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Accurate prediction of bridge component condition over time is critical for determining a reliable 

maintenance, repair, and rehabilitation (MRR) strategy for highway bridges. Based on bridge 

inspection data, regression models are the most-widely adopted tools used by researchers and state 

agencies to predict future bridge condition (FHWA 2007). Various regression models can produce 

quality can be challenging and sometimes subjective. In this study, an external validation procedure 

highway bridge component deterioration. Several regression models for highway bridge component 

rating over time were compared using the proposed procedure and a traditional apparent model 

methods are compared and discussed in this paper.

INTRODUCTION

Bridge deterioration is a serious problem across the United States. According to the United States 

Department of Transportation (USDOT 2014), more than 604,000 bridges are located on public roads 

in the United States, with approximately 50% of them built before 1966 (during initial interstate 

highway construction). Bridges in this age group will reach their 50-year milestone in the next three 

years. Although 50 years was intended originally as the design life of many bridges, their service life 

agencies worldwide have begun to adopt bridge management systems (BMS). A BMS is used to 

determine the optimum future bridge maintenance, repair, and rehabilitation (MRR) strategy at the 

lowest possible life-cycle cost based on the forecasted bridge conditions (Frangopol et al. 2000). 

In the United States, highway bridge ratings typically consist of three major components: deck, 

superstructure, and substructure. The components deteriorate as a result of operating conditions and 

external environmental loads. Because of the importance of these components for normal operation 

and safety, prediction models for component deterioration are routinely developed to assess the 

conditions of bridges for a given future time span.

Among all predictive models, regression models are the most widely adopted types for 

engineering applications (FHWA 2007). Regression models forecast future bridges’ performances 

from a set of explanatory variables via equations developed based on past data. 

faced by current bridge deterioration modeling techniques is the lack of reliable prediction modeling 

of future bridge condition ratings. For a given set of past bridge condition data, researchers can 

management strategies. From an end-user perspective, no matter how complicated or simple the 

models are, prediction accuracy is the most important characteristics of the model. Thus the selection 
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with respect to in-sample data, but on the model’s ability to accurately predict future behavior. This 

study will develop and apply an objective model evaluation procedure to reveal the true forecast 

power of the bridge component regression models so that engineers and decision makers can use this 

this issue. The proposed procedure will be applied to the comparison of two regression models 

constructed using bridge component rating data in Illinois.

they are used to forecast values of the dependent variable using forecasted values of the explanatory 

variables. This process has the potential to justify uses of the model for forecasting and support 

better decision making (Wilks 2006). Depending on the process used in validation, there are three 

types of evaluation procedures: apparent, internal, and external (Steyerberg and Harrell 2014). 

model, which may not reveal the true predictive ability of the model because the exact same dataset 

is used for model development and validation test. The estimation of the prediction ability has been 

shown to be overly optimistic with this validation method (Witten and Frank 1999).

Internal validation evaluates sample data from the same underlying population as the sample 

population for validation. In the literature, the most commonly found method for internal validation 

is data-splitting (McCarthy 1976; Clementi et al. 2001; Shao 1993; Snee 1977; Lu and Tolliver 

2012).

Simple data splitting is a subsampling procedure also known as resampling. It re-sizes the 

sample data into two sub-datasets and uses one random subset for validation and the other for model 

development. There are several data-splitting techniques found in literature (Snee 1977): 1) Cross 

validation is a repeated data-splitting technique, it repeats the simple data-splitting analysis many 

in that bootstrapping samples are taken with replacements from the original sample while data-

splitting samples are selected without replacement. 3) The jack-knife technique is very similar to 

repeated data-splitting except it only takes one of the records from the original sample out at one 

time and repeated as many times as the total number of records in the original sample.

These procedures are powerful techniques when external validation is not possible. However, 

external validation is the most accurate and unbiased test for the model and the entire data collection 

process as stated by Harrell et al. (1996). External validation’s main emphasis is that predictions from 

population.

In the following sections, it will be shown that the data-based procedure proposed in this study 

can also be considered as a type of external validation with time delay and will reveal the model’s 

true forecasting power in the past. The procedure is unique in that it focuses on long-term prediction 

power evaluation, which has not been investigated extensively in engineering applications. Several 

key prediction accuracy measures will be used in the examples and are introduced in this section.

 

DATABASE

Highway Administration (FHWA) for all bridges and tunnels in the United States that have public 

roads passing above or below (FHWA 2007).The database provides information on 116 items and 

geometric information, bridge functional description, operational condition, bridge inspection data, 

and bridge construction and reconstruction records. The detailed information for each item and 
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characters can be found in the FHWA NBI reference report (FHWA 1995). The data in NBI is 

collected by state highway agencies and reported to FHWA annually. 

