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Cumulative attraction and spatial dependence in a destination choice

model for beach recreation

Abstract
Beach recreation value is an important consideration in a cost-benefit analysis of coastal

development or conservation. A destination choice-based travel cost analysis is often used to

quantify recreation values but the destination choice only partially reflects the intrinsic

characteristics of that site. Visitors are influenced by opportunities available at other sites and can

visit multiple sites resulting in spatially correlated errors. For this study about the recreation value of

beaches on the Coromandel Peninsula we draw on the theory of cumulative attraction to analyse

the compatibility of different beaches for the multiple-destination visitors who comprise more than

half our sample. We investigate different random utility model formulations to explain destination

choice and find that a cross-nested logit with sites nested by availability of amenities explains the

observed patterns of visitation well and is more computationally efficient that non-closed-form

models such as mixed logit. We also include inverse distance variables to the nearest amenity of

each type and their significance supports the tenet of cumulative attraction that the importance of

other spaces is greater when the attributes differ. Overall beach recreation values are maximised

when sites are diverse in terms of development level and type.

1. Introduction
Destination choices of individual recreationists collectively determine the demand for beach

recreation and the potential welfare effect they experience from coastal development or from

changes in environmental quality. A typical approach to modelling recreation demand is to use a

random utility model (RUM) which allows the estimation of demand for multiple sites, substitution

across sites, and is consistent with utility maximisation theory (Fletcher, Adamowicz, and Graham 

Tomasi 1990). The problem with traditional destination choice or demand models is that they fail to

account for the effects of the spatial distribution of the recreation sites. The first law of geography is

that “everything is related to everything else, but near things are more related than distant things”

(Tobler, 1970). Recreation sites do not exist in isolation; tourist flows are enhanced or diminished by

attractiveness of neighbouring destinations (Griffith 2007).
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Spatial effects can include correlated errors due to unobserved attributes that nearby destinations

share. When there are a large number of alternatives destination sites it is likely that tourists use

hierarchical processing to simplify their decisions, and evaluate sites in geographic clusters

(Pellegrini and Fotheringham 2002). Sites in these clusters likely have common attributes. There can

also be spatial knowledge spillovers, where tourists incidentally acquire information about places

near their destination of choice. Reduced uncertainty about these sites increases their likelihood of

being destinations for future visits (Marrocu and Paci 2013).

Another reason for spatial correlation is that recreation trips often include multiple destinations in

order to satisfy a diverse range of objectives and reduce the risk of unrealised expected benefits

(Lue, Crompton, and Stewart 1996). In the context of this study, more than half of sampled visitors

to the study area reported visiting more than one beach site per trip. The theory of cumulative

attraction (Nelson 1958) recognises this effect, and implies that areas with multiple, differentiated

destinations will attract more tourists than single destinations – an agglomeration effect. There may

alternatively be competition effects when similar destinations are located near each other. Which

effect prevails and for whom remains an empirical question.

Spatially correlated errors violate the assumption of the travel cost method that sites must be

substitutes. The value of a recreational site is likely to be overstated if some of the benefits of

visiting other sites during a trip are “mistakenly” attributed to the study site (Haspel and Johnson,

1982). When sites share unobserved attributes that influence choice behaviour this also violates the

assumption of independence of error terms in the widely-used multinomial logit discrete choice

model. Spatial heterogeneity, if ignored, will cause substantial bias in model parameters (Bhat et al.

2015).

In this paper we investigate spatial issues in recreational tourist flows to beaches on the Coromandel

peninsula in New Zealand. The Coromandel peninsula is a rather unique context due to the

idiosyncrasies of the geography and transport routes, and the fact that there are so many attractive

beaches within close proximity. Multiple-destination trips are the norm rather than an inconvenient

minority to discard. We review approaches in the literature for dealing with spatially correlated

errors and and undertake a model search to compare the results of different specifications. A

relatively unique feature of this study is that we use the theory of cumulative attraction to guide the

development of spatial variables that better fit the observed beach visitation behaviour.
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2. Empirical context
The Coromandel is a steep and hilly peninsula that lies across the Hauraki Gulf from Auckland, the

largest city in New Zealand. Most of the peninsula interior is forest park and settlements of varying

sizes are dotted along the coastline. Coromandel beaches are popular holiday destinations for

residents of the nearby urban areas of Auckland and Hamilton, and to a lesser extent, international

tourists. There are many beaches with high scenic and recreational appeal. Landscape characteristics

and level of human modification vary around the peninsula. Administratively, it comprises five

Community Board areas (Figure 2), which are fairly arbitrary political boundaries but do have some

distinguishing geographic characteristics. Thames area is named for the town at the southern corner

of the gulf and it is the entry point for the majority of visitors who come from Auckland or Hamilton.

There is a road going east into Tairua-Pauanui and another winding road heading north along the

relatively homogenous shingle-covered West coast. The Coromandel-Colville area has a thriving

fishing industry, northern areas with limited accessibility and we further subdivide it by East and

West coast. Mercury Bay has the largest population and many exceptionally scenic white sand

beaches. Tairua-Pauanui is the gateway to Mercury Bay and provides a wide range of services.

Whangamata area is named for a large town and popular surf beach and is the main route for

people travelling from the south-eastern coastal city of Tauranga.

