 0.400, 0.117, and 0.0026 (for rural, suburban, urban, 
and CBD in that order). The model also shows that the probability of a household choosing a rural 
or suburban zone increases greatly with higher AIs. For example, rural zone 4 and suburban zone 
37 have relatively high AIs (0.906 and 1.902) within their zone type, and the probabilities of these 
two zones being chosen (0.0499 and 0.0328) are relatively large; but for urban zones, especially the 
CBD zones, even zones with very high AIs are unlikely to be chosen (e.g., zone 60 has the highest 
accessibility [2.934], but the probability of a household choosing this zone is very small [0.0013]). 
This indicates that the relative desirability of rural and suburban zones is more sensitive to AIs. In 
other words, network changes that improve or worsen the accessibility of rural and suburban zones 
have great impacts on households’ decisions to locate in these zones, while the choice to locate in 
urban and CBD zones is less sensitive to such accessibility changes.
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Table 2: Variables and Parameters Used 
Variable Used Variable Description Parameter Values
Home price (P) Average home price (10,000$) α1 -0.0357

Square footage (SF) Average interior square footage (1,000ft2) α2 1.39
Accessibility

(AI)
Logsums of mode-destination analysis based 

on travel time and travel cost α3 0.635

Scale parameter
(µ)

Scale parameter for the lowest level µ1 1.2
Scale parameter for the median level µ2 1.1
Scale parameter for the highest level µ3 1.0

Alternative specific 
constants (ASC)

Alternative specific constants for Auto mode 0.0
Alternative specific constants for Transit mode -1.1

VOTT Value of the travel time ($/h) $12 per hr
Marginal utility of 

income (αn)
Marginal utility of income for person n αn $280,110

Several other scenarios are also explored to understand effects on home buyer welfare levels. 
Scenario 1 examines the effect of transit’s generalized travel costs by increasing and decreasing 
GCij values by 20%, 40%, and 60%. Scenario 2 examines travel time cost effects, while Scenarios 
3 and 4 further explore changes in the auto mode, by varying its operations costs and travel times, 
respectively. Finally, Scenario 5 examines the impact of changing home prices on home buyers’ 
benefits. 

Figure 2 shows the corresponding changes in AIs and the changing probabilities with the 
changes in inputs in these scenarios. Table 4 shows the shares of households selecting each of the 
four zone types under different scenarios. Finally, Table 5 compares the home buyer welfare across 
scenarios. It shows how the generalized cost of automobile travel and home prices play key roles in 
home buyer welfare gains and losses.

When varying the generalized costs of transit, there are almost no changes or very slight 
changes in each location’s AI and probability of being chosen. For example, when all GCij values 
are increased 40%, total probabilities of location choices in CBD and urban zones have no change 
on average, while those in rural and suburban zones only rose an average of 0.0001 and -0.0001. 
Home buyer welfare change, as estimated using the logsum difference between the Base scenario 
and Scenario 1, is very small. When all GCij values are increased 20%, 40%, and 60%, the estimated 
average-mover welfare changes are computed to be -$30.8, -$42.6, and -$47.7 (as shown in Table 
5). However, when all GCij values are decreased 20%, 40%, and 60%, the corresponding welfare 
gains are estimated to be $101, $592, and $4,870. The model implies that decreasing transit fares 
impact home buyer benefits more significantly than increasing fares.

Changes in generalized costs of auto affect home locations’ AI and probability more significantly, 
as in Figure 2(a). Larger spacing between the AI lines implies that AI is quite sensitive to auto’s 
generalized cost. When all GCij values are increased by 40%, average location choice probabilities 
in the rural and CBD zones rise by 0.0210 and 0.0002 (from Table 4: 0.5009-0.4800 = 0.0210 
and 0.0028-0.0026 = 0.0002), while those in suburban and urban zones drop an average of 0.0197 
and 0.0015 (from Table 4: 0.4004-0.3807 = 0.0197 and 0.1171-0.1156 = 0.0015). This may appear 
inconsistent with intuition: one typically expects higher generalized auto costs to make more central 
housing locations relatively more accessible and, therefore, relatively more desirable. However, 
from Equations (4), (5), (8), and (9), one notices how, as GCij increases, the AI of each zone 
decreases, making AI differences between zones smaller, so an overall shift toward less accessible 
zones can result. 
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Welfare gains and losses (∆CS) estimated via logsum differences in the base scenario and 
scenario 2 are quite large: when all GCij values are increased 20%, 40%, and 60%, the estimated 
user welfare losses are -$55,946, -$98,858, and -$132,160, as shown in Table 5. When all GCij 
values fall 20%, 40%, and 60%, the estimated welfare gains are $74,127, $172,506, and $319,787. 
As in the case of transit, such results imply that reductions in automobile travel costs impact home 
buyer welfare more significantly than the same percentage increase in auto travel costs. The above 
welfare gains and losses are calculated for home buyers with a $70,000 annual income and 2.4 
person household size. For home buyers with $45,000 annual income and four-person household 
size, the estimated user welfare changes are -$36,299, -$64,083, and -$85,581 when all GCij values 
are increased 20%, 40%, and 60%; they are $48,151, $113,699, and $207,662 when all GCij values 
fall by 20%, 40%, and 60%. A $15-per-hour VOTT was also tested, resulting in higher accessibility 
indices (than with the $12-per-hour VOTT used above), but estimated house buyer benefits are 
smaller than before (i.e., as compared with those shown in Table 5).

