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Abstract 

In this paper, EU Vessel Monitoring System (VMS) data is combined with other site 
and vessel information and used to model the fishing site choice decision of Irish 
demersal otter trawlers. Uniquely, the fishing ground options used in the analysis 
reflect the actual seabed contours trawled by the fleet. The fishing site choice model, 
based on this natural site definition is compared to an alternative destination choice 
model where the fleet decision is specified using a grid based site definition as 
employed in previous work. It is argued that the natural site specification is a more 
realistic specification of the fisher site choice decision. Using the preferred natural 
fishing site choice model, a policy option involving the hypothetical closure of one of 
the fishing ground options is then simulated to examine the possible redistribution of 
fishing effort. 
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1. Introduction 

It is widely recognised that fisheries management focussing on a single species at a 

time is not sufficient and that a more inclusive ‘ecosystem’ approach is required 

(Schramm and Hubert, 1996, FAO, 2003). An extension to this ecosystem approach to 

management is ecosystem-based marine spatial management (EBMSM) which is seen 

as a way to deal with conflicts among various users of the seas and to ensure the 

sustainability of marine ecosystems and their services to humans (Katsanevakis et al., 

2011). According to Olsen et al. (2013) the goal of EBMSM is to maintain marine 

ecosystems in a healthy, productive and resilient condition by balancing the 

increasing diversity and intensity of human activities with the sea’s ability to provide 

ecosystem services.  

 

Closed areas are one of the tools proposed through the EBMSM approach for fisheries 

management. These may be temporary closures or more established and permanent 

Marine Protected Areas (MPAs). Management in MPAs is very diverse, with local 

restrictions ranging from ‘no-take’ to zoning or gear limitations. While there is 

consistent evidence for the positive effects of full and partial protection on the density 

and biomass of protected species (see for example Sciberras et al. 2013 and Potts et al. 

2014), the indirect effects of closures on fishing patterns in the unprotected areas are 

less well characterized. Holland (2000) and Smith and Wilen (2003) were some of the 

earliest to highlight the possible impacts from the displacement of fishing effort 

following closures. More recently, Kahui and Alexander (2008) Hattamet al. (2014) 

and Haynie and Layton (2010) also examine the impacts from closures and effort 

displacement; the latter developing a model that implicitly monetizes location choices.  

Potential displacement effects can also be assessed in an ecosystem context by 

analyses of spatially resolved catch data. For example, Gerritsen et al. (2012) 

modelled the impacts of a temporary closure in mixed fishing areas where the cod 

quota is generally the first to be exceeded, resulting in discarding of the cod catch. By 

closing areas with low effort and relatively high cod landings, the rate at which cod 

quota was met could be reduced, with relatively few displacement effects on the other 

components of the mixed fishery. Gerritsen et al. (2012) modelled three plausible 

scenarios for how the effort displaced from closed areas may be directed.   



 

The choices made by displaced fishers can be analysed from revealed preference site 

choice models (Hynes et al, 2008) where location choice is modeled as a function of 

expected catch and travel distance to each area. Since its first use (Bockstael, 1983 

and Eales and Wilen, 1986), this basic approach has been expanded on and applied to 

various fisheries (Holland and Sutinen, 2000, Valcic, 2008; Smith, 2005; Haynie and 

Layton, 2010). The alternative fishing site choices can be modelled using random 

utility theory to describe the perceived value of different fishing site characteristics to 

a fisher. It is assumed that fishers trade off visiting one fishing site versus another 

based on the fishing characteristics of the sites and the effort that needs to be invested 

to catch a particular quality of fish at each site.  

In bottom otter trawling site choices, for example, the fisher typically chooses among 

a number of available bottom trawling sites, each characterized by distance, costs, 

expectation of catches in terms of species composition and abundance at that site 

(based on past experience and knowledge of seasonal and tidal effects), convenience 

and comfort. If a behavioral model for fishers site choice is estimated one can apply 

this model to assess the changes in the spatial distribution of fishers that follow from 

changing quotas or steaming costs (price of fuel) or by closing down a site option 

through its designation as a Marine Protected Area that prohibits bottom trawling.  

A number of discrete choice models have previously been developed that examine the 

spatial choice of commercial fishers.  Early research that employed this modelling 

approach examined the Californian pink shrimp trawl fishery (Eales and Wilen, 1986) 

and the British Columbian salmon fishery (Dupont, 1993). Holland and Sutinen (2000) 

and Smith (2005) have also used discrete choice models to consider the effect of past 

experiences on fishers’ location choice. Mistiaen and Strand (2000) presented a model 

of location choice for short-run fishing behaviour that examined the potential for 

heterogeneous risk preferences amongst the U.S. East Coast and Gulf longline fleet. 

More recently, Ran et al. (2011) employed a mixed logit model to analyze both 

monetary and non-monetary factors that influence location choice behaviour of the 

U.S. Gulf of Mexico shrimpers. A number of previous papers have also used the 

discrete choice method to examine the spatial impact of a simulated closure of a 

fishing ground. Wilen et al. (2002) simulated a closure in the California sea urchin 

fishery; Valvic (2008) simulated a closure in the Oregon bottom trawl groundfish 



 

fishery and illustrated their modelling approach by considering the closing of the 

Steller seal lion conservation area in the United States Bering Sea to Pollock fishing. 

This paper follows the discrete choice modelling approach used by the previous 

studies mentioned above and investigates the factors that determine the fishing site 

choice of Irish demersal otter trawlers in Irish waters by using Vessel Monitoring 

System (VMS) data combined with sales note and log book information. Fishing site 

choice is modelled as a function of the distance travelled to each fishing ground, the 

earnings potential of each ground, the main species to be caught at each ground, 

characteristics of the seabed and the likely variance of earnings per trip at each ground. 

Closures are simulated for an extensively used ground in the Irish Celtic Sea. The 

simulated redistribution of fishing effort after the implementation of the closures is 

then compared with the actual distribution of effort revealed from the VMS data.  