Within NBI inspection data, there are three primary component ratings of special importance 

to bridge asset management: deck condition rating (DCR), superstructure condition rating (SPCR), 

and substructure condition rating (SBCR). The NBI rating system includes eight interim levels 

between excellent (9) and failure (0).  For detailed information regarding to NBI inspection data, 

viewers are referred to NCHRP (2009). 

Cook and Kairiukstis (1990) state that reduction of error (RE) “should assume a central role in the 

of standard controls, which are usually the average values of the predictions. The equation used to 

calculate RE can be expressed in the following Equation (1).

(1)                                                                                                                  

Where SSEv = sum of squares of validation errors between observed and predicted values over 

the validation period and SSEref  = sum of squares of validation errors between observed values and 

mean of the predictions often known as control values or reference values over the validation period.

 

e(i) . It can be mathematically expressed as Equation (2).

(2)                                                                                                                

Where yi and  are the observed and predicted values of the predictions for validation data 

point i.

The sum of the squares of errors for validation, SSEv, can be expressed as Equation (3) and the 

sum of squares of errors for reference, SSEref, can be expressed as Equation (4).

(3)                                                                                                             

(4)                                                                                                 

Where nv

predictions, which usually serves as a reference or control value. Theoretically, the value of RE can 

It will only occur when all the residuals for validation data are zero. On the other hand, if SSEv is 

much greater than SSEref, RE can be negative and large. As a rule of thumb, a positive RE indicates 

deemed to have no skill to predict (Wilks 2006; Cooks and Kairiukstis 1990). The similarity in form 

of the equations for RE and regression R  expressed as Equation (5) suggests that RE can also be 

used as validation evidence for R . The closer the values of RE and R  are to each other, the more 

the model is accepted as a predictive tool.

(5)                

In this research, adjusted R-squared is reported to take account of the phenomenon of the R-

squared automatically and spuriously increasing when extra explanatory variables are added to the 

model. Adjusted R-squared can be written as Equation (6).

SSEv = Σ e(i)
2nv

i= 1
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(6)                

Other commonly used apparent model validation criteria, including Akaike’s Information 

Criteria (AIC), Bayesian Information Criteria (BIC), and Mean Absolute Error (MAE), are also 

selected in this research and compared with the RE external model evaluation method. The model 

with the smallest AIC, BIC, and MSE is deemed the “best” model based on apparent validation 

smaller AIC, BIC, or MSE indicates better model/predictor. They can be mathematically expressed 

(7)                                                                                               

(9)                                                                                                     

Where n is in-sample size, SSE is the sum of the squares of errors, ei is validation error, k is the 

 is error variance.

For a predictive model, it is critical to have a quantitative measure of prediction accuracy. More 

important, given the many similar regression modeling choices, the user needs to be able to tell 

be the analysis period. The deterioration of a bridge is a relatively slow process. With bridge rating 

time span. If all existing data are used to construct the model, there will be no independent data 

the independent validation “pool” (external data) to use in evaluating long-term regression model 

forecasting power within the analysis periods. 

The procedure is rather straightforward and can be summarized in four steps: (1) A user select 

prediction analysis period that is typical for the implementation of the model of interest. (2) Data 

should be segregated into two parts, one containing the latest data at least within the analysis period 

the data used to develop regression parameters for the selected model of choice (assuming regression 

models are used).  The data set aside will provide forecasting accuracy validation information for 

the time horizon that is at least the same as the analysis period. (3) The predictive model and its 

variations (may include other model types also) will be used to predict the data in the desired time 

horizon and compared to the true data, which is the set-aside data. Based on this comparison, a 

group of physically meaningful indicators can be derived (based on the application of the model 

prediction) for the quality and accuracy of the model. (4) Based on these indicators, the forecasting 

skill trend over time is analyzed and the forecasting model selection is judged based on the analysis 

results. In short, this approach essentially “rolls back” the modeler in time, assuming the prediction 

was done N years ago (N is the needed prediction time span) without knowing the current data. 

However, the forecasting model is selected by using the current data. The resulting best model is 

truly the best model N years ago. As a result, presumption of the procedure is that the model that 

performs well N years ago will continue to perform well N years in the future.
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This presumption brings about the limitation of using this approach: The interactive mechanism 

between independent variables and dependent variables needs to be close to stationary over the 

prediction time span. Or in other words, the prediction accuracy of the model will not change 

variables) that were not present in the past (e.g., adoption of a new bridge design detail, new deicing 

chemical), this approach will not apply. However, under such conditions, almost all statistical 

regression approaches will be invalid as that piece of information does not exist in any data pool. In 

such cases, only the physically or mechanistically derived models can be used for prediction. The 

proposed approach should have very accurate results for any process that has a stationary underline-

change dramatically with time. Even for cases where the internal driven mechanism does change 

over time, as long as the change is slow relative to the prediction time span, the approach could still 

be used in a piece-wise linear fashion where only the portion of the data closest to the prediction 

time span is used to construct the model. It is envisioned that this approach can be applied to many 

engineering problems to assist decision making.

