

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

gRazing on Twelve dairy farus
 OUTPUT AND EXPENDITURE, 1952

C. W. ROBERTS

GRAZING ON TWEIVE DAIRY FARMS
OUTPUT AND EXPENDITUBE,1952

6 BLYTHSWOOD SQUARE,
GLASGOW, C.2.

A study of the grazing on twelve dairy farms was carried out in 1952 by the Economics Department of the West of Scotland Agricultural College in collaboration with their County Adviser colleagues in Ayrshire, Kirkcudbrightshire, Lanarkshire, and Wigtownshire. . Foot-and-mouth disease hindered the enquiry, which had been requested by the Scottish Agricultural. Improvement Council.

Probably the most surprising thing about these farms was that although they were selected for study because the County Advisers thought their grassland management of a fairly high ordor, the productivity of their cow pastures in the season of 1952 was on average barely 5% above the national annual average for all grass in the United Kingdom. However, high production was obtained from many fields, and the methods employed on these fields (as well as those used on the fields that did not do so well) are worthy of study.

The farms that got most out of the fields which they grazed with cows were the following. They are arranged according to the estimated feeding value per acre yielded by the fields mainly used by cows.

FARM A
A Wigtowshire farm with a long grazing season and winter-dry cows, applying no nitrogen directly to the grass but encouraging clovers to provide nitrogen, never eating fields bare, and generally giving the cows access to about two-fifths of an acre a cow at a time. All the grass on the farm was grazed. On the cow pastures the coms gave 619 gallons an acre and oharges for manures were 27/- an acre. Although the level of production from grass on this farm is high; it is possible that production towards the end of the season could be improved by modified manuring and management. If $s o$, this would enable some concentrated feed to be dispensed with towards the end of the season.

FARM B Another Wigtownshire farm with a seven-months season, using the equivalent of $1 \frac{1}{2}$ cowts. Nitro-Chalk an acre on its grass, and much more of non-nitrogenous manures than Farm A, strip grazing, and mowing for silage or hay as opportunity arose. " Manure oharges were nearly $£ 5$ an acre. At 289 gallons; milk produced an acre was not high; but in adaition, more than 300 gallons of milk could have been produced from the food value in hay and silage taken from the cow fields.

FARM © An Ayrshire farm with a shorter season, using the equivalent of 8 owts Nitro-Chalk backed up by adequate non-nitrogenous manures; and strip grazing, grass drying, ensiling, or making into hay as seemed best. On the fields grazed by cows manure oharges were about $£ 9.10 \mathrm{~s}$. an aoro; the cows gave 246 gallons an acre; and more than 600 gallons of milk per acre could have been produced from the food value in hay, silage and dried grass taken from these fields.

FARM D Another Ayrshire farm, the Auchincruive Farm of the College itself, using adequate and well balanced manures and managing grass and cows so that the cows went into the byres well prepared for high winter production. Though the season was only 6 months long, (about the average for these twelve farms), the cows gave 538 gallons an acre when on the cow pastures. The fields were grazed in rotation and their relatively small size facilitated control of roughness etc. Manure charges on all the fields: studied averaged just over $£ 3$.

FARM E A Lanarkshire farm on heavy clay in the industrial belt, and using rather more manures, at a cost of 65 an acre, with fields split up to give good control and permit rotational grazing. Milk production from the cows on the cow pastures was 333 gallons an acre.

Another Wigtownshire farm, using less manure than any of the foregoing, but using an electric fence to ration the heaviest grass, partly to avoid bloat, and partly to avoid waste. Manures cost about 24/- an acre on all fields covered, (only 13/- on the cow pastures), and milk from the cows on the cow pastures averaged 348 gallons an acre.
The six farms which produced less an acre were the following.
FARM G A high Ayrshire farm bordering on a moss. 232 gallons an acre were yielded by the cows on unmown fields. These were grazed extensively and cost 30/- an acre in manures.

FARM H A good Ayrshire farm, building up its dairy herd. On the cow pastures, grazed extensively and costing 23 shillings an acre for manures, the cows produced 286 gallons an acre.

FARM J A Kirkcudbrightshire farm with patchy, rather poor, soil which introduced additional probloms in the use of the electric fence. Manures cost nearly $£ 5$ an acre on the strip-grazed cow pastures, on which the cows gave 283 gallons an acre.

FARM K A high Lanarkshire farm with some peaty soil, using the equivalent of 2 cirts. Nitro-Chalk an acre on the cow pastures, with adequate other manures. On one field, split into small paddocks and grazed almost exclusively by cows, manures cost 92/- an acre and the cows gave 324 gallons an acre.

FARM 工
A fairly big Lanarkshire farm with most of the grass on a black peat subject to water-logging in parts. Manuring was relatively light, costing £1 an acre on the cow pastures and, so far as manures applied directly to the grass on these fields wero concerned, consisting only of Nitro-Chalk on the one field which was split into relatively small paddocks. Although the cows on this split field yielded over 600 gallons an acre, their average yield on the cow pastures was under 330 gallons an acre.

FARM M
Another Lanarkshire farm, of only 86 acres, standing over 800^{\prime} above sea level and bordering on a moss. Here the main objective is high production of winter milk from the 27 cows. On those cow fields Which did not include any rough grazing, manures cost about 50/- an acre, the day pastures were split into small paddocks for rotational grazing, and the cows yielded 295 gallons an acre. Having regard to the soil and climatic conditions and the importance of winter milk production, production was good and cost por cwt of feeding value provided by the grass on the cow pastures was only slightly above the average for all the cow pastures studied.
Note: All the foregoing figures for manures are at standard 1953 prices.
Judging by the cost per owt of feeding vaiue (starch equivalent) derived by the cattle from the cow pastures, these farms. fall into the following order, Farm B being omitted because all its fields were mown at some time:

I (where costs per cwt of S.E. were 4/-), A, F; G (where costs per owt of S.E. were about the average of 6/5), H, D, M, E, K. J, C (where costs per cwt of S.E. were 14/4).

The list demonstrates fairly well that the cheapest producer is not necessarily the most successful where land is limited.

The findings of this study do not show that manuring always paid handsomely. For example, the third highest yield came from a field that had received the second lowest outlay on manures, and the 8th lowest yield occurred on a field receiving the second highest outlay on manures. Nevertheless there is clear evidence that good management of grassland, including manuring and controlled grazing and the utilization of grass surplus to the needs of the grazing stock, yielded good returns to these very varied farms.

That grazing is a very chenp source of food is well known and its cost is shown by this enquiry to be roughly a quarter of the cost of other homegrow foods in general. Even when the grazed grass cost more than twice as much as the average, as on Farm C above, the milk production was likely to be more profitable than if the grass had been less intensively treated and more foods had had to be bought.

On three of the six farms listed above, strip grazing with the aid of the electric fence was an essential foature of the management. On five others additional fencing (electric or other) was the means of improving the production from grass. Despite the fact that, for reasons fully described in Report 12 of the Economics Department of the College, two of the seven decided not to use their fences for rationing ordinary grazing in 1953, the general conclusion is that electric fencing solved many problems.

The full report on this enquiry contains 8 pages of text, 4 of definitions, 10 of general tables, 2 of diagrams, 14 pages of general description of the grass on the individual farms and 13 of tables about the individual grass fields. It gives many details of stocking, production, manuring, and total costs, and shows how much of tho milk was produced from the grass as distinct from hand feed; and though the report does not make oasy reading it contains information of value to those who wish to make the most of grassland, whether on their own farms or in the country as a whole.

SUMMARY OF THE REPORT

The following paragraphs sumnarize the main figures. In this sumnary, in which no attempt is made to define the tems used, figures are not givon for individual fields, each farm's fields of a particular kind being troated as one. (Note: ifinure costs in this Sumary are not at 1953 prices.)

Of the twelve farms studied, 4 were in Ayrshire, 4 in Lanarkshire, 1 in

Fields used chiefly by cows and not mown
On average the grazing season lasted from about 28th April to 25 th October, with a total of 184 days on average. It varied between the farms from 168 to 238 days.

On 47 fields which were chiefly used for cow grazing the average numberof acres needed to carry a oow for a season of 184 days was 1.26 (approx. $1 \frac{1}{4}$). More correctly the number of cow-days per acre during the season averaged 146 (for a season of 184 days). From farm to farm the average varied from 110 (for a season of 168 days) to 204 (for a season of 238 days).

During the season the total milk yielded by cows at pasture on these cow fields averaged 376 gals. per acre, varying from 181 to 644 .

Counting in young stock and sheep and oquating these to dry cows, the number of stock (in tems of dry cow days) per acre was 164 and varied from 122 to 223.

Then deauctions are made for the cattle which could have been maintained on the hay and other bulk foods fed to the grazing stook during the gmzing season, the number of stock carried (in terms of dry cow days) was 150 per acre on average; it varied from 120 to 179.

Making similar deductions for the milk which could have been produced from the concentrated foods fed to the stook during the season, the number of gallons produced from the grass itself, was, on average, 302 per acire; it varied from 122 to 515.

It is estimated that the fooding valuo dorived by the stock from the grass itself was equivalent on average to 17.8 owts starch equivalent, varying from 11.5 owts to 24.7 owts.

The 1952 share of the cost of manures on these fields, whether applied in 1952 or in previous years, averaged $44 /$ - per acre and varied from $20 /-$ to 108/-; and total costs of producing the grass, erecting electric fences and so on (but not the costs of the electric fence equipment) averaged $£ 5.13 \mathrm{~s}$. per acre, and varied from £4.19s. to £12.16s.

Fields mown and grazed

Similar figures for 26 fields mown and grazed were also arrived at for 9 of the farms.

On these fields the cows were carried for only part of the season. During this part of the season the average number of stock carried was equivalent to 94 cow days per acre for that part season; it taried from farm to farm from 19 days to 163 days.

While grazing these fields the cows gave 130 gallons of milk per acre on average, varying from 44 gals. to 289 gals.