The paper adds to the literature in this area by developing a model where the 

boundaries of the fishing ground options used in the analysis are defined by their 

species composition, seafloor characteristics and the natural contours and gullies 

followed by the sample fleet. The fishing site choice model, based on this nuanced, or 

‘natural’, site definition is then compared to an alternative destination choice model 

where the fleet decision is specified using a grid based fishing site definition, i.e. 

using artificial boundaries, as employed in previous work. Following the comparison 

of the site choice models using the different underlying site definitions a more 

complex site choice model is presented for the preferred nuanced site data that 

accounts for preference heterogeneity across vessels. Using this model, a policy 

change involving the closure of a site is then simulated to examine fishing effort 

displacement following the closure.  It is also the first study of its kind to examine the 

site choice preference of a European fishing fleet and to use the EU VMS data in this 

modelling approach. 

In what follows section 2 briefly describes the Irish bottom otter trawl fleet, the 

sources of data used in the analysis and the site choice options. Some summary 

statistics are also presented. Section 3 then describes the discrete choice methodology 

used and in particular the random parameter logit model. The results are presented in 

section 4 and the final section includes a discussion related to the findings; the use of 

the modelling approach presented and potential avenues for future research.  



 

 

2. Fleet and Data Sources 

The Irish trawl fleet consists of between 250 and 300 vessels. This fleet utilizes a 

variety of different gear configurations and lands over 100 species from various 

species assemblages annually (Davie and Lordon, 2011). Annual landings by the fleet 

account for approximately 75% of annual Irish landings in value. For the analysis 

presented in this paper the data for “trawl gears” used by this fleet is restricted to Irish 

vessels greater than 15 meters in length that utilise bottom otter trawls. We estimate 

our model of fishing site choices on a trip basis using the 2010 data of Irish fishers 

that participated in bottom otter trawling1. Data were obtained on a total of 3,160 trips 

taken by the 101 vessels in the Irish bottom otter trawl fleet (that range in size from 

30 tons to 400 tons) to any of thirty possible fishing locations in the Irish coastal 

waters of the Atlantic, the Celtic Sea, and the Irish Sea. It should be noted that this is 

an unbalanced panel as the vessels in the sample make different numbers of trips in 

the season. We therefore have a panel of observations that differ in their number of 

choice occasions. 

 

- Figure 1 here 

The natural fishing grounds used to describe the site choices were based on fishing 

sites in the waters around Ireland used by the bottom otter trawling fleet as described 

by Gerritsen et al. (2012)2. These are shown in figure 1. All trips made by our sample 

of vessels are to one or more of these sites. As shown in the summary statistics of 

table 1 over the course of 2010, vessels made an average of 41.6 trips. In order to 

compare the results of the site choice model based on the natural site definitions to a 

model that is based on the grid based site definitions more commonly used in the 

                                                 
1 In bottom otter trawling a large net is dragged along the bottom behind a towing vessel. The mouth of 
the net is held open by two large ‘doors’ (often referred to as otters) which are attached to either side of 
the net. 
2 Gerritsen et al. (2012) used hierarchical cluster analysis on the species composition of the Irish 
demersal otter trawl fleets. They identified 8 clusters with relatively homogenous species compositions. 
These 8 clustered formed 34 spatially distinct fishing sites. Each site is associated with a particular 
species cluster: haddock mixed; deep water species; monkfish; Nephrops; nephrops mixed; whiting; 
rays and general mixed (see Figure 1). In our sample only 30 sites are used as some sites were 
combined in to one (Slope1 and 2 were combined as were Stanton 1 and 2) and no trips were made to 
the Tory, Blackstone or Porcupine3 sites so they were excluded.   



 

literature, the area surrounding the coast was also divided into 30 rectangles that 

account for 98.5% of the trawling effort of the fleet. The rectangles are based on an 

arbitrary grid of 1 degree latitude by 1 degree longitude which was chose so that the 

number of rectangles was equal to the number of natural fishing sites. Each rectangle 

represents an area that a vessel may choose to trawl at on any give choice occasion. 

As shown in Figure 2, rectangles adjacent to the coast are reduced in size due to the 

contour line of the landmass. 

 

- Figure 2 here 

In order to determine which sites (however they are defined) were visited and fished 

by each fisher on any given trip, vessel monitoring system (VMS) data were used. 

VMS is a satellite-based monitoring system which at regular intervals provides data to 

the relevant authorities on the location, course and speed of vessels. Since 2005, all 

European Community (EC) fishing vessels of ≥15 m in overall length have to be fitted 

with VMS transponders which transmit their position at least once every 2 hours 

whilst at sea (EC, 2003). The standard data report includes the VMS unit’s unique 

identifier, date, time, speed, heading and position in latitude and longitude. The EU 

was one of the first fisheries regulators to introduce compulsory VMS tracking for all 

the larger boats in its fleet. The EU legislation also requires that all coastal EU 

countries should set up systems that are compatible with each other, so that countries 

can share data and the Commission can monitor that the rules are respected (EC, 

2003). Using the VMS information and certain assumptions about the range of speeds 

at which the vessels steam and trawl at, the analyst knows which sites are visited on 

any given trip and also can distinguish between actual trawling and steaming to and 

from the fishing grounds. 

- Table 1 here 

In order to identify the species catch on any given trip and the price received for the 

associated landings, data from sales notes and vessel logbooks were used. EU 

logbooks are completed by the masters of fishing vessels when landing their catch. 

They contain information on the volume of catch per species landed. All vessels 

greater than 10m in length are required to fill out these log sheets and submit them to 

their local Port Office. The data is then entered to the Integrated Fisheries Information 



 

System (IFIS) database by Sea Fisheries Protection Authority (SFPA) staff3. Sales 

notes data contain information on the price per kg per species landed by each vessel 

and are electronically submitted by the buyer at the first sale of the fish. Together the 

VMS, sales notes and logbook information provide enough information to calculate 

the earnings of a vessel in terms of the value of the landings per trip per grounds. 