Table 4:  Shares of Home Location for Four Types of Zones Following Changes in Variables
60% 40% 20% -20% -40% -60%

Transit 
GC

Rural 0.4800 0.4800 0.4800 0.4798 0.4792 0.4754
Suburban 0.4003 0.4003 0.4003 0.4005 0.4009 0.4039

Urban 0.1171 0.1171 0.1171 0.1172 0.1173 0.1181
CBD 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026

Auto 
GC

Rural 0.5138 0.5009 0.4890 0.4764 0.4824 0.5038
Suburban 0.3708 0.3807 0.3910 0.4070 0.4081 0.3987

Urban 0.1125 0.1156 0.1173 0.1142 0.1076 0.0959
CBD 0.0028 0.0028 0.0027 0.0023 0.0020 0.0016

Auto 
OC

Rural 0.5030 0.4948 0.4869 0.4744 0.4713 0.4720
Suburban 0.3804 0.3870 0.3938 0.4064 0.4113 0.4140

Urban 0.1138 0.1155 0.1167 0.1167 0.1151 0.1119
CBD 0.0027 0.0027 0.0026 0.0024 0.0023 0.0021

Auto 
TT

Rural 0.4857 0.4829 0.4810 0.4801 0.4815 0.4844
Suburban 0.3920 0.3952 0.3980 0.4020 0.4029 0.4029

Urban 0.1196 0.1192 0.1184 0.1154 0.1132 0.1105
CBD 0.0028 0.0027 0.0026 0.0025 0.0023 0.0022

Home 
price

Rural 0.5625 0.5368 0.5094 0.4484 0.4148 0.3791
Suburban 0.3787 0.3882 0.3956 0.4017 0.3991 0.3918

Urban 0.0583 0.0740 0.0934 0.1456 0.1792 0.2179
CBD 0.0005 0.0009 0.0015 0.0042 0.0069 0.0112

Base scenario Rural: 0.4799; Suburban: 0.4004; Urban: 0.1171; CBD: 0.0026
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Figure 2: Changes in AI and Zone Choice Probabilities Following Changes in Auto’s Total 
(Generalized) Costs (a), in Auto’s Operating Costs (b), and in Auto’s Travel Times (c)

Note: X-axis denotes the 60 zones (potential home locations)
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Scenarios 3 and 4 are the detailed analyses of changes in operation cost and travel time inputs 
of the auto mode. Figures 2(b) and 2(c) describe the AIs and probabilities of each location being 
chosen under these scenarios. As seen in these figures, line shapes are very similar to those in 
Figure 2(a), but the spacing between lines is smaller, implying that AI and the probability of a 
location being chosen are less sensitive to changes in vehicle operation costs and travel times than 
to changes in overall generalized costs. In Scenario 3, for example, when all operation cost values 
are increased 40%, the total probabilities of location choices in rural and CBD zones rise by 0.0149 
and 0.0001(from Table 4: 0.4948-0.4799 = 0.0149 and 0.0027-0.0026 = 0.0001), on average, while 
those in suburban and urban zones drop an average of 0.0134 and 0.0016 (from Table 4: 0.4004-
0.387 = 0.0134 and 0.1171-0.1155 = 0.0016); when all operation cost values fall by 40%, the total 
probability of choosing a suburban zone rises by 0.0109 (from Table 4: 0.4113-0.4004 = 0.0109), 
while choice probabilities of each rural, urban, and CBD zones drop an average of 0.0086, 0.0020, 
and 0.0003 (from Table 4: 0.4799-0.4713 = 0.0086, 0.1171-0.1151 = 0.0020 and 0.0026-0.0023 = 
0.0003). As discussed previously, AIs of rural and suburban zones are more sensitive to the road 
networks changes. Scenario 4 offers almost the same trend as shown in Scenario 3. In comparing 
results of Scenarios 3 and 4, one can see how lower vehicle operations costs may provide more 
benefits to new home buyers than reduced travel time when they are changed by the same proportion 
or percentage. For example, the estimated average welfare effect is $99,940 when all operating costs 
fall 40%, versus $51,546 when all travel times fall 40%. Table 5 shows these numbers in detail.