If deductions are made for concentrated:and bulky foods fed and when the feeding value of the hay, silage or dried grass produced is added in, the total feeding value derived from the grazing and from the harvested grass is estimated to have been equivalent on average to 23.9 cwts. S. F., varying from 16.0 owts. to 33.5 owts.

Net costs of manures on these fields averaged $£ 5.2 \mathrm{~s}$. per acre and varied from £1.19s. to £10.13s. Total costs (excluding depreciation of - . electric fences and excluding costs of harvesting and making hay, silage or dried grass) averaged $£ 9.11$ s. per acre, and varied from $£ 4.13 \mathrm{~s}$. to £18.15s.

Flolds grazed chiofly by young stock otc. and not mown

On 12 fields grazed principally by other stock than cows and not mown usually fields of lower quality than those used for cows - costs and output were in general lower. On average, the estimated feeding value derived by the stock is put at 11.4 cwts S.E; manures cost $£ 1$. 7 s . per acre añ total costs were £5.

All these fields

Excluding. the cost of harvesting the grass that was mown, and excluding the quite small depreciation of electric fences, the cost of producing the grass on the whole of the fields covered (other than rough grazing) can be put at $7 / 4$ a cwt. S.E. This is roughiy a quarter of the nverage cost of n other homegrown cow foods of similar protein content, which is estimated to be about $31 /-$ a cirt. S.E. at 1953 prices. Even when costs of harvesting and conserving are allowed.for, grass is a relatively inexpensive food.

All the seven farmers who used eleotric fences were satisfied that the fencos had enabled them to use the grass concerred more efficiently than they could have done without the fonoes. There were, however, no trials of ordinary grazing and restricted gmaing on identically treated land. It has been impossible, thetofore, to make direct comparisons of costs and returns from the use of the fences. For similar reasons it has not been possible to compare the efficiency of rotational grazing with that of ordinary grazing. Two of these seven farmers dooided in 1953 that the advantages of the fence (except on foggage) were not sufficient to outweigh its disadvantages; but the other five were still satisfied with its use.

It is suggested that a study of individual farms over several years might well lead to valuable comparisons of altormative methods.
Origin of the study and acknowledgments 2
Scope of the enquiry 2
Method of recording and calculating the grazing 2
The recording 3
The farms 3
The grassland 4
The weather
4
Kinds of manures
4
4
Expenditure on manures
Expenditure on manures
5
5
Seeding and seed mixtures 5
Stocking the pastures
6
The stock carried
6
6
Milk produced
Milk produced
6
6
Seasonal variation in production 7
The cost of starch equivalent 8
Did manuring pay? 8
The return from high total expenditure 9
Controllod grazing 9
Field to field variations 9
Summary 10
Appendix I. Definitions and notes (1) Age of pastures 12
(2) Cow days 12
(3) Stock units 12
(4) Young stock F 12
(5) Met. stock units 12
(6) Net gallons 12
(7) Apportionment between fields 12
(8) Starch equivalent from grazing 12
(9) Starch equivalent harvested 13
(10) Starch equivalent produced 13
(11) Standard cow 13
(1.2) Acres per standard cow 13
(13) Net cost of manures 13.
(14) Manures used up, quantities 14
(15) Standardized net cost of manures 14
(16) Cost of the grass 14
(17) Cost per Cwit S.E. 15
(18) Acres per cow at poak 15
(19) Length of season 15
(20) Rest periods 15
(21) Winter grazing 15
(22) Rounding of numbers 15
(23):Averages 16
(24) Field to fiold variations 16
Appendix IT. Tabies: 1. Utilization of the grassland 17
2. Ages of the pastures 17
3. Kinds of manuresused 17
4. Cost of manures applied: distribution table 18

7. N, $P_{2} \mathrm{O}_{5} ; \mathrm{K}_{2} \mathrm{O}$ \& CaO used up (crvts.) : do. 19,20
8. Itcmised average cost of production of grass 21
9. Net costs per acre: distribution table 22
10. Stock carried: do. 22
11. Gallons produced: do. 22 22
12. Starch cquivalent produced: do. 23
13. Production month by month: cow fields 23
14. Averages for the several farms:
(a) Genoral details and averages for cow fields
(b) Averages for young stock fiolds 25
(c) Averages for fields mown and grazed 26
Figures: 1: Relation of cost per acre to production per acre 2
2. Weckly production per acre: Farm W2.28

In response to a request made by the Scottish Agricultural Improvement Council in December 1951 that the College might collect information about the economics of the intensive management of grassland on farms where it was already practised, it was arranged that a study of the methods and results of intensive grazing on a few farms should be made in 1952. Under this arrangement the staff of the Economics Department of the College, already in touch with dairy farms during costing studies, were to do most of the field work, while the County Advisory staff were to collaborate on the more technical aspects of the enquiry.

The farmers who provided the very detailed information and gave facilities for inspection of their fiolds prefer to be anonymous: the County Advisers whose work is represented in this report are Dr. Robert Laird, (Ayrshire), Ifr. Ian Mitchell, (Kirkcudbrightshire), Mr. James Walker-Love (Lanarkshire) and Ne. John Wilson, (Wigtownshire). The fieldwork and preliminary tabulation of results were done by Miss ir.K. Bowie, Mr. I.J.H. MacLennan, Miss G. Picken and Mr. Reil. Sturgeon. To all these, to other colleagues with whom points have been discussed, and especially to the farmers concerned, sincere thanks are tendered.

The scope of the enquiry

The general plan of the enquiry was to study the methods of grassland management, the expenditure on manures ctc, and the output obtained in 1952.

In order to use the limited resources of staff to best advantage it was agreed that the study should not cover the problems of the production of grass for preservation or of preservation itself. Since, however, the modern tendency is to harvest a movn crop from a pasture if growth is likely to be beyond the capacity of the livestock which can be brought to the field, it was nocessary to include in the survey fields which were mom in such circumstances. In general, nevertheless, the onquiry was to be concerned with pasturage. On some of the farms stocking arrangements were so intricate that it was necessary to limit the recording to the fields grazed by cows.

There are difficulties in arriving at sound estimates of the value obtained from grazing, even when comparisons are to be made amongst pastures all used for the same sort of grazing stock; but when the stock varies from deep-milking cows on the one hand to dry, in-calf cows, young stock, and sheep on the other hand; when the amount of supplementary food fed varies from a full ration to nothing; and whon the land and climate vary from rich soils of Ayrshire and the favourable climate of Vigtownshire to upland pastures of high Lanarkshire; then any attempt to find a measure of production and of the relation of production to expenditure is bound to be very difficult. The actual recording is itself nocessarily fairly detailed, if expenditure and return are to be oxamined on individual fields as distinct from whole farming units.

The method of recording and evaluating the grazing

On whatover fields were studied the type of seeds mixture used was to be ascertained, as also were the age and longth of the lea, the rotation and method of seoding, the manuring and cultivation practices, the system of stocking and controlling grazing, and the methods of removing surplus grass. Notes vere to be made of any apparont effect of the system of management upon the herbage, and estimates were to be made of the total production of grass, of the feeding value obtained from the pasture, and of the cost of production of the grass. These were to be based upon records of the numbors of stock carried from day to day, of bulky, and concontrated foods fed to the grazing stock and on estimates of the weights of grass crops harvested.

The number of each class of livestock grazing day by day and night by night on each field was noted and the number of gallons of milk yielded and the weight of each kind of food used was recorded. Later the grazing, milk and food wore apportioned betwoen the fields used in any 24 hours; this apportionment was made on the assumption that a night's grazing was as valuable
as a day's grazing, and that ordinarily the individual outputs of fields grazed together were of equal quality and quantity per acre. When cows were housed at night and grazing during the day the fields were credited with the full day-and-night's grazing and milk. The numbers of cows and of other stock carried were converted on the scale set out on p .12 to stock units, the stock unit reprosenting the daily requirements of a dry Ayrshire cow. These figures appear in the later tables as Stock Units.

Because all farms used some feed at some time during the main grazing season the next stop was to subtract from the stock units carried the stock units that could have been supported by the bulk foods used for the stock. Similarly the milk production (in gallons), was reduced by the gallons of milk which could have been produced from tho concentrated foods fed. These two steps resulted in the Net Stock Units carried and the Not Gallons produced which the grass itself provided for.

These two quantities of Net Stock Units and Net Gallons were then combined into their estimated equivalents in terms of the starch equivalent necessary to maintain or produce them. The assumption is that this starch equivalent represents the feeding value which the cattle themselves derived from the grass. (In some studies of grazing this has been called the Intake of Starch Equivalent from Grazing).

The use of the well established concept of the starch equivalent has seemed to be the most convenient and generally acceptable method of appraising production. This is not, however, to say that its use is entirely satisfactory. For it certainly does not take account of protein production (except in so far as protein itself is equivalent to starch in energy production), and all average relationships cover vide variations. Any attempt to include an assessment of protein production would have made the enquiry too complex.

Where grass crops wore harvested the estimated yields of these crops were converted to their estimated starch equivalent content. : This starch equivalent harvested was added to the starch equivalent.represented by the net stock units and the not gallons produced, to give the starch equivalent produced by the pasture during the grazing season.

The recording

Plans were made for the membors of the Economics Department to visit the farms frequently to assist the farmers and, if necessary, to make up the records. However, in early May, when the risk of spreading foot-and-mouth disease had made visits undesirable, this arrangement was cancelled. Although most of the individual farmers and their assistants carefully maintained the records of the grazing, there were some gaps in the records which had to be repaired rather late in the season.

This report

This report.: has been written with a view to meeting the wishes of the County Agricultural Advisers for as full information as possible, to supplying basic information and comments to the Agricultural Improvement Council, to giving back to the co-operating farmers themselves some of the valuable information thoy provided, and to providing a background for further work.

The farms

In all, the grazing on 12 farms was studied. Four were in Ayrshire, four in Lanarkshire, one in Kirkcudbrightshire and three in Wigtownshire.