Following the methods employed by Gerritsen and Lordan (2011) a simple speed rule 

was applied to identify VMS records that correspond to fishing activity for each trip 

made by the sample of bottom otter trawlers. The VMS data were analysed for vessel 

speeds between 1.5 and 4.5 knots which indicated records corresponding to fishing 

activity. Gerritsen and Lordan (2011) have shown that vessel speed can distinguish 

fishing activity with an accuracy of 88%. The VMS data was then integrated with the 

catch data from the logbooks and the price data from the sales note information using 

date and the community fleet registration number for each vessel which acts as vessel 

identifier across all data sources. The Integrated Fisheries Information System (IFIS) 

database, provided by the Irish Department of Agriculture, Food and the Marine was 

the source of the logbook and sales note data for the analysis presented in this paper. 

VMS data were provided to the Marine Institute by the Irish Naval Service. The 

average earnings per site were determined by allocating the earnings per trip 

(calculated based on the sales note and log book information for each trip) across the 

sites based on the proportion of time spend trawling in each site per visit. 

We also derived attributes for each of the sites that are believed to be important 

characteristics when the fisher forms his site choice decision. Information on the 

number of times a fishing site has been visited in the previous year by each vessel is 

used as a indicator of the fisher’s experience and it is assumed that the more 

experience a vessel had of a fishing ground in the previous year, the more likely it 

will be fished again this year. The monetary variables included in this model are 

expected earnings per vessel per fishing ground as experienced in the previous year, 

the variance in expected earnings, and the distance from home port to the centroid of 

each fishing ground4. 

                                                 
3 Since 2011 many vessels now have electronic logbooks, where data are entered by the skipper and go 
straight into IFIS.  
4 Distances were estimated using the R package ‘gdistance’ by creating a geographic grid containing 
cells that were either marked as land or sea. This was translated into a transition matrix that only 



 

The variance in earnings variable is used to pick up on the risk preferences of the 

fishers. The average variance in the return from alternative sites is a factor that has 

been found previously to significantly influence the spatial decision of fishers (Valcic, 

2008; Curtis and McConnell, 2004 and Eales and Wilen, 1986). The number of 

different species landed from each trip is also included in the model. It might be 

expected that sites where fish can be more selectively caught will be more attractive 

to fish at. The percentage of rocky ground on the seabed at each of the fishing sites 

was also included as a site attribute that may influence the fisher’s site choice. The 

information on the construct of the seabed was taken from the EU funded Mapping 

European Seabed Habitats (MESH) project (http://www.searchmesh.net/) and linked 

to the fishing sites using geographical information system software. While most 

vessels now have sophisticated equipment that allows them to operate around rocks 

on the seabed it would still be expected that a fisher will prefer grounds that have a 

lower percentage of rock that could damage their expensive trawling gear. Finally, 

dummy variables for the Irish Sea and the Celtic Sea regions are also included in the 

model. It might be assumed that certain fishers will prefer to stay in one regional sea 

area when deciding on a site to visit. 

Using the natural sites as our fishing ground definition we find that vessels fished at 

an average of 8.3 sites per year. Just over 55% of the fishing trips involved trawling at 

a single ground. A further 29% involved trawling at 2 grounds while the remaining 

16% of trips in the sample involved visits to between 3 and 5 grounds on a single trip 

occasion. While the vessel trip characteristics are the same no matter how you specify 

the sites; specifying the sites using the grid system results in changes in the average 

number of sites visited per trip. For the grid based site definitions, vessels fished at an 

average of 10.6 sites per year. With this alternative site definition we find that the 

number of fishing trips involved trawling at a single site is reduced to 41% of trips. A 

further 32 % involved trawling at 2 grounds, 15% at 3 grounds, 8% at 4 grounds and 

the remaining trips in the sample involved visits to between 5 and 9 grounds on a 

single trip occasion. Therefore we see that by using the grid based site definitions we 

                                                                                                                                            
allowed a path to pass through connecting ‘sea’ cells. This matrix was used to establish the shortest 
sea-route between each possible combination of port and fishing site. Where multiple grounds were 
visited in a single trip we followed Valcic (2008) and assumed a distance of 5 miles for distance from 
one site to the next. A model was also estimated for single site trips alone and the estimated attributes 
displayed similarly signed preference parameters as in the extended model with all trips included. 



 

end up dealing with a more complex site choice modelling situation with a higher 

frequency of trips visited per trip. 

The fishing sites are used as the basis of the fishing choice decision in our discrete 

choice model. Further statistics related to the characteristics of the bottom otter trawl 

fleet in the sample such as average vessel age, engine power, earnings (value of catch 

per trip and annual), effort levels, etc are presented in table 1. Furthermore, the 

number of fishing trips to each natural site in 2010 is shown in figure 1b.  

 

3. Methodology 

The Random utility model (RUM) (McFadden, 1974) represent the standard 

theoretical framework used to estimate behavioural models of site choice (in our 

study, this is characterized by fishers’ choice between several possible fishing 

grounds with varying attributes). The main idea of the RUM model is that the fisher 

chooses from a number of alternatives possible sites (to trawl at) and selects the one 

that yields the highest expected utility level on any given choice occasion. By 

observing and modelling how fishers change their preferred site option in response to 

the changes in the levels of the site attributes, it is possible to determine how fishers 

trade-off between the different fishing ground characteristics. In this application, it is 

assumed that fishers consider all 30 site alternatives on any given choice alternative 

and their choices are based on the alternatives that provide them with the highest 

utility. 

Assume that a fisher, n, has J possible multi-attribute fishing sites from which to 

choose. The total utility perceived by fisher n from visiting a possible site i is 

assumed to be given by: 

          

 (1) 

Here,  is the indirect but observable part of utility function from visiting fishing 

site i,  inX  is a vector of explanatory variables including perceived site attributes and 

vessel specific characteristics and in  is the stochastic element of utility. Whenever 



 

the utility from visiting fishing site i is greater than the utility from visiting all other 

possible sites jJ, site i will be chosen. The probability that the fisher will choose this 

alternative can then be written as: 

      

 (2) 

The RUM model can be specified in different ways depending on the distribution of 

the error term. If the error terms are independently and identically drawn from an 

extreme value distribution, the RUM model is specified as a standard Conditional 

Logit (CL) (McFadden, 1974). This implies that the probability of choosing site j is 

the familiar logit with scale parameter , or: 

      

 (3) 

While the basic conditional logit model still remains a popular specification to 

analyse choice data amongst researchers, the standard conditional logit model has 

some noted limitations. These include the fact that it generally fails to meet the 

assumption implied by the independence from irrelevant alternatives property (IIA); it 

cannot handle situations where the unobserved part of the utility function is correlated 

over time and finally it represents only systematic taste variation rather than random 

taste variation across respondents (Train, 2003). Due to these restrictive assumptions, 

mixed logit models, such as the random parameter logit (RPL), have become more 

popular as they provide a more flexible econometric method for any discrete choice 

model derived from the random utility maximization framework (McFadden and 

Train, 2000).  