Figure 1 - Coromandel Peninsula (circled) Figure 2 - Community Board Areas

For this study the coast of peninsula is divided into 109 discrete beach “sites” using a combination of

visual inspection and labelled bays and harbours on Google maps. On the East coast a site is either
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an estuary, cove or bay with an area of sand or shingle flanked by headlands or cliffs. Some longer

beaches are divided into two sites, such as Hot Water Beach which has a settlement at the southern

end and undeveloped dunes at the northern end and separate access points. The Southwest coast

has long stretches of relatively homogenous coast with few named bays. So, some beach sites are

defined by the nearest settlement instead.

Our analysis of recreation values is simplified somewhat because the vast majority of visitors travel

by car, every urban area is on the coast and the main road forms a loop around the peninsula. It is a

simple matter to determine a tourist’s probable route to any beach, and which other beaches they

would have passed along the way. However, complicating factors include the need to consider not

only travel distance and beach characteristics, but also the option for multiple destinations,

differences in accessibility and complementary features of other sites on-route or in the area.

3. Theoretical framework

3.1 Travel cost
The consumption of beach recreation requires the user to incur the costs of travel and access to the

site. These costs serve as the implicit price of the trip (Fletcher, Adamowicz, and Graham Tomasi

1990). An individual can only visit one site at a time and is assumed to choose the site that

maximises his or her unobserved utility function for recreation benefits.

Multiple-destination trips complicate travel cost analysis because there is the potential for value to

be attributed to the wrong site. The most direct solution is to discard multiple-site visitors from the

sample if they are rare. However, more than half our sample comprises multiple destination beach

trips. One approach is to allocate travel cost by the proportion of time spent at each site, as in Yeh,

Haab and Sohngen (2006). Another is to include a dummy variable and price interaction for multiple

destination trips (Parsons and Wilson 1997). Yet another approach is to use nested models for

additional or “follow on” destinations (Taylor, McKean, and Johnson 2010). Mendelsohn (1992)

treats combinations of sites as additional sites, but given the large number of combinations

generated by 109 sites this solution is impractical. The most appropriate way to allocate costs largely

depends on which travel pattern the individual visitor is using out of en-route, base-camp, regional

tour or trip chaining (Lue, Crompton, and Fesenmaier 1993). We find that trip chaining provides the

best fit in terms of log-likelihood for the observed data. The travel cost to the first site is therefore

divided amongst all sites visited on the trip, while the incremental cost to access the second site is

assigned to the second and subsequent sites, and so on. By factoring in the structure of the tour and
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weighting trips costs we avoid the downward bias from ignoring multi-day trips and the upward bias

from attributing all trips costs to a single site.

3.2 Random Utility Models and Space
The predominant approach in the literature of travel cost analysis is to model the probability of

discrete site choice within a random utility framework which incorporates travel costs, site qualities

and allows the estimation of demand and substitution patterns across multiple sites (Phaneuf and

Smith 2005). Estimation requires, at a minimum, the specification of a functional form for both the

observed, deterministic part of utility and assumptions about the distribution of the unobserved,

random component as per Manski’s formulation (1977). The destination choices we analyse are

conditional on the fact that the respondent has already decided to visit the Coromandel peninsula

for the purpose of beach recreation. Hence there is no “stay-at-home” option and no option for

other regions about which we have no visitation data.

The destination choice problem differs from types of choice such as consumer products because of

the added dimension of space. Early applications of discrete choice models included spatial choices

(for example, residential location in McFadden 1978) but the added complexity of spatial

dependence was not often recognised (Pellegrini and Fotheringham 2002). Modelling spatial

dependencies and interactions is complex due to difficulties in characterizing, defining and

measuring them (Sener, Pendyala, and Bhat 2011). True spatial dependence can be multi-directional,

but when the dependent variable is latent—as in random utility models—a fully simultaneous model

is intractable (Anselin 2002). A more suitable approach is either exogenous spatial lags or spatial

error components. There is also a fundamental identification problem since a cross-section of

observations does not provide sufficient information to identify the full covariance structure or

economic mechanism that leads to spatial dependence (Anselin 2001). Covariance between

alternatives follows from the specification of a spatial weights matrix describing the strength of the

relationship (contiguity or distance, for example) between each pair of sites. The specification of the

weights is somewhat arbitrary and this is a weakness of modelling continuous space as discrete sites.

The weights matrix may not be specified directly if a hierarchical approach or direct spatial variables

are used but this does not eliminate it (Corrado and Fingleton 2012).

While some spatial effects may be accommodated through the construction of spatial variables,

there will inevitably be unobserved effects (Bhat et al. 2015). The challenge is therefore to specify a

computationally feasible model that accommodates the important spatial effects and has a firm

foundation in economic theory. We now review different random utility models and their

advantages and shortcomings for modelling spatial choice.
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3.2.1.1 Multinomial probit

If the joint density of the random errors is assumed to be multivariate normal, the resulting

specification is a multinomial probit (MNP) model. The advantage of the probit is that it allows

flexible patterns of substitution because alternatives can have difference variance and correlations

with each other (Pellegrini and Fotheringham 2002). The disadvantage is that calculation of a single

probability requires integration with as many dimensions as there are alternatives, an analytically

intractable task except when the number of alternatives is small (e.g. less than seven). Simulation

techniques have been developed such as maximum simulated likelihood or maximum approximate

composite marginal likelihood (Bhat 2011), but these methods are not available in standard statistics

software and require substantial investment in programming purpose-specific code and are hence of

interest only to a small minority of practitioners. We therefore turn our consideration to simpler

models.