The quality of land as measured by rental value of the farms varied from about 13/-per acre to about 40/-. Of the fields used primarily for milking cows the estimated rent varied from $13 / 4$ an acre to $40 /-$ and averaged 26/- an acre.

All twolve farms were dairy farms, with herds ranging in size from 26 cows to 113 and averaging about 50 cows. The proportion of ground under arable crops varied from 8% to 44%, the middle proportion being about 25%. The proportion of winter milk varied from 27% to an exceptional 63% and averaged about 45\%. Only one of the farmers had intentionally based his

4

farming on high summer milk production with low winter production.
Average daily milk yields while at grass covered by these records, averaged 2.1 gals. and ranged from 1.77 to 3.14 gals . a head. The fact that on three farms some dry cows were either grazed on other fields than those for which records wore kept or grazed elsewhere, would not greatly affect the average daily yield per cow. Annual yields per cow in herd averaged 850 gals . and varied from 650 gaIs to 950 gals.

The grassland

Table 1 in Appendix II of this report, shows that these 12 farms had a much higher proportion of their grass in temporary leas than the average for their four countios and mowed a greator proportion than the average. Ordinarily, that would indicate a higher intensity of operation.

As already mentioned, some of the grassland on some of these farms was omitted from the survey. Of the fields that were covered by the enquiry, 30% were in their seventh or later year, and 30% had been sown within two years of 1952. Over half the fields had been sown in 1948 or later. The wholly grazed fiolds were on average somewhat older. (Table 2).

The soil types varied from deep rich loams and heavy clay to thin soils on rock and on peat. A short reference to the soil type on each farm is made in Appendir:III.

The weather of 1952
Because temporatures were slightly higher than usual in March, April and May, the main grazing season of 1952 commenced about a week carlier than usual, and some three weeks earlier than in 1951. But whereas the 1951 season extended about a month further into the autumn than usual, in the year under review cold wet woathor in October and cold snaps in November brought the season to a close somewhat earlior than usual. Abundant rain and the spring warmth gave an exceptional growth in May and June, and the yiold of grass during 1952 was generally reckoned to be higher than usual. This was said not to apply to the Kirkcudbrightshire farm.

The unusual season, combinod with restrictions on the movoment of stock becauso of foot-and-mouth disoase risks, made the stocking during this season somewhat untypical. Even if the weathor had beon normal, a single yoar's study could not. be oxpectod to yield the sounder information that would be obtained from sovoral years' study of the same fields.

The kinds of manuros used 1952

Table 3 indicates the manuros (other than lime) applied to the grassland of eleven of the forms. (The twelfth farm applied no manure but Nitro-Chalk). The table shows how important were Nitro-Chalk, ground mineral phosphate, potassic superphosphate, and potassic mineral phosphate, and how more usual it was to use potato fertilisors than specific grass fertilisers. At 1953 prices those compound fertilisers cost about 45% more than "straight" fertilisers of the same gross content would have done, a difference largely due to greater solubility of phosphates and partly due to the handier form of the manures.

The average dressings on the grassland of these eleven farms were roughly equivalent to the following: .

Nitro-Chalk	1.7	cwts por acre.		
Ground mineral phosphate	1.7	$"$	$"$	$"$
Iruriate of potash	0.5	$"$	$"$	$"$

The oxpenditure on manures

Table 4 shows that over a quarter of the fields studied received no manure in 1952. On half tho fields the exponditure on manures applied in 1952 was no moro than $£ 2$ an acre. Over £8 an acre was spent on applications to 10% of the fields.

Because much manuring of a season's grass is done ináirectly by
applications in earlier years, exponditure on manures may best be measured in terms of the cost of the manurial ingredients which are considered to have been, in the yoos, oither usod up or rendered of little value to lator years. The proportions of manures which are considered to have boon used up or rendered of little valuo are set out at page 13 in Appendix I. The same proportions were written off whatever the weight of crop removed and no allowanco was made for manurial value received from the feed fod. It is recognized that some allowance might properly have been made for the fact that hoavy crops of grass would probably remove more of the manurial residues and applications than lighter crops would do. Table 5 shows the variations in these manure costs per acre, based on the actual past costs on the several farms, and Table 6 shows the similar distribution of manure costs had all the manures used up been bought at the unit prices set out on p.14. As the note on p. 14 says, a large part of the differences between Table 5 and Table 6 is due to the omission from Table 6 of nitiogen applied in dung in 1951 and earlier yoars, while a share of the cost of this is included in the costs of Table 5.

The cost of manures used up at 1953 prices on four fields exceeded $£ 10$ an acre. On practically two-thirds of the cow pastures this cost was less than the average cost of typical dressings considered to be in koeping with normally good practice in this province.

The variations in the quantitios of the four main fortilizing ingredients which were used up in the year are shown in Table 7. Factors for converting these quantities into terms of actual applications are given on $p .13$. It is not possible to consider the balance of the fertilising progranme in detail from these tables. This is possible, however, from the details for each field in Appendix III about the individual farms, and in Table 14 which summarises the main facts for each farm. On average the cost of manures applied in 1952, and the net cost chargeable to 1952 for all manuring of the fields (a) using actual past costs and (b) using 1953 standardized prices were as follows:

	Shillings per acro		
	Actualapplicationsof 1952	Share of a.ll past and current manuring	
		(a) At Cost	(b) $\text { At } 1953 \text { pricos }$
Fields not mown: mainly grazed by cows not all such fields	39 27 36	44 38 43	$\begin{aligned} & 41 \\ & 33 \\ & 39 \end{aligned}$
Fields mown: Fields sowm out in 1952	109	$\begin{array}{r}\because 102 \\ \hdashline 123\end{array}$	94 96

Only four of the farmers applied nitrogon during the summer of "1952.
Total not costs of growing the grass
The total of costs chargeable for growing the grass averaged £5.13s. per acre on all fields chiefly grazed by cows, $\mathfrak{A l} 418 \mathrm{~s}$. on all fielas chiefly grazed by other stock, and $£ 9.11 \mathrm{~s}$, on all fields mown. The constituents of these - average figures are set out in Table 8. The comparable figure obtained for 8,300 acres of grazing mainly used by cows covered by the Milk Cost Investigation of this department in 1952 was $£ 6$. 2s. The chief cause of the difference between this $£ 6$. 2 s . and the $£ 5.13 \mathrm{~s}$. above was the higher charge in the milk cost sample for a share of sow-out costs.

Table 14 indicates how low was the average expenditure on Farm L3. This farm was included in the study because it was trying out the paddock method on one of its fields - a field that did very well.

Seeding and seeds mixtures
While it is recognised that the management of a pasture in past years may have had a profound influence upon the botanical composition of the sward, the information collected about seeds mixtures has been summarised in tho III Appendix about individual farms and fields. As is to be expected perennial
ryegrass was present in nearly all the seeds mixtures noted. Mieadow fescue seemed to be gaining a place. Special strains of seeds were mentioned fairly ofton and occasionally the mixtures had been recommended by the County Adviser.

Some of the farmers, particulerly those with little ploughed land, were reluctant to break postures. Their reasons were: soil conditions did not favour the re-establishment of swards, a tillage crop or two vould usually be less valuable than the grass which would be foregone, and the work of cultivation and crop harvesting would be diffioult to fit in.

Stocking the pastures

The numbers of stock on these fields other than dairy cows and their followers were very small; for these were dairy farms seeking to make the most profitable use of their own home grass. With this end in view, six of the farms sumnered young stock on other farms. On another four of the farms some young stock were grazed on fields not coverod by the records. Indeed, only two farms kept all their grazing stock on the fields covered by the study. One of these two considered that controlled grazing enabled him to avoid summering expenses elsewhere while still keoping the number of cows in his herd at the optimum level.

Controlled grazing, if practised at all, was operated in early weeks until the main flush of grass had passed and was reinstituted when the foggage was ready. On the farms with autumn calving herds where summer manuring was practisea, at least one field was left without top dressing so that cows could have a relatively bare pasture for drying off.

Four farms practisod topping of pasturos, usually in June.

The stock carried

In terms of stock units (i.e. the no. of days for which the oquivalent of a cow was maintained) the stock carried per acre during the season on fields not nown varied fron under 50 to over 400. The average was about 160. The highest nuriber was on a very small field that was heavily manured and strip grazed before being ploughed up for resceding in auturn, 1952 and the lowest on a poor rocky field used principally for young and dry stock. Table 10 shows that 250 stock units per acre was exceeded on about one twelfth of the cow fields. About half of these cow fields carried the equivalent of a cow for between 100 and 170 days per acre. These figures are influenced by the length of the grazing season. Making allowance for the length of the season on each farm it may be said that about one third of these fields carried the equivalont of a cow or more for the season.

It should not be inforrod from Table 14 that, because the number of cow, days per acro on theso fiolds was 146 during a season of 187 days (omitting Farm Wh for this purpose), 128 acres of these fields would carry 100 cows with their followers for the season. This is not true; for the stock usually on those fields were sometimes on other grass especially foggage. If foggage had not been available, the management and stocking of these ficlds would clearly have been different, oxcept on Form W2.

Milk produced

On about a quarter of the cow fiolds cows produced over 500 gallons per aore, and on about a quarter the production was under 240 gallons. The average was about 376 gallons (Table 11) and the highest over 800. The net gallons producod averaged 302 gallons. On one field it reached nearly 600 gallons.

Starch equivalent produced

After making allowance for the estimated feeding value of hay, silage or dried grass harvested from the pasture, and after making deductions for foods fed to the cattle during the grazing scason, and making the assumptions set out on p. 12 about the food required by the stock to live, eat and move and produce the milk yieldod, the average combined output of starch equivalent from the grass has been estimated at just under 18 owts from fields chiefly
used by cows, about $11 \frac{1}{2}$ cwts from fields chiefly used by young stock, and 24 owts from fields mown. (Table 14): The estimated yield varied widoly, about a quarter of all the fields producing less S.E. than a cow in full milk would need in 100 days, 2 fiolds producing more then such a cow would need in 300 days, and about 60% of the fields producing moro than the estimated average output from U.K. grassland which has boen stated to be 17 cits.. (Tablc 12).