The RPL model generalizes the CL by allowing the coefficients of observed variables 

to vary randomly over people rather than being fixed. Following Henscher and 

Greene (2001) the stochastic component is partitioned into two additive (i.e. 

uncorrelated) parts. One part is correlated over alternatives and heteroskedastic, and 

another part is independently, identically distributed over alternatives and individuals. 

Models of this form are often called mixed logit because the choice probability is a 

mixture of logits with f as the mixing distribution (Hensher and Greene, 2001). 



 

Conditional on individual tastes the choice probability is still logit, but the marginal 

probability across individuals requires integrating over a distribution of tastes which 

needs to be specified by the analyst. 

Due to the integrals in the probability function, simulated maximum likelihood is used 

for estimation, which is discussed in detail in Train (2009). Note that in our 

estimation the integral is approximated by simulation based on 500 Halton draws. By 

specifying both a mean and a standard deviation for each ß associated with a 

particular attribute (treating it as a random parameter) the presence of (unobserved) 

preference heterogeneity in the sampled population is accommodated. It is also 

possible to re-parameterise the mean estimates of random parameters to establish 

heterogeneity associated with observable influences. For example we make the mean 

ß of distance a linear function of average number of days a vessel stays at sea 

assuming the latter picks up on some influences such as the size and power of the 

vessel and perhaps the ability of the crew. As pointed out by Hensher and Greene 

(2001) this is one way of ‘removing’ some of the unobserved heterogeneity from the 

parameter distribution by ‘segmenting’ the mean with continuous or discrete 

variation5. 

Following the estimation of the RPL 6  model the sample is reset such that one 

frequently fished site in the Celtic Sea (the Galley fishing ground) is made 

unavailable in the choice set; simulating the establishment of an MPA in that location. 

A model simulation is then produced to predict choice among this reduced set of site 

options where probabilities for the full choice set are reallocated amongst the 

remaining sites. The probabilities for each alternative fishing site based on the full 

model are then compared to those derived from the restricted choice set where the 

                                                 
5 See Train (2009) and Hynes et al. (2008) for a comprehensive discussion of the RPL model. 
6 In this application we are assuming that fishers consider all site alternatives and their choices are 
based on the alternatives that provide them with the highest utility. We also considered the use of a 
Nested Logit model where the fishers might first decide to fish or not fish on any given day (Smith and 
Wilen, 2003) or perhaps where they first decide on which regional sea they fish in and then decide 
which site to trawl in the second stage. However, the nature of our data does not support the inclusion 
of the option of not fishing. The RPL model also allows for a much broader analysis of heterogeneity in 
preferences. Furthermore, the fishery under analysis here is unusual in the sense that there are no 
restrictions that prevent the bottom otter trawling vessels changing from fishing one species to another 
or from one gear type to another.  Indeed, most vessels in the fleet routinely change gear, fishing 
grounds, etc. depending on the season, weather, catch rates, market price, etc. (Davie et al. 2015). 
Therefore we opted to use a modelling structure that assumes the consideration of all possible site 
alternatives. 



 

predicted probabilities are the means of the sample predictions from the model absent 

the change specified in the closure scenario. 

 

4. Results 

For the purpose of modelling alternative fishing ground preferences, the indirect 

utility for any site option is assumed to depend on the levels of the attributes of that 

site. The same attributes are allowed to enter the utility function of all fishing site 

choice options with the levels varying in each. We also assume that the average 

number of days spent at sea per trip by a vessel in the previous season may influence 

fishers’ preferences and therefore also include this variable in the model. Due to the 

fact that this variable does not vary between choice options for any given fisher, it is 

interacted with the distance variables. The average number of days that a vessel can 

stay at sea is expected to pick up on the size and power of the vessel and the skill 

level of the skipper and crew. It might be expected that these characteristics would 

also influence site choice and in particular the distance that a vessel will be willing to 

travel and the number of trips to undertake to any particular site.  

In what follows we present the results of the conditional logit models (reported in 

table 2) using both the natural site definitions and the grid based site definitions. The 

RPL model is then reported; estimated based on the natural site definitions (reported 

in tables 3). All models are estimated from our (unbalanced) panel of vessels, 

providing a total of dataset of 171,510 fisher site choice observations for the natural 

site sample and 276, 840 for the grid based sample. In all models, the dependent 

variable (fishing site visit) takes a value of 1 if a fisher has trawled at fishing site i in 

each of the trip choice occasions taken in the previous 12 months and 0 otherwise. As 

explanatory variables for choice probabilities we used 9 site attributes; distance to 

fishing site, average earnings per site, variance in earnings, the percentage of rock at 

the site, number of species caught at each site in the previous season, experience as 

measured by number of trips to each ground in the previous season, dummies for a 

number of fish species and the area that the site covers in km2. The other choice 

variables are constants for specific groupings of the fishing sites by the regional sea 

they are located in (Celtic and Irish Seas relative to the base case of the Atlantic).  



 

- Table 2 here 

Table 2 gives results from the conditional logit models. It may be seen that all site 

attributes coefficient estimates in the natural site choice CL model are statistically 

significant bar the Irish Sea and the Whiting species dummies. In general all attributes 

are also of the expected sign. As found by Smith and Wilen (2003), the greater the 

distance a site is from the home port the lower the probability that site will be visited. 