3.2.1.2 Multinomial Logit

The multinomial logit (MNL) model was shown to be consistent with RUM by McFadden (1974) and

is the most widely used structure within random utility modelling. The utility that person n expects

to obtain from site i is specified as:

ܷ�=�ܸ�+ ߝ� ( 1 )

where ܸ is a deterministic, linear-in-parameters component and ߝ is an unobserved utility

component independently and identically distributed (i.i.d) according to a Type I Extreme Value

distribution. The MNL approximates a joint multivariate normal distribution but is much simpler to

compute. However, the i.i.d. assumption results in the property called Independence from Irrelevant

Alternatives (IIA), which is undesirable when patterns of substitution are variable across different

alternatives (as in spatial clusters, for example). As McFadden (1978) noted, “there may be a

structure of perceived similarities among alternatives” that invalidate the assumption.

A simple way to remove the IIA property is to use a competing destinations model (Pellegrini and

Fotheringham 2002) in which the MNL utility function is amended to reflect the probability that an

alternative is evaluated. The rationale for this approach is that people do not evaluate every

alternative and are more likely to be aware of sites that are large and close. The choice probability is

therefore:

ܲ=�
݁ܮሺ݅ ܩሻ

σ ቀ݁ೕܮሺ݆ ܩሻቁ
ୀଵ
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Where ሻisܩ ሺ݅ܮ the likelihood that alternative i is in the cluster of “awareness” for individual n.

The probability of evaluation only needs to express relationships not already included in the utility

function. We test a competing destinations MNL model with an accessibility measure similar to that

suggested by Fotheringham (1983):

ሻ=�ቈଵܩ ሺ݅ܮ
ି ଵ

σ ଵ
ௗೕ


ஷ


ఏ

where K is the set of all alternatives and dij is the distance between alternatives i and j. Unlike

Fotheringham, we do not weight the measure by site population because tourist flows are

overwhelmingly inwards and many of our sites have no permanent residents.

3.2.1.3 Nested logit

Another convenient way to allow for correlation across spatially clustered alternatives is to assume a

hierarchical choice structure as in the nested logit (NL) model (Daly 1987). The set of alternatives j is

partitioned into K non-overlapping subsets called nests. The assumption is that the individual first

chooses a group (spatial cluster) of sites and the choice of site is conditional on this. The unobserved

portion of utility, ånj, has a generalized extreme value distribution and is correlated within nests. The

choice probability for alternative i is therefore:

ܲ=�
݁/ఒೖ൫σ ݁ೕ/ఒೖ ఉೖ ൯

ఒೖି ଵ

σ ൫σ ݁ೕ/ఒ ఉ ൯
ఒ

ୀଵ

where kߣ is a measure of the degree of independence in observed utility among alternatives in nest

k. The nests may be spatial areas or some other grouping that corresponds to similarity of influence

(Pooler 1998). The nested logit structure assumes alternatives are equally substitutable within a

cluster but not between them. The limitation of the nested logit is that each nest must be

exogenously specified, which can be a somewhat arbitrary division of continuous space (Pellegrini

and Fotheringham 2002). In our application we test a NL with nests for each community board area.

3.2.1.4 GEV models

Both MNL and NL are special cases of the Generalized Extreme Value (GEV) theorem of (McFadden

1978). The GEV class of models relaxes the i.i.d. assumption of the MNL by allowing the random

components of alternatives to be correlated, while maintaining the assumption that they are

identically distributed. Several GEV choice models have been developed including the cross-nested

logit (Vovsha 1997), paired combinatorial logit (Chu 1989), the generalized nested logit (Wen and

Koppelman 2001), the spatial correlated logit (Bhat and Guo 2004) and the network GEV (Daly and
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Bierlaire 2006). Multiple-level hierarchies have also been used, for example Bekhor and Prashker

(2008). The main difference between these models and NL is that nests overlap.

GEV models are very flexible and maintain closed-form expressions for choice probabilities. But this

flexibility can only be realised by estimating a large number of dissimilarity or allocation parameters

(Bhat and Guo 2004). Small (1987) noted that likelihood functions can be very flat across large

numbers of sites. Paired nests produce a “proliferation of parameters” (Train 2002) which requires

the researcher to imposed some sort of exogenous structure; perhaps by including only adjacent

pairs. The use of adjacency measures to capture similarity is based on the idea that proximate sites

are more likely to share unobserved features and be subject to competition effects, although this

ignores the issue of complementarity. True spatial correlation may not be limited to adjacent or

nearest neighbour sites.