It is recognisod that some allowance should properly have been made for avorage liveweight increases or decreases in the cows and for the rather lower than average requirements for maintenance $\quad \therefore$ by the small Ayrshire cows on Farms W2 and W3, or for the lower than average requiroments to cover the effort of grazing, when cows aro on lush pasture, or for the higher presumable requirements of cows walking long distances on hard roads. These all could properly have been allowed for, but were not. So ought the fact that most fields are not exactly the whole acres which have boen recorded. Nevertheless it is suggested that the avoraged figures are raasonable estimates. They necessarily reflect the offocts of varied efficioncy in cows and management.

The numbor of Standard Cows per acre quoted in the particulars about each farm is a convonient way of expressing the net production of starch equivalent from the grass of those forms. This is a conventional, rather than practical, concopt; for the actual food demands of a hard which gave 2.4 gallons a day on average would vary from day to day according to the calving pattern etc. and would be unlikely to be met each day of the grazing season by the grass itself. None of these farms left all their cows to satisfy all their needs for food from the grass.

Seasonal variation in production

It is not corvenient to estimate the production month by minth from fields that were mown, for dates of mowing wore not always recorded. Table 13, however, shows the figures for production in four-wookly periods from the cow fields. It is to be noted that in the first period and the last two . periods some farms had no stock on these pastures. This vas due, sometimes. to the cows being on foggage and sometimes to the grazing season having ended. These average figures obscure the marked peak in May or June which is characteristic of most of British grassland. At the time of groatost. abundance of grass, too, sinco the grass tonds to grow faster than the stock can use it, the present mothod fails to indicato the true peak of growthas, distinct from the peak of utilisation. In wet wather too the soiling of grass by the cows! feet may make the grass distasteful, and so roduco the amount of grass the oows will oot, and may consoquently roduce the apparent production during that period of grazing. Cold wet woathor may further reduce the amount oaten.

Table 13 indicates the actual number of cows carried per acre in each 28-day period. It will bo soen that while the area required for a cow herself was never less than one acre, it only required $1 / 13$ th more than ar acre on average for the: 8 weoks to the ond of June por cow. Equating young and other stock to thoir cquivalents in cows the aroa per cow oquivalent is seen to be virtually just one acre for the 12 weeks from April 26 th to tho ond of July. On average sono concontrated foeds wore usod in all periods; the extent can bo soon by comparing tho column for Gallons with that for Net Gallons and the column for Stock Units with that for Not Stock Units.

Figure 2 shows for Farm W2 the weokly production of starch equivalent from the whole of the grassland on the farm. It has been possible to produce this figure for this form because all the grass was grazed. The high, well maintained, output is remorkable. For practically 16 wooks the grass ficlas as a whole woro able to maintain a standard cow (giving 2.4 gallons a day) to the acre. In fact, however, as the broken line on Figure 2 implies, this form's grass could not provide for the whole food requiroments of one of its doep milking cows per acre. Thero were actually 1.19 acres of grass of some sort to each cow throughout the soason. This covered the cow's sharo of the needs of the bulls and the young stock. While no supplementary food was fod betwoen May 28th and August 27 th somo. supplementary food was obviously necessary at the beginning and towards the end of the season. Further details about this farm are in Appendix III.

The cost of starch equivalent in grass
From the average ostimated output and the average costs it is computed that the cost of growing a owt of S.E. in this grass was about 6/6 on the fields used chiefly by cows, $8 / 6$ on the fields used chiefly by young stock etc. and $8 /-$ on the fields mown; an overall average of about $7 / 4 \mathrm{~d}$. In computing these costs per cwt S.E. the whole of the year's costs has been divided by the estimated S.E. produced. No credit or set off has been made for any winter grazing.

The oosts of increasos in the quantity of utilizablo grass which might follow the application of more manures or the additional use of the electric fence, for example, may be comparod with the cost of other home grown foods or of purchasod foods which would otherwise be noeded to maintain milk production during the grazing scason, or which would be roplaced, during the winter, by the extra hay, silage or dried grass which could be produced from the additional grass. The same comparison may be made for additional grass which would follow the growing of an additional field of grass. It is this later comparison which is made in the following paragraph.

If losses of S.E. in hay making are put at 30% and inclusive costs of harvesting hay at $10 / \mathrm{-a}$ cwit of SrE., the oost of S.E. from mown fields made into hay is about $21 / 6$ a cont. Similarly, if there are 25% losses of S.E. in silage making and if tho inclusive cost of making silage is 17/- a owt of S.E., the cost of S.E. from mown fields made into silage is about 28/- a cwit. And if there are 7% losses in artificial drying, and the inolusive cost of harvesting and drying is $30 /-$ a cwt of S.E., the cost of S.E. from mown fields driod is about 39/-a cwt. Hay and silage would bo appreciably choaper sources of S.E. than homo-grown cow foods of similar protein content, which are estimated to cost about 31/- a cwt of S.E. at 1953 prices. Grass drying, at $£ 18$ a ton for the drying process, brings the cost per cwt. of S.E. above that of S.E. in honemgrown foods in general, but still well below the present cost of S.E. in compound dairy cakes.

It follows that oven when the costs of harvesting and conserving are allowed for, grass is a relatively inoxpensivo food. If oquipment for conserving is already owed and labour and power aro frec from other calls, preservation will oost much loss than the rates quotod, and it will clearly often bo profitable to produce and proserve grass surplus to the grazing requiremonts of the stock.

Theso foregoing comparisons relate to consorvod grass. If additional grass is ablo to lead to the saving of other homegrown food or of purchased: foods the appropriate comparison is between the cost of S. E. in grazod grass (say 7/4 a cut) and the costs of S.E. in these. other foods; and in making this comparison allowance must me made for tho fact that the officiency of S.E. in these foods would be about one-sixth highor than. that of S.E. in the grazed grass, bocause the latter requiros the effort of grazing.

Dia manuring pay?

Since one year's management of a field can have a big effect on subsequent years, the results of a given course of action can only be fully considered after several years' results are known. Moreover, since fields within farms differ in soil type, state of fertility, age of loa, and so on, comparisons of expenditure and return on the several fields cannot be expected to yield a cleor estimate of the direction and extent of the effect of a porticular treatment. And similarly as between fields on different farms. For those reasons no close rolationship emerges, nor could be expected to emergo, between output per acre on those cow fields of the several forms and not standordized expenditure on manures: Indeed, among fields not mown these wide difforences mask the obvious relationship betwoen production and cost of manuring, though ficlds on which grass was harvestod do show a stronger relationship of this sort. Similarly they obscure any ovidence of relationship botween nitrogenous, phosphatic and potassic manures respectively used up and production. This implies that soil conditions and the resorvos of potash, phosphatos and nitrogon in the soil, or tho nitrogen fixed during the season, influenced production more, on average, than the manures applied in the current and recent yoars. Obviously this does not suggest that there would not have been any increase in production from these fields if more
manures had been applied, or that the production would not have beon lowor had they not been manured as they hed beon. Exporimental methods would have been required to trace the effects of such treatrients.

The roturn fror high total expenditure

High avorage total oxpenditure (of all sorts) per acre over the cows' fields on a farm was not closely related to high average output from thoso fields. A close relation would be expected oven less than one between menuring and output.

Controlled grazing

The entries in Table 14 on the line named 'Acres por cow at peak' gives a rough indication of the density of stocking at the tine of the flush of grass on each field. Fam A2 took few steps to control the anount of grass to which the corrs had access. Farm I3 did indood split one 23 -acre field into 8-acre paddocks which tore grazed rotationally and from which a high output was obtained, but all other fields on this farm were grazed extensively. Farm W2 grazéd extensively but to a definite pattern. All the rest had at least some enclosuros; whether pemanent or temporary, which were small onough to represent only a very few days of grazing at a time for the herd. Those which practised strip grazing as a nomal procodure, Farms W1, W3, A3, and K1, did so for a variety of reasons: to secure the best use of the grass and enable some cuts to be token for winter feed was an objective comon to all these. : Some thought that strip grazing had reduced the incidence of bloat. The decision of Farm K1 to graze extonsively in 1953 (except for foggage) wias connected with an unhappy experience of ineffective foncing and difficult torrain. Tho other throe famers wore convinced that this control providod opportunitios for incroasing the output from thoir grassland, partly through roduction of waste; and partly through facilitating soctional manuring otc. with a view oithor to producing cuts for harvesting or to producing special grazing for particular groups of cows. The latter might even bo for corvs requiring a bare pasture. . Somo of the farms needed more than ono controller and batteries. One has, since 1952, connected his paddock fenco to the mains through a transformer.

On fields strip grazed; from about a half to one hour's labour was spent per acre during the season on moving the fence daily.

If an olectric fonce costs $£ 36$ to buy and maintain for 6 yoars and the grass it savos is made into hay worth $£ 8$ a ton, the fence will have paid for itsolf if it has saved 5f of the grass on 12 acres each yeor. The saving is usually considerod to be more than 5%. However, a saving of 5 will nomally be well worth while; and if the area over which a unit is used is greator than 12 acros the saving is so much the greater. Siralarly it will be worth while to buy and uso a fence if it saves enough grass to onable the farm to koop at home each year a stirk which would otherwise have to bo sumered elsewhere at hired grazing. If the fence provents even ono bloat casualty it. will have seved its. whole. cost; and if it removes the foar of bloat or the constant necd to watch for bloat it is worth while. It might, however, be that the workers would be unablic to fitt in the work of moving the fonco. If so, paddocks for rotational grazing, as at Farms L1, I4 and L2 may well bo made with the fence. (One of these, Farm L4, had decided to return to extonsive mothods becausc his fenco did not detor his cows and because he could not conveniontly arrange to make and use silage from any grass 'saved!). The value of the eloctric fence is clear for enclosing foggage on unfenced fields.