Scenario 5 explores the effect of home price on people’s home location choices and welfare. 
As displayed in Figure 3, the shares of location choice in suburban zones are less sensitive to home 
price shifts (as compared with all other zone types). For example, zones 10, 37, 48, and 60 exist 
in rural, suburban, urban, and CBD locations, respectively. When all home price values increase 
40%, the shares of these four representative zones shift by 0.0037, -0.0010, -0.0085, and -0.0008, 
respectively, compared with their original probabilities, shown in Table 3: 0.0312, 0.0328, 0.0230, 
and 0.0013). The corresponding estimated welfare losses are -$56,678, -$111,383, and -$164,438 
when all home prices increase 20%, 40%, and 60%, and welfare gains are $59,036, $120,885, and 
$186,079 when home price fall 20%, 40%, and 60. When one changes VOTT from $12 to $15 per 
hour, the benefits one observes following house price reductions (in Table 5, with superscripts) are 
smaller than before, while losses from house price increases are somewhat greater than before. It 
seems home buyer benefits are impacted slightly more when home prices fall than when they rise by 
the same amount (in dollars or percentage terms).

Table 5: Welfare Effects of Changing Travel Costs, Times, and Home Prices 
 (Income = $70,000, Household size = 2.4 persons, VOTT = $12/hr)

Changes
Scenarios +60% +40% +20% -20% -40% -60%

Transit GC -$47.7 -$42.6 -$30.8 $101.1 $591.5 $4,870
Auto GC -$132,160 -$98,858 -$55,946 $74,127 $172,506 $319,787
Auto OC -$94,290 -$68,089 -$37,063 $44,808 $99,940 $169,692
Auto TT -$61,040 -$42,585 -$22,303 $24,537 $51,546 $81,299
Home Price -$164,438 -$111,383 -$56,678 $59,036 $120,885 $186,079
Auto GC1 -$80,661 -$60847 -$34,755 $46,993 $112,094 $206,804
Home Price1 -$174,640 -$124,185 -$72,106 $38,989 $99,511 $176,764

1 These results presume VOTT = $15/hr 
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Figure 3:   Changes in Zone Choice Probabilities Following Home-Price Changes

CONCLUSIONS 

An understanding of residential location choice provides a foundation to explore the relationship 
between land use and transportation, which leads to more accurate travel demand models. Previous 
research on household location choice usually focuses on the factors affecting the household 
buyer’s location choice decision, with accessibility generally accepted as a principal determinant 
of residential location selection. In this paper, a three-layer NL structure on house location choice 
is proposed and logsum differences are used to estimate home buyers’ welfare changes as a result 
of various transportation and housing input changes. The systematic utility of a residence is 
considered as a function of home price, home size, and home location zone’s accessibility. This 
paper develops several scenarios to examine how transportation and housing price factors affect 
house location choice behavior and household welfare, with an emphasis on new buyers (rather than 
existing owners, who are also affected by personal-wealth changes, when the values of their existing 
properties shift, following AI changes). 

Home buyer (or residential locator) welfare estimated via logsum differences are estimated to 
be very small due to changes in the generalized cost of transit; and location choice probabilities 
remain very stable when raising or lowering all transit travel time and/or cost values. In most U.S. 
settings and many other regions of the world, access costs via automobile are very important for 
home location choice. Decreasing travel costs and/or travel times have a more significant impact 
on home buyer welfare than increasing them; and the higher the AIs, the larger the buyers’ choice 
probabilities in most rural and suburban areas. It is also implied that in urban and CBD areas, home 
buyers usually pay more attention to home price or home size. The relative significance of home 
price changes on home-buyer welfare is apparent, as compared with similar (scaled) shifts in the 
values of other attributes: new locators benefit more when home prices fall by the same amount, 
both in dollar terms and percentage terms.