For this study we test three variations of the general cross-nested-logit specification given by the

generator function (Bierlaire 2006):

ሻ=�σݕሺܩ ቀσ ቀߙ
ଵఓൗݕቁ

ఓ
  ቁ

ఓ
ఓൗ

ୀଵ ( 2 )

where y is the deterministic part of the utility function, j refers to an alternative in the set of all sites

K, m is a nest, µ is a scale parameter, µm is a nest-specific coefficient and ámk are the parameters

allocating sites to nests. For model A there are nests for type of site feature (boat ramp,

campground, natural dune, estuary, food retail, gravel beach, motel, playground, road access, public

toilet, urban area, seawall). Each site which possesses the feature is a member of the nest, weighted

by the number of other attributes the site also possesses:

ߙ =�
ఠೕ

σ ఠೖೖ
( 3 )

where ù jm = 1 if the site has the feature and 0 if it does not. For models B and C there is a nest for

every site. In model B the allocation parameter is a cliff-distance decay function:

ߙ =�
ௗೕ
షమ

σ ௗೖ
షమ

ೖ
( 4 )

where d is the distance in kilometres between the pair of sites and the cut-off (cliff) is á = 0.001

(d=31km). The purpose of the cut-off distance is to reduce the total number of allocation parameters

( 1,761 in this case). The cut-off distance is fairly arbitrary but we find different cut-offs make no

difference to the estimation results. In model B we instead define the allocation parameters based

on which sites are on-route to the nest site.
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ߙ =�
ఋೕ

σ ఋೖೖ
( 5 )

where j߲m = 1 if the route to site m involves driving past site j and 0 if it does not. The specification is

only feasible because of the simple loop nature of roads around the peninsula. This results in 3,104

non-zero allocation parameters. Remote northern sites end up with a lot of southern sites in their

nests. ä

3.2.1.5 Mixed Logit

The mixed logit is another generalisation of the MNL that allows for flexible substitution patterns. In

fact, it can approximate any random utility model including GEV (McFadden and Train 2000).

Complex correlation patterns across alternatives can be captured using additional random

parameters or error components (Herriges and Phaneuf 2002). Thiene and Scarpa (2008), for

example, used error components to define types of alpine sites which are believed to have a higher

degree of substitutability. We test a panel mixed logit model with correlated (across individuals and

areas) error components for adjacent community board areas; which are few enough in number to

make the model computationally feasible. Mixed logit models have no closed form and must be

estimated using simulation methods which is less efficient than GEV models. Utility for this model is

specified as:

ܷ�=�ܸ+ �ç݅ߝ�+ݖ ( 6 )

where ç is a vector of random normal terms with zero mean and standard deviation óz, zi is a vector

of dummy variables indicating the site is in the community board area and åni is still i.i.d. Gumbel.

The choice probabilities are derived by integrating over the domain of the parameter distribution:

ܲ=� ቆ ୶ୣ୮ሺା�ᇱ௭ሻ

σ ቀୣ୶୮൫ା�ᇱ௭ೕ൯ቁಾ
ೕసభ

ቇ. ሺ݃çȁózሻ݀ç ( 7 )

3.2.2 Additional spatial variables

We control for some omitted spatial variables by including dummy variables in every model for the

community board areas described above. We also test the inclusion of distance-based variables to

express the importance of amenities at other locations in the utility function (since tourists can visit

multiple sites). One model is a gravity formulation that includes a sum of “mass” terms for

characteristics of other sites in the destination, downscaled by inverse square distance decay

(Anselin 2002). However, the notion that distance functions effectively capture spatial dependence

has long been challenged (LeSage and Pace 2008). We draw on the theory of cumulative attraction
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(Nelson 1958) to develop a novel formulation in travel cost, and more relevant to consumer

behaviour.

Nelson developed the theory of cumulative attraction to explain the attractiveness of retail clusters

but it has also been applied to tourism (Lue, Crompton, and Stewart 1996; Weidenfeld, Butler, and

Williams 2010). The theory implies that multiple attractions in an area will draw more visitors than if

the sites were widely scattered. A key component is the principle of compatibility in which total

attractiveness depends not only on geographic proximity but how complementary the sites are.

Complementary sites must be dissimilar in some way, providing different experiences or services. It

seems reasonable to assume that if a nearby site has an amenity that the main destination does not

have, this will have additional value to a potential visitor. On the other hand, having additional

amenities of the same type further away may provide little (if any) additional value. We analyse site

compatibility using the multiple-destination trips in our data to confirm this assumption. We

therefore include variables for the inverse travel time to the nearest site that possesses each type of

amenity included in the utility function1. If the destination has the attribute the variable is zero.

These variables are a proxy for the distribution and diversity of the sites, a key aspect of cumulative

attraction.

4. Data Collection
The data was collected via a web-based survey from October 2013 to April 2014 designed to gather

information about the revealed and stated preferences of domestic visitors to the Coromandel

peninsula for beach recreation. We sourced participants from a pre-recruited panel of New Zealand

residents provided by a market research company and a smaller, self-selected sample from online

advertisements on Facebook and Google2. The use of a pre-recruited panel restricts multiple

participations by the same individuals and is an increasingly popular collection mode (Windle &

Rolfe, 2011). To qualify for the survey respondents had to live in New Zealand and have visited the

Coromandel Peninsula in the past year. The survey included questions about their previous and

planned beach visits, environmental attitudes, socio-economic variables and choice experiment

questions. In this paper we only report the revealed preference results. Respondents were asked to

1 Disliked attributes (non-sandy beaches and seawalls) are framed as the distance to the nearest site without these features since a

negative amenity at another beach neither harms nor benefits a tourist who is under no obligation to visit that site. There is no

distance variable for non-estuarine sites because every estuary is adjacent to a coastal beach.

2 There were demographic and attitudinal differences between the panel and advertisement samples which are discussed in more detail in

a forthcoming technical report.
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report only trips where beach recreation was the primary purpose of the trip because multipurpose

trips are not consistent with the assumptions of the travel cost method (Jeong, Crompton, and

Dudensing 2015). They indicated the location of their beach visit(s) using a Google Maps™ API tool

which provided the latitude and longitude of each visit. The beach markers were assigned to a beach

site based on proximity. We excluded markers that were outside the Coromandel Peninsula, too far

off shore or too far inland.