Fiold to fiold variations
Even when full allowance is mede for weaknesses in the nethods adopted in this study, it is clear fror the distribution tables and the fuller details of individual fields which are sot out in Appendix III that results vary very widely; and that any atteript to use results from a very few individual fields to ricesure the success of a given method of
management is almost bound to load to inconclusive rosults. Nevertheloss detailed study of individual farms or circumstances over sevoral years could well lead to valuablo comperisons of alternative methods.

Details about the individuel forms
Dotails about tho individual farms and fields are set out in Appendix III.

SUMMARY

In this small-scale enquiry, hampered by the foot-and-mouth disease outbreaks, expenditure and output were studied on the grassland of 12 dairy farms in 1952. Of the farms 4 were in Ayrshire, 4 in Lanarkshire, 1 in Kirkcudbrightshire and 3 in Wigtownshire.

Fields used chiefly by cows and not mown
On average the grazing season lasted from about 28 th April to 25 th October, with a total of 184 days on average. It varied between the farms from 168 to 238 days. (In this summary the figures for variations are for averages of all fields on the particular farm).

On 47 fields which were chiefly used for cow grazing the average number of acres needed to carry a cow for a season of 184 days was 1.26 (approx. $1 \frac{1}{4}$). More correctly the number of cow-days per acre during the season averaged 146 (for a season of 184 days). From farm to farm the avorage varied from 110 (for a season of 168 days) to 204 (for a season of 238 days).

During the soason the total milk yielded by cows at pasture on those cow fields averaged 376 gals. per acre, varying from 181 , to 644 .

Counting in young stock and sheop and equating these to dry cows, the number of stock (in torms of dry cow days) per acre was 164 and varied from 122 to 223.

When deductions aro made for the cattlo which could have been maintained on the hay and othor bulk foods fed to the grazing stock during the grazing soason, the number of stock(in terms of dry cow days) carried was 150 per acre on average; it varicd from 120 to 179.

Making similar deductions for the milk which could have boen produced from the concentrated foods fed to the stook during tho season, the number of gallons produced from the grass itsolf was, on average, 302 per acre; it varied from 122 to 515.

It is estimated that the foeding value derivod by the stock from the grass itsolf was equivalont on average to 17.8 cwts starch equivalent, varying from 11.5 cints to 24.7 cwts.

Net costs of manures used up on these fields averaged $44 /$ - per acre and variod from 20/- to 108/-; and total costs of producing the grass, erecting olectric fences and so on (but not the costs of the electric fence equipment) averaged 55.13 s . por acre, and varied from $£ 4.19 \mathrm{~s}$. to $£ 12.16 \mathrm{~s}$.

Fields mown and grazed

Similar figures for 26 fields mown and grazed were also arrived at for 9 of the farms.

On these fiolds the cows were carried for only part of the season. During this part of the season the average number of stock carried was equivalent to 94 cow days per acre for that part season; it varied from farm to farm from 19 days to 163 days.

While grazing these fields the cows gave 130 gallons of milk per acre on average, varying from 44 gals . to 289 gals .

If deductions are made for concentrated and bulky foods fed and when the feeding value of the hay, silage or dried grass produced is added in, the total feeding value derived from the grazing and from the harvested grass is estimated to have been equivalent on average to 23.9 cwts S.E., varying from 16.0 cwts to 33.5 cwts.

Net costs of manures used up on these fields averaged £5.2s. per acre and varied from $£ 1.19 \mathrm{~s}$. to 210.13 s . Total costs (excluding depreciation of eleotric fences and excluding costs of harvesting and making hay, silage or dried grass) averaged $£ 9.11 \mathrm{~s}$. per acre, and varied from $£ 4.13 \mathrm{~s}$ to $£ 18.15 \mathrm{~s}$.

Fields grazed chiefly by young stock etc. and not mown

On 12 fields grazed principally by other stock than cows and not mown usually fields of lower quality than those used for cows - costs and output were in general lower. On average, the estimated feeding value derived by the stock is put at 11.4 cwts S.E; manures used up cost $£ 1.7$ s per acre and total costs were £5.

All these fields

Excluding the cost of harvesting the grass that was mown and excluding the quite small depreciation of electric fences, the cost of producing the grass on the whole of the fields covered (other than rough grazing) can be put at $7 / 4$ per cwt. S.E. This is roughly a quarter of the average cost of other homegrown cow foods of similar protein content, which is estimated to be about 31/- per cwt S.E. at 1953 prices. Even when costs of harvesting and conserving are allowed for, grass is a relatively inexpensive food.

The chart on page 27 indicates the relationship of production to total costs on these farms.

All the seven farmers who used electric fences were satisfied that the fences had enabled them to use the grass concerned more officiently than they could have done without the fences. There were, however, no trials of ordinary grazing and restricted grazing on identically treated land. . It has been impossible therefore, to make direct comparisons of costs and returns from the use of the fences. For similar reasons it has not been possible to compare the efficiency of rotational grazing with that of ordinary grazing. Two of these seven farmers decided in 1953 that the advantages of the fence (excopt on foggage) were not sufficient to outweigh its disadvantages; but the other five were still satisfied with its use.

It is suggested that a study of individual farms over several years might well lead to valuable comparisons of alternative methods.

Details of the definitions and methods used in this enquiry, and of the findings made are set out in the appendices.

APPENDIX I

DEFINITIONS AND NOTES

It may be convenient here to define the terms used in this report.
(1) Age of pastures For convenience age is expressed as the number of years between sowing and Spring 1952.
(2) The numbers of cows carried are measured in terms of the number of cows multiplied by the number of 24 -hour periods they were carried. These are called Cow Days. The day time from morning milking to afternoon milking is treated as a half for this purpose and so is the night time, from afternoon milking to moming milking.
(3) The numbers of other stock carried multiplied by the number of days are converted to Stock Units on the following scale which makes allowance for normal growth. The stock unit is equivalent in food requirements to a cow day for a dry Ayrshire cow.

2-year-old beast	1.1
1.7 " "	0.8
Calf	0.5
Bull	$\therefore 1.0$
Horse	1.0 to 1.5
Sheep over 6 months	0.2 to 0.4
" under 6"	0.1 to 0.15°

(4) In the tablesabout individual rields the proportion of other stock than cows is indicated by the Young Stock etc.\%. This is arrived at by dividing stock units minus cow days by stock units, and multiplying by 100.
(5) The feeding value derived from the turnips, hay, straw etc. fed during the grazing season is based on standard tables and is converted to the number of cows it could have maintained for a day on the assumption that the dry Ayrshire cow needs 6.25 Ibs S.E. per day for maintenance and the production of the calf she is carrying. The result of subtracting this number from the stock units is the Net Stock Units.
(6) Similarly the feeding value derived from the concentrated foods fed is converted to the number of gallons of milk which could have been produced from feeding these in addition to a ration sufficient for maintenance and the production of the calf the cow is carrying. These are then subtracted from the gallons produced to yield the Net Gallons produced.
(7) Apportionment between fields When cows were grazing two or more fields during the 24 hours and it has been desired to have the results from the several fields scparately, the ficlds have each been credited with a share, based on acreage, of the stock carried and of the milk produced, and they have been similarly debited with a sharo of the feeds fod. As between day fields and night fields the day grazing and the night grazing have been assumed to be of equal value and to have contributed equally to milk production, unloss the recorder had a special note of the one being inferior to the other.
(8) The feeding valuo obtained from the grazing is measured in terms of lbs. or curts of Starch equivalent from grazing. (In some studies of grazing this has boen called the Intake of Starch Equivalent from Grazing.) This is arrived at by multiplying net stock units by 8.25 and net gallons by 2.5 . The assumptions are that the dry Ayrshire cor requires each day 6.0 Ibs of S.E. to maintain her body; 0.25 lbs to enable her to produce her calf within her, and 2.0 Ibs to cover the effort of grazing, making 8.25 lbs in all. (Some allowance should properly be made for the food value which has been converted into liveweight increase. The adjustment, which has not
been made, vould be at the rate of 2.75 lbs S.E. for each change of 1 lb . in liveweight.)
(9) The feeding value of the hajr, silage or dried grass harvested is estimated from standard tables.

The value in terms of starch equiv. alent is called the Starch equivalent harvested. Since yields also wrere estimated there may be a fairly vide margin of error here.
(10) Starch equivalent produced is the sum of starch equivalent from grazing and starch equivalent harvested.
(11) Starch equivalent produced can be converted to the number of days for which a cow yielding average quantities of milk could have derived all the food enorgy she needed (but not necessarily her protein requirements) frcra the grazing or hay or silage or dried grass produced. To do this the number of crrts of S.E. should be nultiplied by 7.85 (nearly 8,0). This gives the number of days a cow yielding 2.4 gallons could nominally have been fed on the grazing or hay, silage or dried grass produced. 2.4 gallons per day for 26 weeks is 437 gallons and is a littile higher than the average yield during the sumner 26 weeks of $1951 / 2$ on 154 farms covered by the Milk Cost Investigation of the College. Such a cow is called a Standard Cow in this report.
(12) The figures in Appendix III for Acres per Standard Cow for individual farms refor only to the fields which were used mainly by cows and which did not give more than half their production as harvested grass.
(13) The Net Cost of Manures used up is obtained as follows:

Cost of manures and lime applied for 1952, plus residues of earlier applications, less residues of both the above carried forward to leter crops.

The following table shows the proportions of dressings which are written off in the year.

For a comment on the relevance of these proportions see page 5.
It follows then that:
1 cwt. of N used up corresponds to $6 \frac{1}{2}$ owt. Nitromhalk this year or $5^{\prime \prime}$ sulphate of ammonia.