Also similar to previous findings in the literature, the higher the likely monetary 

return, as measured by the value of the average catch per hour per unit engine power 

in the previous season for each fishing ground, the higher the probability that site will 

be chosen. Interestingly, the negative sign on the variance of earnings variable 

indicates that the fishers are generally risk adverse and will have a higher probability 

of visiting a site when the expected return from that site is more predictable. This is in 

line with previous work by Ran et al. (2011) although elsewhere Eggert and 

Martinsson (2003) found that risk was not an important factor in fisher’s fishing site 

choice decisions. As indicated by the negative sign on the number of species caught 

coefficient fishers also prefer sites where they can be more selective about the variety 

of fish caught. Given the current debate on discards this finding suggests that fishers 

as well as policy makers are also keen to target a smaller number of species.  

The number of visits to a site in the previous season, as shown by the experience 

parameter, would appear to have a positive effect on the probability of that area being 

chosen on any given choice occasion. This is in line with previous evidence of repeat 

behaviour found by Holland and Sutinen (2000), Smith (2005) and Valcic (2008). The 

interaction of the average number of days at sea per trip with the distance variable 

was also found to be significant and indicate, as expected that the longer a vessel can 

stay at sea for any given trip the further the vessel will be willing to travel to a site. 

Overall, the model would appear to have a good explanatory power relative to other 

published choice experiments with a pseudo-R2 of 0.38. Finally, the  ² statistic of 

14,101 shows that, taken jointly, the coefficients in the conditional logit model are 

significant at the 1% level. 

There are a number of key differences between the parameter estimates in our natural 

site choice CL model and our grid based site choice CL model. The distance, area, 

experience and days at sea interaction term are significant and have the same sign as 



 

their counterparts in the natural site model. The dummies for Celtic Sea and Herring, 

the rock parameter and the variance of earnings parameter are however no longer 

significant. In the grid based site choice CL model (last column in table 2) the 

earnings variable also has an unexpected negative sign and the variance coefficient is 

insignificant. The dummy for Irish Sea is now also unexpectedly positive and 

significant. The significant prawn dummy has also flipped its sign. These strange 

findings are very much dependent on the size of the grids chosen to specify the sites. 

A closer look at the data helps explain for example why we get a counter intuitive 

positive earnings coefficient.  

Based on the grid based definition, there are a number of sites adjacent to the shore 

where we see a high frequency of the trawls begin, based on the VMS data. The 

trawls then continue out of these boxes into one or more of a number of adjacent 

boxes. Based on the time spend trawling in each box a higher proportion of earnings 

from the trip will be spend in the outer boxes but a higher frequency of visits to the 

inner box (associated with a lower share of the earnings for the trip) is still recorded. 

Specifying a larger grid system could change this result. The fact that the rock 

parameter is now insignificant is also not surprising given that a rectangular area may 

have a high percentage of rock but it may not be in that part of the box where the 

trawls occur. The natural site definitions follow the contours used by the fishers in 

their trawls so the percentage of rock in those sites is expected to impact on site 

visitation decisions. The explanatory power of the model is less than that of the 

natural site choice model based on the value of the pseudo-R2 and it also has a higher 

log-likelihood value (although given that the underlying site definitions are different 

the log-likelihoods are not directly comparable).  

The data issues observed with the grid based model will also be present for the RPL 

specification. The extra complexity in the grid based data also meant that attempts to 

estimate a RPL model failed, with the optimum of the maximum likelihood function 

not being found. The difficulty in estimating mixed logit models with such data has 

been previously highlighted by Valcic (2008, p35). Given the proceeding discussion 

we proceed only with the preferred natural site specification when estimating the RPL 

model and carrying out the site closure simulation. 

- Table 3 here 



 

Table 3 presents the results from the RPL site choice model based on the natural site 

definitions. This model is specified to allow for random heterogeneity in the attribute 

parameters. For each random attribute parameter in the RPL, parameters for the mean 

and standard deviation are estimated. In order to aid estimation we specified the 

parameters for the individual species as fixed. We assume a normal distribution for 

the majority of the random parameters in the utility function so that negative as well 

as positive values for site attributes are permitted. However, a log-normal distribution 

is assumed for the size of grounds and expected earnings parameters as it is assumed 

fishers prefer strictly positive quantities of each7.  An insignificant mean parameter in 

a RPL model implies that the center of the distribution is around zero but if the 

associated standard deviation estimate is significant then this suggests a considerable 

variation in taste-intensities across the sampled fishers. Together the two estimates 

allow an inference of what proportion of the bottom otter trawl fleet like or dislike a 

given site attribute. Under normality a negative mean implies that the majority of 

fishers dislike the attribute. This is the result in our preferred model for distance, the 

variance of earnings, the percentage rock at the grounds and the number of species 

caught per trip.  

The majority of fishers also appear to have a positive preference for sites associated 

with higher per trip earnings, the size of the fishing grounds8, the regional dummy for 

the Irish Sea and, based on the experience parameter estimate, are once again more 

likely to trawl a fishing ground that they have visited frequently in the past. These 

results are in line with the results of the CL model except for the fact that the Irish Sea 

parameter was insignificant in the CL model.  The estimated mean values are all 

estimated as being significantly different from zero at the 1% level. Turning our 

attention to the estimated standard deviations for the fishing site attributes we find 

that they are all significant at the 1%. It may seem implausible to expect any fisher to 

favour a higher percentage of rock on the seabed at the grounds being trawled but 
                                                 
7 We do not impose a log-normal distribution on distance that would force all probability mass to be 
negative since there is evidence within the VMS data that some vessels may prefer to travel greater 
distances to fishing grounds. There is also evidence that some fishers may be attracted to sites with a 
higher variance in potential earnings (Eggert and Martinsson, 2004) so once again the variance in 
earnings parameter is assumed to follow a normal distribution. 
8 While the estimated earnings and size of grounds parameters in the model appear negative it should 
be noted that these parameters represent the mean (b) and standard deviation (SD) of the natural 
logarithm of the coefficients. The mean and standard deviation of the coefficient themselves are given 
by  and , respectively (Train, 2003). Upon 
conversion the mean effect in each case is positive. 