4.1 Definition of variables
The value of coastal recreation is highly dependent on the physical appearance of the coastal zone

(Coombes, Jones, and Sutherland 2008). So, a large number of variables were calculated for each site

including length, wide, surrounding land cover, type of sand/shingle, the presence of a stream,

suitability for surfing, length of dune, length of seawalls, headland elevation, boating facilities, public

toilets, campgrounds, playgrounds, motels, food retailers, usual population and overall development

level. Water quality monitoring data is sparse and limited to a few estuaries where high nutrient

levels are suspected, so there are no water quality variables we can include in the model. Many

biophysical variables were highly correlated or just not useful explanatory variables. For example,

almost all beaches are in close proximity to the forest park that covers the interior of the peninsula.

Pohutukawa trees with their iconic crimson flowers also add to the scenic appeal, but again, they are

everywhere. The final models include dummy variables for area, natural dune, boat launch facilities,

campground, shingle beach, playground, seawall, road access, estuary and development level.

Development level of each site is determined by adjacency to an urban area. Urban areas on the

peninsula are classified into three types by the regional authority3 depending on the size and relative

importance to the economy. There are six large towns with usual resident populations ranging from

750 to over 4000. There are eleven medium-size towns with populations in the hundreds and fifteen

small settlements which may only have a few dozen permanent residents but provide important

services such as food retail. Beaches with no buildings visible from the foreshore are coded as

“undeveloped”. Beaches with residential development outside any urban area are the base case and

are labelled as “rural”.

The travel distance and time by car between each origin and destination was calculated using Google

Distance Matrix4. As discussed above, an assumption of destination-chaining was used to allocate

travel cost amongst multiple destinations on the same trip. A standard fuel cost of 20 cents per

3 http://www.waikatoregion.govt.nz/Environment/Environmental-information/REDI/882842/

4 https://developers.google.com/maps/documentation/distance-matrix/

http://www.waikatoregion.govt.nz/Environment/Environmental-information/REDI/882842/
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kilometre is assumed, based on the assumption of $2 per litre of petrol and 10 kilometres to the

litre. For sites with no road access to the foreshore we added the additional walking time. The

opportunity cost of travel time is defined as 25 per cent of hourly household income. For the

“distance” variables in the gravity and cumulative attraction models we use travel time rather than

distance. This is because many stretches of road on the peninsula are narrow, windy or unsealed and

travel speed is variable.

5. Results
A total of 2,447 trips and 3,946 beach visits by 1,137 unique respondents are in the final data set.

The following table shows a selection of descriptive statistics. Women and people with degrees are

apparently over-represented in the sample. On-site surveys also found beach visitors were more

likely to have a degree than the general population (Thomson 2003).

Table 1 - Descriptive statistics

Measure
Count of respondents 1,137
Count of trips 2,447
Average beaches per trip 1.61
Average travel time to site (hours) 2.33
Average age of respondent 43
Proportion of female respondents 0.59
Proportion of university-educated respondents 0.47
Proportion from Waikato region 0.41
Proportion from Auckland region 0.38
Proportion from Bay of Plenty region 0.21
Proportion of visits with an overnight stay 0.39
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Figure 3 shows the relative intensity of beach visits around the peninsula with obvious hotspots

around large towns and the Mercury Bay area. It also illustrates how close the sites are to each

other. Within a 15 minute travel time radius there are an average of 6 other beaches. Almost three

quarters of beaches have an urban area within their radius.

Figure 3 – Heat map of beach visits

5.1 Site compatibility
Compatibility is defined as the proportion of visitors to site A that also visit site B. With 109 beach

sites there are a large number of potential combinations. We restrict the combinations to pairs of

sites because only 11 per cent of people visited more than two beaches and the large number of

possible three-site combinations results in miniscule compatibility measures for each trio.

Every site has a most compatible other site, and the median compatibility rating for these pairs is 29

per cent, “highly compatible” according to Nelson (1958). The average travel time between each site

and its most compatible site is 18 minutes so compatible sites are not necessarily the closest. Table II

shows visitor counts by beach development level cross tabulated with the other type(s) of sites they

visited. Visitors to large urban sites are most likely to be on a single destination trips or visit another

large urban site. These are typically two beach sites within the same urban area rather than two

different towns. Visitors to urban medium sites are most likely to also visit large or small urban sites.
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Visitors to urban small sites often also visit urban large sites. Visitors to undeveloped sites are most

likely to visit another site of a different type, most often urban large.

Table II - Visitors to other development levels as a proportion of total visitors to development level5

Unique
visitor
groups

Development type of other site(s) visited

Development level None
Urban
large

Urban
medium

Urban
small Rural Undeveloped

Urban large 1293 63% 17% 12% 14% 5% 10%
Urban medium 538 47% 28% 14% 28% 8% 17%
Urban small 546 38% 34% 27% 18% 9% 22%
Rural 389 52% 16% 12% 12% 19% 23%
Undeveloped 470 38% 28% 20% 25% 19% 15%
All sites 3236 51% 23% 16% 19% 10% 16%

Table III shows the relative compatibility of the different areas based on number of shared visitors.