1	"	"	$\mathrm{P}_{2} \mathrm{O}_{5}$:	:	18	to 7 cwt . or 14 " or 27 " or 27 "	grd.min. phosphate this year, grd.min. phosphate last year, grd.min. phosphate 2 yrs ago, grd.min. phosphate 3 yrs ago.
1	\because	"	120	:		"	to 3 cwt . or 7 or 7	60% muriate of potash this year, 60% muriate of potash last year, 60% muriate of potash 2 yrs ago.
1	"	"	CaO	\because	"	"	to 14. cwt. or 14 "	grd. limestone this year, grd. limestone in any ons of the previous 6 years.

For each manurial ingredient calculate the no. of cwts. of it in the manures applied and in the residues from earlier applications. Reduce each of these by the proportions carried forward to subsequent crops. The net quantities are the quantities presumed to have been used up in 1952.
(15) Standardized net cost of manures is determined by multiplying each of the quantities of manurial ingredients used up by the average price of that ingredient in 1953. These prices are based on $195 j$ delivered prices of the quantities and kinds of manures used in 1952 on eleven of the farms as a whole, reduced by the current subsidies on nitrogenous and phosphatic manures and compounds. Dung has been included at 20/- a ton.

In torms of prices per unit these standardized prices are:

	$\frac{\text { Unit price }}{20 / 2}$
$\mathrm{~N}_{2} \mathrm{O}_{5}$	$5 / 8$
$\mathrm{~K}_{2} \mathrm{O}$	$9 / 2$
CaO	8 d.

The standardized net cost of the manures differs substantially on some farms and fields from the net cost of (13) above. The main reasons are:
(a) The past cost of dung is written off in the proportions of $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}$; but in the second calculation each in. gredient in the dung has been written off as if it were in an artificial fertiliser. In particular the expensive nitrogen is then charged wholly against the first year.
(b) Differences in price per unit because of
(i) differing solubility,
(ii) differing handiness as between 'straight' fertilisers and complete granular fertilisers, differing length of haul etc., and changes in prices and subsidies, particularly in 1953.
(16)

Cost of the grass

Costs of the grass are computed in the way followed for milk costing and described in this department's reports on milk costing. This involves estimating the following:
(i) The rent chargeable against the particular field.
(ii) The share of costs incurred in sowing out the field, Normally this is one-seventh of the cost of seeds and labour then sorm down for 6 or 7 ycars, one quarter when sown dorm for 3 years, and so on. This is equivalent to counting the turf, which is to be ploughed in, as an extra crop to share the cost of seeding.
(iii) The total cost of manures applied to the ficld in 1952 or earlier years which would normally be considered to contribute to the growing or the year's grass, less the share of that cost which is chargeable to other ycars.
(iv) The manual labour, horse labour and tractor power uscd in 1952 on the ficlds, including attontion to electric fences, topping, weeding, etc., (each itom being charged at an appropriate ratej.
(v)A share of general or overhead expenses, charged at the following agreed rates:

```
Per £ of labour charged
    " hour of horse labour charged
        " " tractor work charged
        acre of land
        \(8 /-\)
\(1 / 9\)
\(17 / 6\)
```

No charges are included against the grass for work on silage or hay crops taken or of the capital cost of electric or other fences; but otherwise the expenditure was to cover all the costs of producing the year's grass.

Cost per owt S.E.

The cost of the grass is divided by the starch equivalent produced, in cwts. If winter grazing in fact yields any food value the cost per cwt is overstated because this food value has been ignored. The error is not very great. (See also definition 21.)

Density of Stocking

As an indication of the density of stocking of the grazing, a figure is given under the title hcres per cow at peak. This represents the average area per cow to which the herd had access at any one time in each field, the measure being taken at the time when the field was at its highest production. The" areas presented at other times during the season were normally much greater. Strip grazing may present as little as 35 sq. yds (i.e. . 007 acres) per cow when the fonce is moved twice a day or separate day and night fields arc used, each with a fence moved daily.

(19) Iength of Grazing Season

The season is reckoned from the day when cows first went out to grass and were expected to derive some of their nutriment from the grass, up to the date on which the cows either ceased to go out to grass or, if still out, derived little, if any, nutriment from the grass. In the tables about individual farms and fields these dates are entercd in shortened form: thus $26 / 10$ means 26 th October and so on. These dates have been omitted for most fields mown.
(20) In Appendix III the interval between the end of each period of grazing and the beginning of the next is indicated by each entry on the line Rests(days). Normally no entries have been made on this line for fields mown.

Winter grazing

Since the amount of fodder given to stock wintered outside may represent a very large proportion of their needs, no attempt has been made to measure the value they derived from the grass. On some farms the winter stock clearly derived a good deal of feeding value from the grass: on others the fodder given to the stock appeared to have provided far more food value than the stock should have needed. The numbers of stock carried during the winter on individual fields are indicated in Appendix III.

Rounding of numbers
In the distribution tables in this report a group described as $£ 0.5$ to $£ 1.0$ includes all values above $£ 0.4995$ and up to $£ 0.9995$; a group described as .1 to .2 cwts includes all values above . 095 up to 0.195 . The percentage tables do not necessarily add to 100, each figure being accurate in itself; and similarly with the table of costs.
(23) Averages

Most of the averages quoted are woighted averages.
(24) Field to ficld variations

While care was taken in the recording and calculations, some error may have been involved when sharing stock and milk between fields used in the sume week. In so far as the farmers concemed or their reprosentatives have been consulted about the figures the results can be taken as reasonable. They must not be taken as oompletely accuratc.

AIPENDIX II
TABIIM 1
Grassland on the 12 Farms

	These Farms $\%$	Their Four Counties $(1951) \%$
Temporary grass mown	35	14
not mown	39	26
Permanent grass mown	2	6
. not mown	25	54
No. or acres mown for silage		
times no. of cuts, per 100 acres		
- grass	16	

TABIE 2

Ages in 1952 of the pastures covered by the enquiry
No. of fields of the following ages (\%)

Not mown:

Years since seeding								
Less than 1	1	2	3	4	5	6	7	iore than
4	$\begin{array}{r} 4 \\ -13 \end{array}$	12 13	15 13	6	$\begin{array}{r} 12 \\ 7 \end{array}$	6	2	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
3	33	17	17	7	13	3		7
3	14	14	15	6	11	4	2	30

Note: Less than 1 means sown in 1952
1 means sown in 1951
and so on.

TABLE 3
Manures applied to the grass in 1952 (Eleven farms)

Cost of manures applied to 1952 grass

Numbers of fields (\%) on which manures applied cost the following amounts per acre

Cost in \& per acre	Fiolds not mown		Fields mown		Siow out fields	$\stackrel{\text { All }}{\text { fields }}$
	$\begin{aligned} & \text { Grazod } \\ & \text { mainly } \\ & \text { by cows } \end{aligned}$	IVot grazed mainly by cows	Grazed mainly by cows	Not grazed mainly by cows		
0	36	17	12		67	26
0.5-1.0	2					1
1.0-1.5	9	8	4			7
$1.5-2.0$	6	42	24			15
2.0-2.5	6	17		:		5
2.5-3.0	6		4	:		4
3.0-3.5	6	8		20		5
3.5-4.0	2	8	4	40		5
4.0-5.0	9		8			7
5.0-6.0	9		4	40		8
6.0-7.0		.	8	.		2
$7.0-8.0$	4		4			3
8.0 - 9.0	2					1
$9.0-10.0$			4			1
10.0-11.0	2					1
$11.0-12.0$					33	1
12.0-13.0			4			1
13.0-14.0			12			3
$14.0-15.0$			4			1
$16.0=17.0$			4			1
No. of fields	47	12	25	5	3	92

TABLE 5

Cost of manures at actual net cost
Numbers of fields (\%) on which manures used up cost the following amounts per acre

Costs of manures £'s.per ac.	Ficlds not mown		Fields mown		Sow out fields	$\begin{gathered} \text { All } \\ \text { fields } \end{gathered}$
	Grazed mainly by cows	$\begin{gathered} \text { Not grazed } \\ \text { mainly by } \\ \text { cows } \end{gathered}$	Grazed mainly by cows	Not grazed mainly by cows		
. $0-0.5$	15	8	8			11
0.5-1.0	9					4
1.0-1.5	11	17	4			9
1.5-2.0	9	17	8			9
2.0-2.5	15	17	8			12
2.5-3.0	4	25	4			7
3.0-4.0	9		12	20	67	11
4.0-5.0	17.	17	4	20	33	14
5.0-6.0	4		16			7
$6.0-7.0$	4			40		4
7.0-8.0	2		8	20		4
8.0 - 9.0			16			3
9.0-10.0			8			2
10 \& above	2		8			3
No. of ficlds	47	12	25	5	3	92

Cost of manures used up, at standardized 1953 net prices
Number of fields (\%) on which manures used up cost the following amounts at standardized 1953 net prices

Costs of manures £'s.per ac.	Fields not mown		Fields mown			
	Grazed mainly by cows	INot grazed mainly by cows	Grazed mainly by cows	Not grazed mainly by cows	Sow out fields	$\begin{aligned} & \text { All } \\ & \text { fields } \end{aligned}$
0-0.5	17	8	8			12
0.5-1.0	6	25				7
1.0-1.5	23		4			13
1.5-2.0	4	25	16			10
2.0-2.5	15	17				10
2.5-3.0		17	8		33	5
$3.0-4.0$	11		8	60	33	12
$4.0-5.0$	9		8			6
$5.0-6.0$	9	8	16	20		11
$6.0-7.0$	4		8	20		5
7.0-8.0			8			2
$8.0-9.0$			4		33	2
10\% above	2		12			4