These findings are meaningful for many stakeholders when anticipating the economic impacts 
of evolving transportation systems in the face of new investments, rising travel demands, distance-
based tolls, self-driving vehicles, and other changes. Land values and home prices are a major 
economic policy concern for growing and popular regions, as rents rise and welfare can fall, even if 
transportation systems are being improved. The London region, San Francisco Bay Area, Auckland, 
and even Austin, Texas, face serious social and economic issues relating to housing and transport. 
This paper provides a method for and realistic examples of a holistic view that educates planners, 
economics, engineers, and policymakers.
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Of course, the analysis pursued here illustrates only a limited number of idealized scenarios 
under a nested logit model structure, and focuses on home buyers rather than renters. Many other 
investigative opportunities and scenario extensions are feasible, which may highlight other key 
factors for regional welfare analysis following changes in the transportation and/or land use systems. 
For example, one could examine the effects of changes in zone attractiveness, model parameters, and 
various other inputs, simultaneously or independently. One could use Bina et al.’s (2006) parameters 
for renters’ location choices and parameters for rent variations across locations and dwelling types 
to anticipate welfare impacts on this other very important class of locators. User heterogeneity is 
also important to explore in more depth, since every household differs (in its demographic attributes, 
income, housing preference function, and values of travel time, for example). Moreover, uncertainty 
exists in all zones (and for all model parameters, as well as the model specification itself), with 
spatial autocorrelation in missing variables; and there are significant information-limitation issues 
for many movers (especially those new to a region) when evaluating a region’s many location 
options. Thus, this topic area remains ripe for future investigation.

A variety of other, and ideally more realistic, changes to the transportation system would be 
very useful to explore here to further describe the changes in AIs, choices, and welfare levels. 
The possibilities are limitless, and the big changes simulated here, across the zone system, may 
provide upper bounds on the magnitudes of experience one might expect, which can be useful for 
evaluating shocks like major recessions (when travel demands fall substantially) or expansionary 
periods, and changes in transport technology (e.g., self-driving cars lowering perceived travel costs 
dramatically). The future is always uncertain, but it is wise to anticipate land price and welfare 
effects well in advance to shape policies and practices that enhance local and regional communities.
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Endnotes

1. Logsums are the natural log of summations of exponential functions of the systematic utilities 
across alternatives, under a logit-choice-model specification. Logsum differences quantify 
changes in expected maximum utilities and thus consumer surplus before and after the change.

2. Bina and Kockelman (2006, 2009) explored the mean rank of importance of housing and 
location attributes from two mover segments: home buyers and apartment renters. They found 
that home price (or apartment rent), travel time (to work), and access to major freeways are the 
most important attributes for home buyers and apartment buyers - among almost 20 attributes. 
Home size (including number of bedrooms and lot size) is also top-ranked by most home buyers.

3. The rule-of-half method (RoH) is a traditional method for calculating consumer surplus in 
transport economics. It assumes that the consumer demand curve is linear with respect to 
generalized costs, at least between original and new demand values. When generalized cost 
changes from GC0 to GC1, travel demand (in the form of person-trips) will change from T0 to 
T1. The change in consumer surplus (∆CS) can be computed as follows: 
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4. Zhou and Kockelman (2011) proposed a dwelling unit and location choice model for Austin’s 
households based on a survey of Austin movers in 2005, and estimated coefficients on home 
price-to-income ratio and SF (square feet)-per-household-member variables to be -0.249 and 
+3.34. According to “City of Austin Community Inventory Report,” from 2000 to 2007, the 
average median household annual income is between $60,000 to $70,000, household size is 
between 2.2 to 2.4 (and shows a declining trend). Thus, in this paper, an average household 
income $70,000 and an average household size 2.4 are assumed (usually, the new home buyer 
households are wealthier and bigger-size than average households in Austin. In Bina and 
Kockelman (2009), the surveyed new home buyer’s average income was $93,256, and average 
household size was 2.27. Here, with the home price (P) and SF instead of home price-to-income 
ratio and SF-per-household-member, the values of α1 and α2 can be estimated as α1 = -0.249/7= 
-0.0357 and α2 = 3.34/2.4 = 1.39.

5. Kockelman and Lemp (2011) relied on a four-layer (destination, mode, time of day, and route) 
NL model, with scale parameters (µ1, µ2, µ3, µ4,) from the lowest-level nest to the highest-level 
nest assumed to be 1.8, 1.6, 1.4, and 1.2, to be consistent with random utility maximization 
theory (Ben-Akiva and Lerman 1985).

6. Skim files are optimal/shortest travel times and costs between all origin-destination pairs, by 
mode, following a loading of demand onto the network, and solving for a user equilibrium, 
where no one can improve his/her generalized cost of travel.

7. According to AAA (2013), the average cost of driving a medium sedan 15,000 miles a year was 
$0.61 per mile in 2013. Here, a value of $0.60 per mile is used to estimate the COSTldm value 
shown in Equation 4. 
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