Thames area has the highest proportion of single-destination visitors who visit no other beach on

that trip (74 per cent). People who visit a second site generally stay within the same area so most

cross-site compatibility ratings are low. Mercury Bay has the highest proportion of people who stay

in the area, with only 10 per cent visiting other areas.

Table III – Visitors to other areas as a proportion of total visitors to area

Unique
visitor
groups6

Area of other site(s) visited

Area None
Coro
East

Coro
West

Mercury
Bay

Tairua-
Pauanui Thames

Whanga
mata

Coro East 424 65% 24% 9% 6% 2% 2% 3%
Coro West 122 45% 32% 27% 4% 1% 0% 2%
Mercury Bay 1010 55% 3% 0% 41% 3% 1% 3%
Tairua-Pauanui 363 71% 2% 0% 7% 21% 2% 4%
Thames 255 74% 4% 0% 4% 3% 20% 2%
Whangamata 446 73% 3% 0% 8% 4% 1% 18%
All sites 2620 63% 8% 3% 20% 5% 3% 6%

We estimate logistic regression between each pair of sites to see how well the shared visitors can be

explained by site characteristics and site differences. Model 1 includes total visitor counts, travel

time and site B characteristics. The positive and statistically significant influences on compatibility

are a higher number of visitors overall (to site B), being on-route to site A, being in Mercury Bay,

Coromandel-Colville or Whangamata areas, having a boat ramp, campground, natural dune, public

5 Percentages add up to more than 100 because some people visit a second site of the same type as well as a different type

6 The total is not the same as the previous table because when people visit multiple sites in the same area there are fewer “unique”

visitors to the area



15

road access and public toilet. The negative explanatory variables are total number of site A visitors,

site B being estuarine, small or medium urban area, or having a seawall. Model 2 includes additional

variables representing differences between sites A and B. The log-likelihood ratio test statistic is

significant at p < 0.001 so the additional variables improve model fit. If site B is non-estuarine, sandy,

has a playground, or is undeveloped when site A is the opposite, this improves compatibility. Being

in a different area or a larger or smaller urban area is associated with lower compatibility. These

finding generally conform to the theory of cumulative attraction, with the exception of different

sized urban areas being less compatible. In the next section we show the destination choice model

results.

5.2 Model results
Table IV shows the results for all the models discussed above. The basic MNL model has a relatively

good model fit to the data, with a McFadden pseudo r-squared of 0.189. The travel cost parameter is

negative and significant, and the travel cost times wage interaction variable is positive, which means

that high income individuals are willing to travel further. The area dummy variables are all positive

which means every other area is preferred to Thames area. Site characteristics associated with a

higher probability of visit are boat ramp, campground, motel, playground, public road, public toilet,

sandy (as opposed to shingle or pebble) and a large urban area. The negative variables are estuary

sites (which tend to be silty and colonised by mangroves), undeveloped, seawalls and food retailers.

We expected food would be a positive variable, but it is possibly correlated with other less desirable

characteristics or poorly measured. Tourists cannot have motels and playgrounds without the

associated urban areas, but after controlling for these amenities small and medium urban areas have

a residual negative effect. The parameter for large urban areas is positive and significant in the basic

MNL model, yet negative and/or insignificant in models which include distance variables.

The competing destinations model did not offer any improvement in fit as measured by AIC and BIC.

Theta is insignificant when area dummy variables are included in the model. The gravity model (with

mass terms for amenities at every other site weighted by inverse squared travel time) is a better fit

with a pseudo R-squared of 0.205. However, some of the mass variables have negative coefficient

estimates (boat ramp, natural dune, playground and undeveloped), which is counter-intuitive. In the

cumulative-attraction-inspired model 4, the inverse travel time7 variables are all with positive

coefficient estimates, though not all significant. This supports our assumption that distance to other

7 We also tested inverse squared but the fit was worse



16

locations only matters if they have an amenity that is not found in the main visitation site, which is

consistent with a complementarity relation.

The panel error components model 5 took several days to converge and fits relatively well with a

pseudo R-squared of 0.21; although only one area random parameter is significant. There are

significant covariances between Coromandel-Colville East and West, and between Coromandel-

Colville East and Mercury Bay areas. It was not possible to estimate random parameters for every

attribute; the model was too unstable.

A nested logit model with nests for the different community board areas offered no improvement in

fit over the basic MNL with area dummy variables so is not shown below. The cross-nested logit

models with allocation parameters based on distance on on-route measures are also relatively poor

fits8. CNL model 8 with attribute-based nests fits better however, being superior to the ECL and

equal to model 4. This implies that beach characteristics are a better indicator of substitutability

than distance. Half of the inclusive value (IV) parameters are significant meaning that variance is

different across sites with different attributes. For the final model 9 we add the distance variables

from model 4 to the CNL model 8 and this improves the fit even further with a pseudo R-squared of

0.218 and the lowest BIC. Hence, based on fit to the data, model 9 is preferred. The log-likelihood

ratio test statistic is significant at one per cent when compared with model 8. Not all the inverse-

distance variables have significant coefficient estimates at 5 percent—only campground, food, toilet,

undeveloped and large urban. Both the dummy and distance variables for large urban area have

negative coefficient estimates, which implies a typical visitor prefers not to locate at or near a large

urban area all else being equal. However, the large urban areas have accommodation, infrastructure

and facilities so a lot of people visit anyway.