TABIE 7
Quantities per acre of manures used up in the year Numbers of fields (\%) on which the following quantities were used up (a) NITPROGEN

crits per ac.	Fields not mom		Fields mom		Sow out fields	$\begin{gathered} \text { All } \\ \text { fields } \\ \hline \end{gathered}$
	Grazed mainly by coms	INot grazed mainly by cows	Grazed mainly by cows	Not grazed. mainly by cows		
C-0.1	40	75	20		67	36
C. 1 -0.2	22	17		20		18
$0.2-0.3$	11		8			9
0.3-0.4	13	8	28	60		18
0.4-0.5	6		4			2
0.6-0.7	2		4			2
0,7-0.8 8	\cdots		4			1
0.8-0.9	\%		4			1
0.9-1.0	2		12		33	4
1.0-1.1			4	20		3
1.3-1.4			4			1
1.4-1.5	2					1
1.6-1.7			4			1
1.7-1.8			4			1

TABLE 7 (Contd.)
(b) PHOSPHATES (As $\mathrm{P}_{2} \mathrm{O}_{5}$)

curts per ac.	Fields not mown		Fields morm		Sow out fields	Al1 fields
	Grazed mainly by corms	Not grazed mainly by cows	Grazed mainly by cows	Not grazed mainly by cows		
0-0.1	32	17	24			25
0.1-0.2	4	17	16			9
0.2-0.3	13	8	4			9
0.3-0.4	11			20		7
0.4-0.5	9	8				5
0.5-0.6	4	17		20		5
0.6-0.7	4	8	12		33	8
0.7-0.8	6		12	40		9
0.8-0.9	9		8		67	9
0.9-1.0	2	8	4	20		4
1.0-1.1	2		8			3
1.1-1.2	2	17				3
1.2-1.3	2		4			2
1.3-1.4			4			1
1.5-1.6			4			1

(c) POTASH (As K2O)

cwts per ac.	Fields not mown		Fields mown		Sow out fields	$\begin{aligned} & \text { All } \\ & \text { fields } \end{aligned}$
	Grazed mainly by cows	Not grazed mainly by cows	Grazed mainly by cows	Not grazed mainly by cows		
0-0.1	42	40	24			34
0.1-0.2	11	33	20	20		16
0.2-0.3	6	16	4	20		8
0.3-0.4	6		8	20		7
0. $4-0.5$	2			20		2
0.5-0.6	17		12			12
0.6-0.7	6				67	5
0.7-0.8	2	\cdot	4			2
0.8-0.9	2	8				2
0.9-1.0	2		8	20	33	5
1.0-1.1	2		4			2
1.3-1.4			12			3
$1.4-1.5$			4			1

(d) LINT (As CaO)

cuts per ac.	Fields not mown		Fields mown		Sow out fields	$\begin{aligned} & \text { All } \\ & \text { fields } \end{aligned}$
	Grazed mainly by cows	INot grazed mainly by cows	Grazed mainly by cows	Not grazed mainly by cows		
0-0.5	36	50	48	20	33	40
0.5-1.0		8				1
$1.0-1.5$	4		4			3
1.5-2.0		8	4			2
2.0-2.5	13	8	8		35	11
2.5-3.0	13	8	12	60		14
$3.0-4.0$	13	8	12		33	12
$400-5.0$	11		4	20		8
$5.0-6.0$	11		4			7
$6.0-7.0$		8				1
7.0 and over			4			1

TABLT 8

Average costs of growing the grass in 1952: shillings per acre

Net costs per acre (excluding labour etc. on mown crops) Number of fields (\%) on which these costs were as follows

	Fields not mown		Fields mown			
Costs of grass £'s per ac.	Grazed mainly by corrs	Not grazed mainly by cows	Grazed mainly by cows	Not grazed mainly by cows	Sow out fields	$\begin{gathered} \text { All } \\ \text { fields } \end{gathered}$
2.0-2.5	2	8				2
2.5-3.0	17					10
3.0-3.5			8			2
3.5-4.0	4					2
$4.0-5.0$	11	42				15
$5.0-6.0$	22	17	4			15
6.0-7.0	7	8	8			6
$7.0-8.0$	11	8	8			10
8.0-9.0	9	17	4	40		9
9.0-10.0	7		12			6
10.0-11.0	2		4	20	33	6
11.0-12.0	2		8		33	4
12.0-13.0	2		4			4
$13.0-15.0$			12		33	4
15.0-17.0			4			1
17.0-20.0			12			3
20.0-21.0	2					1

TABIE 10
Stock carried during the season
Numbers of fields (\%) on which the following numbers of stock units per acre were grazed

Stock units per acre	Fields not mown		Fields mown		Sow out fields
	Grazed mainly by cows	ivot grazed mainly by cows	Grazed mainly by covis	iNot grazed mainly by oows	
0-50	2	8	36	60	33
50-100	6.	33	24	20	
100-150	36	33	16	20	33
150-200	23	17	20		33
200-250	23				
250-300	4	8	4		
300-350	2				
350 and over	2				

TABI正 11
Gallons produced during the season
Numbers of fields (\%) on which cows gave the following numbers of gallons of milk per acre

Gallons per acre	Frazed mainly by cows	Not mown mainly by cows	Frazed mainly by cows		Not grazed mainly by cows
	6	92	32	80	Sow out fields
$100-150$	2	8	20	33	
$150-200$	13		20		33
$200-250$	9		8	20	
$250-300$	11		4		
$300-350$	13		4		33
$350-400$	6		8		
$400-450$	11		4		
$450-500$	4				
$500-550$	4				
$550-600$	6				
$600-650$	4				
$650-700$	4				
$700-750$	4				
$800-850$	2				

TABLE 12
Net yield of feeding material in terns of Ibs starch equivalent per acre in the season
Numbers of fields (\%) on which the estimated yields were as follows

Starch equivalent lbs per ac.	Fields not mown		Fields mown		Sow out fields	$\begin{aligned} & \text { All } \\ & \text { fields } \end{aligned}$
	Grazed mainly by cous	Not grazed mainly by cows	Grazed mainly by covis	Not grazed mainly by cows		
$300 \cdots 600$	2	8				2
600-900	4	17			33	5
900-1200	9	8				5
1200-1500	13	17	4			10
1500-1800	15	34	8			14.
1800-2100	21	17	16	20		14
2100-2400.	4		16	40	33	13
2400-2700	9		8			7
2700-3000	11		. 12	20	33	11
3000-3300	9		20			11
3300-3600			8			2
3600-3900	2			20		2
3900-4200			4			1
4200-4500.			4	\because		1
1.800-5100	2					1

TABIE 13
Stock carried and prodiction per acee month by month (Fields chiefly grazed by cows)

	$\begin{aligned} & \text { Cow } \\ & \text { days } \end{aligned}$	Stock units	Gallons	IVet stock units	$\begin{gathered} \text { Net } \\ \text { gallons } \end{gathered}$	Net S.E. cwts
Perioa to 3rd May	9	11	29	6	15	. 8
4th May to 31st May	26	27	78	27	71	3.6
ist June to 28th June	26	29	75	28	72	3.6
29th June to 26th Juiy	23	28	59	27	55	3.2
27th Juiy to 23rd 4ug.	20	23	48	22	42	2.6
24 th Aug. to 20th Sept.	18	20	40	19	30	2,1
2 ist Sept, to 18th Oct.	15	16	29	14	13	1.3
19th Oct. cnwards	10	10	18	5	4	. 5
Total.	14.6	164.	376	150	302	17.8

TABIE 14 (a)

Some details of farms and averages for fields not mown; chierly grazed by cows

FARM	\underline{W}. 2	W. 1	W. 3	A. 3	A. 1	A. 4	I. 2	A. 2	I. 4	$\pm .3$	K. 1	I. 1	A11
1951/52													
Milk yield per cow year (gals)	880	n.a.	809	800	950	864	860	800	850	n.a.	650	745	
" sales per farm acre "	384	171	243	190	198	237	174	172	222	118	84	201	
$\%$ of winter milk	27	45	46	63	48	50	43	43	48	45	40	53	
Length of grazing season (days)	238	210	191	195	184	180	180	176	171	187	184	168	189
Cows: fields not mown: 1952 season Acres recorded	102	None	61	12	64	51	20	52	49	132	45	$31(\mathrm{adj})$	619
iiillk per cow per day (gals.)	3.16		2.17	1.39	2.98	2. 00	2. 52	2.35	2.30	2.61	1.92	1.65	2.58
Young stock etc. (\%).	9		11	13	4	29	17	12	25	neg.	17	10	11
Cow days per acre	204		160	171	181	116	152	122	112	126	12.	110	146
Stock units per acre	223		18:	197	189	163	183	139	148	126	14.6	122	164
Gallons per acre	644		34.8	238	538	232	383	286	256	328	283	181	376
Net stock units per acre	179		181	177	174	158	172	131	139	121	12.1	120	150
Net gallons per acre	515		308	219	384	220	322	279	208	246	222	122	302
S.E. harvested per acre (cwts)	-		-	-	-	-	-	-	-	\bigcirc	-	-	neg.
S.E. produced per acre (cwts)	24.7		20.2	17.9	21.4	16.6	19.6	16.0	14.9	14.4	13.8	11.5	17.8
Cost per acre (shillings)	110		105	256	156	99	200	109	14.4	58	151	99	113
Hanures applied per acre (shlgs)	9		4	155	96	45	102	39	83	5	72	15 39	39
Net cost of manures per acre (sh.)	31		20	152	73	42	108	35	77	17	75	39	44
Standardized do. per acre (shlgs)	26		13'	143	54	30	100	23	86	20	95	32	40
Manures used up per acre (cwts):	-		. 04	. 88	. 23	. 11	.41	.13	. 30	. 05	. 30	. 09	. 14
$\mathrm{P}_{2} \mathrm{O}_{5}$. 21		. 03	. 94	. 44	. 33	. 75	. 22	. 84	. 08	1.67	.13	. 34
$\mathrm{K}_{2} \mathrm{O}$. 29		-	. 60	. 23	. 21	. 57	. 11	. 59	. 07	. 52	. 21	. 24
CaO	1.93		2.41	. 36	2.37	-	2.36	-	1.69	2.80	3.36	2.68	2.00
Acres per cowr at peak	. 42		- 01	Strip	.17	8	, 23	- 70	c. 24	. 4.5	Strip	- $2 \mathrm{j}(\mathrm{adj})$	-
Cost per ort S.E. (shillings)	4.4		5.2	14.3	7.3	6.0	10.1	6.8	10.3	400	$1 \cup .9$	8.6	6.4