Bolukbasi et al. (2004) recommended bridge component deterioration models with third-degree 

polynomial functions of bridge age. The research developed third-degree polynomial regression 

To illustrate the application of the proposed procedure, two candidate regression models 

for predicting steel bridge deck component ratings performance in Illinois were evaluated and 

based prediction power evaluation procedure as external validation method. One of the prediction 

the condition rating, then unrecorded repair and/or reconstruction activity is assumed and the data 

Steel bridge deck deterioration models are constructed based on Illinois NBI data from 1994 to 

1999.  The same data set is used to construct the other multiple linear regression model through 

an explicit enumeration of all possible independent variables to the best knowledge of the authors. 

comparison, there will be four models: polynomial model (Bolukbasi et al.’s third degree polynomial 

of external data validation. 

This example looked at the accuracy of various models in a 15-year prediction horizon, with 

some interesting observations obtained and discussed in this paper.

Overview of Models and Comparison

Regression models for bridge component deterioration are used by many transportation agencies to 

assist in bridge inventory management. In research on this subject, a few key explanatory variables 

jurisdiction of the bridge, and deicing practices, just to name a few. A multiple linear regression 

model is constructed through an explicit enumeration of all possible explanatory variables available 

as the “full” model afterward. The “full” model has “age” as continuous independent variable, 
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can be forecasted with various travel demand models and adjusted by seasonal, directional count 

alphanumeric codes “H” or “HS” denote a single-unit truck and a tractor pulling a semitrailer, 

two axle sets of the HS truck. For example, H_10 denotes a truck with a gross weight of 10 tons. A 

duplication of the work of Bolukbasi et al. (2004) to construct a third degree polynomial model is 

also selected for the purpose of comparison and refers to “polynomial” model. Both two models are 

external validation will be performed for both “full” and “polynomial” models, and the indicators 

described in earlier sections will be used to evaluate model quality.

First, two sets of regression models were constructed as shown in Table 1 and some selected 

apparent model validation indicators, adjusted R-squared, AIC, MSE, and BIC,  are also shown in 

larger adjusted R-squared values by comparing column 2 and 3 for polynomial model and column 4 

Full models are more likely to be selected over polynomial models based on larger adjusted 

R-squared value, smaller MSE values, and smaller AIC and BIC values with respect to apparent 

validation criteria by comparing column 2 and 4 for adjusted data set and column 3 and 5 for 

unadjusted data set. Note that the full model contains polynomial model, and, based on apparent 

validation criteria, the full model is believed to be the best model and is preferred.

Note that even the full model only has 35% of variances explained by the independent 

variables, that is because many variances that could cause the bridge deterioration are not available 

and excluded in the model, such as climate information and maintenance funding level status. The 

the apparent validation method is suitable for short- and long-term forecasting. In other words, the 

model with the highest R-squared may not yield the best forecasting results.

Model Validation and Comparison Results

Once the regression model apparent validation analysis was done using all Illinois  NBI 1994-

1999 data and the NBI datasets from 2000-2014 were kept as the external validation data pool; 

model external validation  can be performed and analyzed by using the RE indicator. The validation 

datasets can be considered external datasets for three reasons: 1) NBI reports data annually in 

in validation datasets and model construction data sets vary because bridges may be closed or open 

the whole bridge population information but not sample information.

To illustrate the external validation method result, both deck models constructed with a data 

prediction power indicator, RE. As shown in Table 2, RE values for both models are calculated for 

each validation data set. 
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Deck Model

model with data model without Full model with 

Full model 

without data 

N 20643 63439 20643 63439

Adjusted

R-squared 0.3561 0.2967

AIC 15573 14637

MSE 2.13 2.03079 1.7717

BIC 15575 14639

Intercept

Age -0.095 -0.09026 -0.10561

Age 0.00097214 0.00123

Age -0.0000053 -0.00000613 -0.00000723 -0.00000754

ADT<=1000 N/A N/A - -

ADT<=5000 N/A N/A

ADT<=10000 N/A N/A -0.43792

ADT>10000 N/A N/A -0.44701

H_10 N/A N/A 0.47337

H_15 N/A N/A

H_20 N/A N/A 0.62199 0.45024

HS_15 N/A N/A 0.90066

HS_20 N/A N/A 0.51066

N/A N/A 0.74399 0.35579

HS_25 N/A N/A - -

Note: “N/A” indicate that the corresponding variables are not considered in the model; “-“indicate that the 
corresponding variable is a reference variable for the categorical variable; all independent variables are 
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Obs Observations Full Model RE
RE 