8 We also tried a model with nests for area but these were insignificant with area dummy variables already included in the model
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Table IV - Estimated models

Variable

1. MNL 2. MNL
(Competing

Destinations)

3. MNL
(Gravity)

4. MNL
(Cumulative
attraction)

5. ECL
(Random

areas)

6. CNL
(Distance

nests)

7. CNL
(Onroute

nests)

8. CNL
(Attribute

nests)

9. CNL
(Attribute
nests +)

Model fit

Log-likelihood -15158 -15083 -14712 -14595 -14621 -14927 -15051 -14602 -14479

Psuedo-r2 0.181 0.185 0.205 0.211 0.210 0.193 0.187 0.211 0.218

No. parameters 22 23 37 34 31 131 131 37 49

AIC 30359 30211 29499 29258 29304 30117 30364 29158 29056

BIC 30497 30355 29731 29471 29498 30939 31187 29390 29363

Travel cost -0.0775*** -0.0776*** -0.0749*** -0.0774*** -0.0834*** -0.0740*** -0.0633*** -0.0622*** -0.0642***

Travel cost x wage 0.0007*** 0.0007*** 0.0007*** 0.0007*** 0.0008*** 0.0007*** 0.0006*** 0.0006 0.0006***

Site attributes

Area CE 0.913*** 0.967*** 1.050*** 1.130*** 1.060*** 0.543*** 0.924*** 0.753*** 0.881***
Area CW 1.690*** 1.670*** 1.430*** 1.770*** 1.900*** 1.860*** 2.860*** 1.380*** 1.500***
Area M 2.200*** 2.220*** 1.640*** 1.980*** 2.390*** 2.080*** 3.420*** 1.810*** 1.800***
Area TP 0.959*** 0.923*** 0.789*** 1.160*** 0.987*** 1.120*** 1.460*** 0.880*** 1.120***
Area W 1.070*** 1.010*** 0.784*** 1.240*** 1.040*** 1.710*** 2.820*** 0.853*** 1.090***
Boat ramp 0.354*** 0.344*** 0.311*** 0.243** 0.367*** 0.540*** 0.561*** 0.244*** 0.345***
Campground 0.373*** 0.379*** 0.260*** 0.696*** 0.373*** 0.624*** 0.308*** -0.037 0.115*
Natural dune 0.049 0.039 0.397*** 0.064 0.050 -0.154** -0.168** -0.064 0.153*
Estuary -1.880*** -1.870*** -1.170*** -1.820*** -1.900*** -1.990*** -1.850*** -2.760*** -2.770***
Food retailer -0.204*** -0.192*** -0.094 0.555*** -0.214*** -0.010 -0.535*** -0.303*** 0.049
Motel 0.224*** 0.197** 0.510*** 0.115 0.240*** 0.405*** 0.474*** 0.417*** 0.429***
Playground 0.265*** 0.268*** 0.189*** 0.370*** 0.268*** 0.307*** 0.375*** -0.011 -0.045
Public road 1.030*** 1.030*** 1.070*** 1.270*** 1.030*** 1.180*** 1.130*** 0.274*** 0.456***
Public toilet 0.248*** 0.253*** 0.246*** 0.263** 0.241*** 0.234*** 0.084 -0.266 0.163**
Sandy beach 0.493*** 0.502*** 0.291*** 0.717*** 0.512*** 0.557*** 0.697*** 0.476*** 0.637***
Undeveloped -0.286*** -0.267*** -0.267*** -0.201** -0.295*** -0.018 -0.442*** -0.356*** -0.306***
Small urban -0.320*** -0.309*** -0.074 -0.369*** -0.339*** -0.447*** -0.774*** -0.729*** -0.823***
Medium urban -0.329*** -0.319*** -0.134 -0.474*** -0.341*** -0.445*** -0.552*** -0.440*** -0.687***
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Large urban 0.468*** 0.468*** -0.096 -0.368** 0.451*** -0.063 -0.237*** -0.102* -0.693***
Seawall -0.422*** -0.423*** -0.454*** -0.231 0.427*** -0.529*** -0.513*** -0.372*** -0.168**
Theta (accessibility) -0.139

Mass variables
(gravity model)

/
inverse travel

time (cumulative
attraction

model)

Boat ramp -0.851*** 1.200*** 0.371

Campground 1.290*** 2.020*** 0.898***

Food retailer 2.450*** 4.030*** 2.680***

Motel 1.140 0.355 -0.075

Natural dune -0.634*** 0.616* -0.058

Playground -1.630*** 0.520 -0.279

Public road -0.327* 0.010 -0.012

Sandy beach 0.181 0.312 0.281

Public toilet 0.045 0.420 0.598**

No seawall 0.634*** 2.830*** 1.030*

Undeveloped -2.860*** 0.292** 0.280**

Large urban -0.069 -5.140*** -2.970***

Random
parameter
standard

deviations

Area CE 1.120***
Area CW 0.046
Area M 0.067
Area TP -0.057
Area W 0.447

Random
parameter

covariances

Cov(CE, CW) 1.090***
Cov(CE, M) 1.110***
Cov(M, TP) 0.028
Cov(TP, W) -0.218
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5.3 Scenario
We analyse a hypothetical scenario to illustrate the difference in predicted market share between

the simple MNL model 1 and preferred model 9. The scenario involves the closure of the popular

camping ground at Hahei beach. As coastal property values increase it is not uncommon for camping

grounds to be sold and developed with houses or apartments (Collins and Kearns 2010). Table V

shows the ten sites with the largest percent change in market share. Model 1 predicts this would

result in a 29.6 percent decrease in market share for Hahei, with visitors redistributed all around the

peninsula. Model 9, instead, predicts a smaller effect at Hahei (possibly because there is another

campground a few kilometres away) and negative impacts at several beaches on the far side of

Hahei (Gemstone bay, Stingray Bay, Cathedral Cove and an un-named bay). Model 1 completely

ignores the likely impact on visitors of these undeveloped beaches near Hahei, many of whom will

want low-cost accommodation nearby.