 

with modern equipment it is possible for fishers to trawl on rockier grounds and some 

may prefer to do so if they expect a good return from their fishing effort in that 

particular location. The significance of the remaining standard deviations parameters 

indicates that the preferences for all attributes also vary across the fleet.   

The relative magnitudes of the standard deviations are quite high for the regional seas 

dummies, the number of species caught and the variance in earnings, suggesting a 

considerable variation in taste-intensities across the fleet in relation to these attributes 

- to the extent that all distributions have a high share in both the negative and positive 

domains. This supports our choice of using normal distributions to represent the 

random taste variation in these cases. The fact that the standard deviation parameter 

associated with the variance in earnings variable has approximately the same value as 

its mean would imply almost as high a proportion of risk loving as risk adverse fishers 

in the fleet. It is also worth noting in the model that the random taste variation 

remains for the distance parameter even after the inclusion of observed sources of 

preference heterogeneity (i.e., the number of days a vessel stays at sea per trip). This 

suggests that preferences vary considerably more than can be explained by this 

observed characteristic of the fishers. Except for the distance and earnings parameters, 

the standard deviation parameters are greater than the mean coefficient estimates 

indicating very large between vessel variability in preferences. As expected, those 

vessels that tend to take longer trips have a higher probability of trawling at sites 

further from their home.  

The simulated log likelihood of -9811 compared to the standard log likelihood of -

11,336 for the basic conditional logit specification suggests an improvement in the fit 

of the model. However, these models are non-nested. We therefore carried out a 

Vuong test (Vuong, 1989) to examine if the RPL is appropriate. The Vuong statistic 

has a limiting distribution that is normal with large positive values favouring the 

corrected model and with large negative values favouring the standard version of the 

model. Values close to zero in absolute terms favour neither model. The calculated 

Vuong statistic of 21.59 results in a clear rejection of the null hypothesis that the 

models are indistinguishable. To gauge the RPL model’s ability to predict the actual 

behaviour of the fleet, the model’s estimate of the probability of fishing at a particular 

site are compared to the actual fishing site choices revealed in the data. The 



 

predictions of the model are very close to the actual fishing site choice probabilities 

revealed in the data with differences ranging from just -0.003 to 0.0389.  

- Table 4 here 

Over the past several years there has been a growing concern about the impact that 

intensive trawling and/or dredging activities have on the habitat on the sea bottom. 

With this in mind we used our RPL model to simulate a hypothetical grounds closure 

that restricts the fisher’s choice set by excluding an area that has a high frequency of 

trawls in the Celtic Sea. This is the ‘Galley’ fishing ground south of Cork. Using the 

VMS data on fleet activity we also analysed which areas of seabed in the Celtic sea 

were trawled at least once in the season by the Irish bottom otter trawl fleet. This is 

accomplished by generating swept-area ratios which represent the area swept by the 

gear (distance covered by trawl multiplied by door spread) divided by the area of the 

grid cell (Gerritsen et al, 2013). It is the mean number of times a patch of ground is 

covered by demersal otter trawls. As is evident in figure 3, the vast majority of the 

Celtic sea seabed is swept at least once per year and the area representing the Galley 

fishing ground has one of the highest frequencies of trawling. This is also reflected in 

the estimated probability of site choices where the estimated probability of choosing 

that site to fish at was found to be 0.17.  

- Figure 3 here 

It should be noted that the simulation process assumes that the bottom otter trawl fleet 

comply with the ground closure. This is a fair assumption given that their activity is 

being monitored through the VMS system and non-compliance it is assumed would 

mean substantial fines. Also it is assumed the total fishing effort of the fleet remains 

unchanged which implies that the simulation will result in an increase in the effort in 

the remaining open areas. This assumption is more restrictive as one might expect that 

total fishing effort may fall as some fishers choose the option of employment outside 

the fishery following the closure. Conversations with boat operators would suggest 

though that it is unlikely that many fishers will give up fishing because of a closure. 

                                                 
9 As well as demonstrating the ability of the model to predict the actual choices made by our sample of 
fishers we also uses a hold-out sample where we reserved the latter 15% of observations in our data, re-
estimated the model, and predicted into the hold-out sample. Once again we find that the model does a 
good job in terms of predicting the fishing site choice probabilities revealed in the hold out sample; the 
max difference between actual and predicted probability for any site being just 0.05. 



 

The results of the simulated closure suggest that the fishing grounds in close 

proximity to the closed site are the ones that will see the highest percentage change in 

probability of being fished by the fleet. As shown in table 4, the highest percentage 

change in probability are associated with Cork (+71%), Labadie2 (+54%), Labadie1 

(+29%), Smalls (+23%), Mizen1 (+25%) and Nymphe (+22%). As can be seen from 

figure 1 these are all grounds that border or are in very close proximity to the closed 

site thus reflecting a spatial effect that Wilen et al. (2002) referred to as “a spatial 

autocorrelation ripple effect”. 

 

5. Discussion and Conclusions 

In this paper EU Vessel Monitoring System (VMS) data was combined with other site 

and vessel information and used to model the fishing site choice decision of Irish 

demersal otter trawlers. Uniquely, the fishing ground options used in the analysis 

reflect the actual seabed contours trawled by the fleet. The fishing site choice model, 

based on this natural site definition was then compared to an alternative destination 

choice model where the fleet decision is specified using a grid based site definition as 

employed in previous work. The preferred natural site choice model was then used to 

examine the spatial trade-offs involved in closing a high fishing effort area. We find 

that the chosen model does a good job in estimating the actual fishing site choices 

revealed in the data and also demonstrates that there is significant heterogeneity 

amongst the otter trawler population in terms of their preferences for the different 

attributes of the fishing site choices. The simulated redistribution of fishing effort 

after the implementation of the closure was also compared with the actual distribution 

of effort revealed from the VMS data and it was found that the fishing grounds in 

close proximity to the closed site are the ones that will see the highest percentage 

change in probability of being fished by the fleet.  