1 2000 5491 0.24409 0.026

2 2001 7219 0.24016 0.016

3 2002 7122 0.21916 0.20442 0.015

2003 7034 0.20004 0.19137

5 2004 6943 0.21934 0.21097

2005 0.19101 0.012

7 2006 6763 0.011

8 2007 6707 0.16430 0.014

9 6664 0.16412 0.015

10 2009 6631 0.19466 0.014

11 2010 6630 0.16121 0.009

12 2011 0.004

13 2012 6660 0.003

2013 6664 -0.004

15 2014 6601 0.14751 0.15336 -0.006

One can tell from Table 2 that there are 15 external validation datasets and the data size ranges 

from 5,491 to 7,219.  As stated earlier, an RE of 1 indicates perfect prediction for the validation 

dataset. As a rule of thumb, a positive RE indicates that the regression model, on average, has some 

forecast ability with higher values indicating better forecasting, and the closer the values of RE are 

to each other, the more the model is accepted as a predictive tool (Wilks 2006; Cooks and Kairiukstis 

1990). Both models’ RE values start at values close to, but less than, the models’ adjusted R-squared 

shows that the evaluation adjusted R-squared factor provides close estimation of the true prediction 

accuracy for the example models at the beginning of the validation years, but the adjusted R-squared 

evaluation might be optimistic for forecasting power, especially for long-term analysis.

RE values all are positive, indicating a certain level of forecasting power, which is promising 

with the true external observations. The full model has a relatively higher forecasting power when 

higher forecasting power for the 14th and 15th

between the two models, column 6, shows that forecasting power of the two models decreases over 

forecast near-term condition; but for long-term forecasting purpose, e.g., forecasting condition over 

10 years, the polynomial model may be preferred.
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Reasons for this can be that apparent validation selects the full model by best describing the 

interactive mechanism between independent variables and dependent variables for the same sample 

dataset used to build the model. However, when applying the model forecasting ability to a future 

dataset, the interactive mechanism between independent variables and dependent variables may be 

unchanged over the short prediction time span but may change for a longer prediction period. The 

full model involves more independent variables than the polynomial model (which only involves 

one variable, age), and the likelihood that certain factors included in the full model will change in 

long time span is higher than in the polynomial model. When that happens, the full model loses its 

forecasting power compared to the polynomial model or, in other words, the full model introduces 

more errors than the polynomial model.

Also note that by examining RE values for both models by year, column 4 and column 5 from 

Table 2, one can tell that forecasting power represented by RE can both increase and decrease for a 

short time, but in general and overall, the forecasting power decreases over the long term.

To further illustrate the forecasting ability of the two models, the authors repeat the proposed 

considered. The apparent validation results are shown in Table 3, and external validation results are 

shown in Figure 1. From Table 3, the full model is preferred according to the apparent validation 

method for both substructure and superstructure models with higher adjusted R-squared, smaller 

AIC, smaller MSE, and smaller BIC values.

 

Deck Model

Substructure

model

Substructure

full model

Superstructure

model

Superstructure

full model

N 20643 20643 20643 20643

Adjusted

R-squared 0.4949 0.4225 0.4660

AIC 13322

MSE 2.155 1.91 1.94 1.79

BIC 13324 13670 12070

Shown from Figure 1, RE values for all models show up-and-down patterns in the short-run; 

however, they all show decreasing trends over the 15 validation periods. The full model is preferred 

at the beginning and the polynomial model shows better forecasting ability at validation years 13 

and 14, respectively, for deck and superstructure models. For the substructure models, the full 

model is preferred over the 15 validation periods. Note that to determine the “best” model for its 

forecasting ability, especially for long-term planning, external data evaluation with roll-back data is 

apparent model validation method.
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The following are the main conclusion the study.

work to develop reasonable deterioration curves for bridges.

The apparent evaluation method is valid for discovering the explanatory relationship between 

dependent and independent variables. However, it may not suitable for forecasting model 

selection.

For the purpose of forecasting ability, external data evaluation with roll-back data is 

recommended. And the roll-back period should cover the forecasting period to reveal both 

short- and long-term forecasting power.

This paper proposes and demonstrates an objective, data-based approach for regression model 

forecasting ability evaluation.  If the model is selected based on apparent evaluation only, then 

the forecasting outcome may not be accurate, especially for long-term planning, maintenance, 

rehabilitation, and replacement decisions. In this study, both a simple model as polynomial model 

and a full model selected by the apparent evaluation method have been generated for steel bridge 

producing deterioration curves, the methods described in the paper allow engineers to select the best 

forecasting model depending on their planning horizon. Finally, it is recommended to expand the 

use of the proposed procedure to help DOT decision making by developing a performance-based 

prediction model evaluation criteria.
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