Table V – 10 most affected sites

Current Market
share

% Change in market share
Site Name Model 1 Model 9
Hahei 4.7% -29.6% -10.5%
Gemstone bay 0.5% 2.2% -20.8%
Stingray bay 0.3% 2.2% -18.4%
Cathedral cove 2.0% 2.4% -17.0%
Unnamed bay near Hahei 0.1% 2.2% -14.2%
Orua Bay 0.2% 2.1% 7.2%
Red Bay 0.2% 1.4% 5.4%
Humbug bay 0.0% 1.4% 5.1%
Waikawau river estury 0.4% 1.3% 4.1%
Lonely bay 0.7% 2.1% 3.8%

6. Discussion & Conclusion
There are many several different modelling options for addressing the issue of spatial correlation in

destination choice data, but not all of them are feasible or even practical for a study modelling

choice between 109 alternative sites. By analysing site compatibility we ascertain that people on

multiple-destination trips tend to visit sites that are close together, but different in terms of

attributes. We find that a cross-nested logit model with nests defined by attributes fits better than

paired distance-based nests. Once included, attribute distance variables improve the fit further. The

total improvement in model fit is small but the preferred model appears to generate more intuitive

patterns of substitution in response to a change in attributes at one site, making it more useful for
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policy analysis. Our recognition of the importance of complementary differences between sites is

apparently rare in a literature that appears to be more focussed on unobserved similarities.

The expanded model with inverse distance variables also highlights the importance of site diversity

in a context where multiple-destination visits are the norm. Being near a food retailer and near a

completely undeveloped beach both have value but are mutually exclusive at a single destination.

Care should be taken to preserve remaining undeveloped coves near more developed areas, since

this is where they will have the highest recreation value. New coastal housing developments, on the

other hand, have the potential to reduce the cumulative attraction of the wider area. When

considering a change to the coastal landscape or services offered there, decision makers should

consider the distance to substitute sites and services of a similar type.

Cumulative attraction implies destination marketing is likely to be most effective when cooperative

rather than competitive strategies for tourism are developed in the same area (Hunt and Crompton

2008). The Coromandel regional tourism operator meets this need with an apparently successful

marketing strategy for the whole peninsula9. Individual tourism operators could also use more

cooperative strategies.

One issue we do not address in this paper is visitor heterogeneity. Individuals have different

motivations and preferences—some prefer secluded and natural coastal landscapes while others

want family-friendly destinations with plenty of services. However, there is no information source

about the incidence of these preferences in the population. So, we only include an income

interaction variable in the models. We are primarily interested in explaining overall market share of

the sites. Future research may investigate whether and to what degree the importance of

cumulative attraction varies amongst different types of visitor. For example, some visitors may

prefer to go to one destination and stay there, while others want to experience attractions of the

wider area.
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8. Appendix
Table VI – Logistic regression of the number of visitors to site A who also visit site B

Model 1 Model 2
Intercept -4.6278*** -4.2584***
Site A total visitors -0.0014*** -0.0005**
Travel time between sites -0.0386*** -0.0380***
Site B Characteristics
Site B total visitors 0.0057*** 0.0058***
Site B is on-route to Site A 0.4846*** 0.4706***
Mercury Bay area 1.2012*** 1.1896***
Tairua-Pauanui area -0.0698 -0.1466
Coromandel-Colville East 0.2228** 0.1958**
Coromandel-Colville West 1.0736*** 1.0234***
Whangamata Area 0.3704*** 0.2615**
Boat ramp 0.3661*** 0.3710***
Campground 0.2527*** 0.2191***
Natural dune 0.3331*** 0.5546***
Estuary -1.0611*** -0.9835***
Food retailer 0.1609*** 0.1237**
Shingle or pebble beach -0.0404 0.0061
Motel -0.0871 -0.1553
Playground 0.0763 0.0523
Public road access 0.9124*** 0.9287***
Public toilet 0.1463*** 0.1833***
Undeveloped -0.1382* -0.2835***
Small urban -0.1460** -0.1750***
Medium urban -0.2263*** -0.3274***
Large urban 0.0215 -0.2286***
Seawall -0.2994*** -0.2736***
Differences - characteristics possessed by Site B but not Site A
Different area -0.2631***
Boat ramp -0.0161
Campground 0.0605
Natural dune 0.4269***
Food retailer 0.1023*
Not on an estuary 0.2883***
Sandy beach 0.2349***
Motel 0.0868
Playground 0.1110**
Public road access 0.0298
Public toilet -0.1885*
Undeveloped 0.3458***
No seawall 0.0224
More developed -0.1903***
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Less developed -0.6058***
Observations 11881 11881
Null deviance 21850.9 21850.9
Residual deviance 8175.7 7881.3
* significant at 10%, ** significant at 5%, *** significant at 1%