From an ecosystem fisheries management perspective a key question is which species 

and habitats are likely to be most impacted from the spatial redistribution of effort. 

Looking at the clusters of species dominant at each site (see figure 1) that the 

simulation predict will see a significant increase in effort one can say something in 

this regard. The closed site is characterised by mixed cluster of haddock and other 



 

species. The sites likely to see the greatest displacement in effort; Cork, Labadie 1 & 

2, Smalls and Mizen1 are dominated by the mixed nephrops clusters of species while 

the Nymphe site is characterised by whiting. It should be noted that these clusters 

were defined by Gerritsen et al. (2012) based on the composition of the landings of 

Irish demersal otter trawlers during the period 2006–2009. They will therefore also be 

influenced by quota restricting in place during that period. Analysing the habitats 

impacted at these sites would require further fieldwork to identify the composition of 

the seabed.  

The changes in effort predicted around the closed area are also similar to those 

predicted from the phenomenon of ‘fishing the line’: a concentration of effort on the 

edges of a protected area thought to be a response to the availability of spill-over of 

stock migrating out of the protected area (Kellner et al. 2007). In this study however, 

the clustering of effort reflects the behavioural choices underlying choice of grounds 

rather than any choice to catch spill-over stock. Observations of fleet fishing the line 

around protected areas may therefore reflect additional behavioural choices, rather 

than a direct response to perceived spill-over. 

Since ecosystem-based fisheries management requires a multispecies perspective, 

empirical methodologies that can fulfil this criterion are in demand. Typically, 

empirical multispecies analysis have followed one of two formats; a bio-economic 

model which determines the optimal harvest rate of more than one species using 

estimated predator-prey or competitor parameters, or structural ecosystem models that 

can be used to determine optimal Total Allowable Catches (TACs) across multiple 

species. The methodology used in this paper provided a third alternative to model the 

impact of management changes on multiple species by using realistic fishing site 

options within a discrete choice modelling framework. The use of such an approach 

can provide policy makers with an assessment of the ecological, economic and 

potentially social implications of different designation strategies in order to meet the 

requirements of policies such as the Marine Strategy Framework Directive (MSFD), 

the Habitats Directive and the reformed Common Fisheries Policy (CFP) and also in 

helping to decide on potential conflicts in the establishing of networks of MPAs in 

European waters.  As pointed out by Katsanevakis et al. (2011), many of these 

conflicts will only be resolved through the use of ecosystem-based marine spatial 



 

management, which is now seen as the most appropriate approach for the integrated 

management of the sea.  

It should also be noted that the analysis conducted in this paper took place against the 

backdrop of a particular quota regime which may impact on the choices being made 

by fisherman as they work to fill their quota for the different species they are targeting. 

An area therefore for further research using the fisheries site choice model developed 

in this paper would be to investigate the impact of recommended quota changes for 

different species across different ICES areas on the spatial distribution of effort. It 

would also be interesting to expand the analysis out to the approximate 300 vessels in 

the wider Irish trawl fleet. Adding in cost data may also improve the fit of the model 

as would information relating to the attitudes of the skippers of each vessel to each of 

the sites specified. It would also be interesting to investigate the skipper viewpoint on 

what sites should be closed if closures are on the table as a management option.  

When analysing the site choice data we assumed that respondents consider all offered 

alternatives and their choices are based on the alternatives that provides them with the 

highest utility. However, at least in principle, one may postulate the hypothesis that 

due to differences in locations and accessibility, as well as preferences, fishers may 

restrict their consideration set to a subset of all possible fishing grounds that do not 

exceed certain thresholds and cut-offs. The recently developed Independent 

Availability Logit (IAL) model (Habib et al., 2013) is a modelling approach that 

could test this hypothesis and is another interesting area for future research. Having 

said that, the model developed here does achieve its objective of giving us an insight 

into the factors driving the fishing site choice decision of an EU based bottom otter 

trawling fleet.  

We would also argue that defining the fishing site alternative in a manner that is more 

in line with what the fishers perceive as being the shape and location of fishing 

grounds as was done in this paper should increase the predictive power of the site 

choice models and is in line with the ecosystem based fisheries management 

perspective. Using the natural sites as our fishing ground definition we find that we 

had to deal with a less complex site choice modelling situation with a lower frequency 

of trips visited per trip compared to the grid based site definitions (with the natural 

site definitions 55% of the fishing trips involved trawling at a single ground compared 



 

to 41% using the grid based definitions). We also saw how using an arbitrary grid 

system to define the sites can lead to misleading findings such as negative impact of 

earnings on site choice due to trawling starting in one box and proceeding into other 

boxes. With the natural definitions the trawl is generally started and completed within 

the site. 

Finally, including information on the substrate or seabed habitats may be meaningless 

in models based on the grid based system since the percentage of any substrate type 

within a site may be in a location that the fishers never trawl. Since the natural site 

follows the contours generally followed by the fishers the percentage of rock on the 

ground or other habitat information should be much more relevant when modelling 

site choice decisions. From an ecosystem based fisheries management perspective the 

inclusion of this ecosystem information in our analysis of fisher behaviour is 

important and the availability of such data is getting much better all the time with 

seabed mapping projects such as INFOMAR and the requirements for such data under 

policies such as the EU Marine Strategy Framework Directive and EU Biodiversity 

Strategy. 
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Figures 

Figure 1. Nuanced Fishing Sites and number of trips to each site in 2010 

 
 
The map on the right (a) shows fishing sites and species clusters associated with each site. The 
numbers correspond to the names of the sites: 1)Rockall1; 2)Rockall2; 3)Deep; 4)Hebrides; 5)Stanton1; 
6)Stanton2; 7)Blackstones; 8)Cape; 9)Tory; 10)Donegal; 11)Stags; 12)Mullet; 13)Erris; 14)Achill; 



 

15)Slope; 16)Porcupine2; 17)Porcupine3; 18)Porcupine1; 19)Slope1; 20)Slyne; 21)LoopHead; 
22)Aran; 23)Moher; 24)Blaskets; 25)Mizen 1 and 2; 26)Galley; 27)Cork; 28)Labadie2; 29)Labadie1; 
30)Nymphe; 31)Smalls; 32)StGeorge; 33)IrishSea; 34)Morecambe. The map on the right (b) shows he 
number of trips to each site in 2010. 
 
 
 
 
 
 
 
 
 
Figure 2. Grid Based Fishing Sites 

 
 

 

 
 
 
 
 



 

 
 
 
Figure 3. Swept-Area ratios for bottom otter trawls in the Celtic Sea for 2010 

 
The swept-area ratio is the mean number of times a patch of ground is covered by demersal otter trawls. 
 

 
 
 
 
 



 

 
Tables 
Table 1. Summary Statistics 
Variable Mean Std. Dev. 
Fishing Effort per Trip (hours based on VMS data) 68.22 53.26 
Fishing Effort per Trip (KW hours based on VMS data) 29,287 33,982 
Age of Vessel 21.36 13.03 
Engine Power (KW) 398.62 304.98 
Vessel Tonnage 158.13 201.09 
Number of Days at Sea (per trip) 4.86 3.40 
Number of Days Fishing (per trip) 4.01 2.73 
Live weight of fish caught per trip (kg) 5,169 7,884 
Earnings per Trip (€) 11,508 13,110 
No. of Trips per Year 41.59    18.13 
Total Earnings per Year (€) 421,160 312,602 
 
Table 2. Conditional Logit Models 

 
Fisher Natural Site 

Choice Model 
Rectangular Site 
Choice Model 

Variable Coefficient  Coefficient  
Distance from port to fishing ground 
return 

-0.405 (0.015) *** -0.136 (0.013) *** 

Earnings per unit engine power (KW) 0.033 (0.003) *** -0.012 (0.002) *** 
Average number of species caught at 
grounds 

-0.013 (0.002) *** 0.011 (0.001) *** 

Celtic Sea 0.819 (0.063) *** -0.058 (0.041)  
Irish Sea -0.041 (0.082) 0.127 (0.059) ** 
Monkfish -1.662 (0.173) *** -0.249 (0.052) *** 
Prawns -0.491 (0.071) *** 0.086 (0.042) ** 
Whiting -0.006 (0.084) 0.322 (0.044) *** 
Herring -0.441 (0.074) *** 0.065 (0.046) 
Saithe -0.752 (0.228) *** -0.222 (0.111) ** 
Experience 0.078 (0.001) *** 0.124 (0.001) *** 
Variance in earnings per unit engine 
power 

-0.0001 (0.00001) 
*** 

0.001 (0.001) 

Percentage rock at grounds -0.034 (0.004) *** -0.00002 (0.00003) 
Size of grounds (km2/1000) 0.025 (0.003) *** 0.035 (0.009) *** 
Distance from port to fishing ground 
return: Days at Sea 

0.028 (0.002) *** 0.011 (0.002) *** 

Log likelihood function      -11,336 -20,502 
Pseudo R-squared 0.383 0.347 
Likelihood Ratio Chi2 Statistic [15 
d.f.]      

14,101 21,768 

Figures in parenthesis indicate the values of the standard errors. ***significant at 1%; **significant  
at 5%. Experience relates to the number of trips to each fishing grounds in 12 months prior to the 
current 12 month period in which the trips take place. 



 

 
Table 3. Random Parameter Logit Fisher Natural Site Choice Model 

Random Parameters in Utility Function Mean of Coefficient 

Standard 
Deviation of 
Coefficient 

Distance from port to fishing ground return -0.552 (0.023)*** 0.316 (0.011)*** 
Average number of species caught at grounds -0.013 (0.003)*** 0.032 (0.002)*** 
Celtic Sea 0.547 (0.078)*** 1.115 (0.049)*** 
Irish Sea 0.249 (0.098)** 0.371 (0.106)*** 
Experience 0.078 (0.002)*** 0.059 (0.002)*** 

Variance in earnings per unit engine power -0.00009 (0.00001)*** 
0.0002 

(0.00002)*** 
Percentage rock at grounds -0.050 (0.005)*** 0.049 (0.004)*** 
Size of grounds (km2/1000) -3.861 (0.180)*** 0.484 (0.113)*** 
Earnings per unit engine power (KW) -3.310 (0.089)*** 0.466 (0.035)*** 
Non Random Parameters in Utility Function 
Monkfish -1.095 (0.180)*** 
Prawns -0.265 (0.080)*** 
Whiting 0.126 (0.096) 
Herring 0.075 (0.085) 
Saithe -1.053 (0.233)*** 

Heterogeneity in mean, Parameter: Variable 
Distance: Days at Sea 0.022 (0.003)*** 

Log likelihood function      -9,811 

Likelihood Ratio Chi2 Statistic [9 d.f.]      3,049 
Number of site visit observations 5,406 

(i) Figures in parenthesis indicate the values of the standard errors. ***significant at 1%; **significant 
at 5%; *significant at 10%.Experience relates to the number of trips to each fishing grounds in previous 
12 months. 
(ii) Note: The estimated earnings and size of grounds parameters in the above model represent the 
mean and standard deviation of the natural logarithm of the coefficients. Also see footnote 7. 
 
 
 
 
 
 
 



 

 
 
Table 4. Predicted Percentage change in Probability of visiting site after Closure 
of Galley 

Site 
% change following 

Closure Site 
% change following 

Closure 
Achill 5.23 Mizen2 17.95 
Aran 4.70 Moher 8.44 
Blaskets 14.20 Morecambe 7.93 
Cape 3.42 Mullet 8.11 
Cork 70.63 Nymphe 22.50 
Deep 9.04 Porcupine1 9.45 
Donegal 3.34 Porcupine2 8.33 
Erris 3.35 Rockall1 6.16 
Galley -100 Rockall2 6.04 
Hebrides 5.51 Slope 1& 2 8.30 
IrishSea 2.79 Slyne 21.04 
Labadie1 29.12 Smalls 23.35 
Labadie2 54.15 StGeorge 12.20 
LoopHead 9.89 Stags 3.16 
Mizen1 24.81 Stanton1 3.80 

 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