TABLE 14 (b)
Averages for fields grazed mainly by young stock, etc. and not mown

FARM
Acres recorded
lilk Jield per cow per day (gals.)
Young stock etc. (\%)
Stock units per acre
Gallons per acre
Net stock units per acre
Net gallons per acre
S.E. harvested per acre (cwts)
S. ت. produced per acre (cwts)

Cost per acre (shillings)
lianures applied per acre (shlgs)
Net cost of manures per acre (shlgs)
Standardized do. per acre (shlgs)
Manures used up per acre (cwts):

N

$\mathrm{P}_{2} \mathrm{O}_{5}$
$\mathrm{K}_{2} \mathrm{O}$
CaO
Acres per cow or her equiv. at peak Cost per cwt S.E. (shillings)

W. 2	W. 1	W. 3	A. 3	A. 1	A. 4	$\underline{\underline{L}} 2$	A. 2	I. 4	Io3	$\underline{\mathrm{K} .1}$	L. 1	AII
none	none	54	none	37	12	9	none	none	none	74	none	186
		2.42		0	1.53	0				0.5		0.43
		98		77	66	53		.	\cdots	$8 \stackrel{\text { ¢ }}{ }$		87.
	.	208		181	120	183				10%		154
	-	8		0	62	0				6		9
		193		177	120	183				103		149
		8		0	62	0			.	2		7
		0		1.4	0	0		.		0		neg.
		14.4		14.5	10.2	13.5				7.6		11.4
		103		130	109	150				70		98
		12		40	60	75				20		27
		33		61	49	95				23		38
		21		43	39	107				27		33
		. 02		.16	. 18	. 30		*		0		. 06
		. 18		. 49	. 27	. 91				. 66		. 47
		. 25		. 11	. 29	. 67				. 10		. 19
		. 63		2.37	0	6.22				1.02		1.36
		. 40		. 31	. 44	. 64				2.9		
		7.1		9.0	10.7	11.1				9.2		8.6

```
TABLE 14 (c)
```

Averages for fields mown and grazed

FARM	W. 2	W. 1	W. 3	A. 3	A. 1	A. 4	I. 2	A. 2	I. 4	$\underline{L} .3$	K. 1	I. 1	A그
Acres recorded	none	108	44	24	50	25	26	45	(33)	62	(71)	12	396
iijilk yield per cow per day (gals)		2.00	2.12	2.41	2.84	1.47	1.81	2.37	(2.77)	2.07	(1.84)	2.20	2.09
Young stock ett. (\%)		11	0	3	47	$\therefore 30$	$\therefore 30$	\bigcirc	(4)	neg.	(0)	0	12
Stock units per acre		163	75	133	65	73	- 60	- 19	(25)	74	(30)	81	94
Gallons per acre		289	158	311	97	. 72	78	- 44	(67)	153	(55)	178	$\cdots 172$
Net stock units per acre		155	75	126	57	- 69	. 60	- 17	(22)	72	(30)	63	$\because 89$
Net gallons per acre		262	114	259	57	- 57	- 66	42	(21)	61	(15)	9	130
S.E. harvested per acre (cwts)		7.6	14.5	18.8	21.5	1.4 .5	17.8	23.6	(35.4)	9.4	(20.0)	23.3	14.4
S.E. produced per acre (cwts)		26.2	22.6	33.5	27.1	20.9	23.7	25.9	(37.5)	16.0	(22.6)	28.1	23.9
Cost per acre (shillings)		190	123	331	230	245	240	162	n.a.	93	n.a.	375	191
lianures applied per acre (shlgs)		116	37	292	120	103	159	87	"	31	"	274	109
Net cost of manures per acre (sh.)		104	40	213	114	153	139	82	"	39	"	255	102
Standardized do. per acre (shlgs)		98	43	249	85	127	100	71	"	40	"	253	94
lianures used up per acre (cwts):													
$\cdots \mathrm{N}$. 24	.13	1.53	. 43	1.01	. 31	. 57	"	. 30	"	1.69	. 47
$\mathrm{P}_{2} \mathrm{O}_{5}$		1.08	. 30	1.05	. 73	. 28	. 92	. 11	"	. 05	"	. 74	. 61
$\mathrm{K}_{2} \mathrm{O}$. 69	. 41	1.28	. 32	. 38	. 75	. 13	"	. 06	"	1.38	. 49
CaO		3.57	. 63	2.34	1.85	0	2.31	1.30	"	1.61	"	0	1.97
Acres per cow at peak		Strip	. 03	Strip	. 50	. 37	. 26	. 63	Strip	. 34	. 03	Strip	
Cost per cit S.E. (shillings)		7.2	5.4	9.9	8.5	11.7	10.1	6.2	n.a.	5.8	n.a.	13.3	8.0

Figure 1. RBLATION OF COST PER ACRE TO PRODUCTION PER ACRE

APPENDIX III
Particulars about the individual farms and fields.

Some particulars about the individual farms have been set out in Table

14 of Appendix II. In this Appendix further details are given about
the farms and the individual fields. Farm acreage figures are approximate.

Farm	Pages
A1	$30-32$
A2	$33-34$
A3	$35-37$
A4	$38-39$
L1	$40-41$
L2	$42-43$
L3	$44-45$
L4	$46-47$
K1	$48-49$
W1	$50-52$
W2	$53-55$
W3	$56-58$

FARM A1

MILK PER COW YEAR	950 gallons
$\%$ OF WINTER MILIK	48%
GRAZING SEASON	184 days
ACRES PER STANDARD COW	
FOR THAT SEASON	1.09 a.ores
NET GALIONS PER ACRE	
FRONI COW FIELDS	384 gallons

Height
Soil
Contours
General aspect
Area
Rent of grassland
No. of cows
Other grazing stock Fields not studied
Stock else where
\% land under crops
Cropping purpose
Silage cutting acres per 100 acres
No. of years' cropping between leas
Length of leas
Seeds mixtures

Manuring

Surface cultivations
General system of grazing for cows

Fence

General
100^{\prime}
Deep free loam to strong loam.
Gentle
Easterly: sheltered
400 acres
30/-
85: chiefly autumn calving
Followers: a few bullocks: a few sheep
Grass not grazed by cows, and rough grazing
None
36
Stock feed: sale
8, inciuding arable silage
3, usually
4, 2 to 6
Vary widely: though the following is typical of several:

Ibs. per acre

Italian ryegrass	4
Perennial (Ayrshire \& S23)	16
Cocksfoot (S51)	6
Timothy (Stalked meadow grass	4
Rough stal	1
Broad red clover	$1 \frac{1}{2}$
Late flowering red clover	$1 \frac{1}{2}$
White clover, S100	$\underline{1}$

Liberal
Grazed fields: 1 cwt potassic supers 1 cwt NitroOhalk
Mown fields: twice the above: dung sometimes
None
The normal practice is to have the herd on a different field at night from the one it occupied in the day, and to change one of these fields every 3 days or so; thus the cows have a fresh pasture for either the day or the night every 3 days or so.
Existing fields are fairly small in relation to the number of cows.
Rotational grazing following balanced manuring, with good management and suitable foeding of the cows enables the herd to give a high summer yield and to lio in well propared for high winter yields.

For furtier particulars about this farm, which is the College Farm of the West of Scotland Agricultural College at Auchincruive, Ayr, see "Guide to Auchincruive 1953" obtainable from the Secrotary, West of Scotland Agricultural College, 6 Blythswood Square, Glasgow, C.2.

FARM A. 1

Field	Fields not mown: mainly grazed by cows								All fields
	1	2	3	4	5	6	7	AII these	
Area (acres)	18	10	18	4	4	5	5	64	151
Years old	2	4	1	2	3	3	Very Old		
Length of lea	6	4	6	5	4	4	Permanent		
1952 details per acre									
Stock units	201	241	213	160	161	117	72	189	147
Gallons produced	597	655	-600	444	445	375	191	538	263
Net stock units	178	24.1	187	155	156	117	70	174	137
Net gallons	426	466	427	319	319	262	144	384	183
S.E. produced (cwts)	22.6	28.2	23.3	18.5	18.6	14.5	8.3	21.4	21.6
Young stock etc. (\%)	1	0	8	. 11	12	0	14	4	33
Gallons per cow day	2.99	2.72	3.05	3.16	3.14	3.20	3.08	2. 98	2.65
Cost (shillings)	187	173	172	122	114	109	58	156	174
Manures applied (sh.)	90	92	175	35	35	36	0	96	90
Net cost of manures (sh)	90	85	92	42	32	47	9	73	84
Standardized do. (sh)	76	44	70	38	28	42	6	54	61
Manures used up (cvts):	. 30	.15	.33	. 14	. 14	. 15	0	. 23	. 28
$\mathrm{P}_{2} \mathrm{O}_{5}$. 69	. 45	. 44	. 38	. 30	. 48	. 20	. 44	. 55
$\mathrm{K}_{2} \mathrm{O}$. 37	. 13	. 30	. 09	. 12	. 09	0	. 23	. 23
CaO	2.86	2.86	3.17	2.74	0	2.86	0	2.37	2.20
Method of use			Rotat	- n a 1	azing				
Acres per corr at peak Grazing season	$\frac{.24}{5 / 5-20 / 10}$	$\begin{gathered} \cdot 13 \\ 7 / 5-17 / 10 \end{gathered}$	$25 / 4-25 / 10$	$\sqrt[3]{5-20 / 9}$	$\stackrel{.10}{3 / 5-20 / 9}$	$\stackrel{.07}{17 / 5-24 / 9}$	$\frac{n \cdot a}{25 / 4-3 / 8}$.17	
Winter stock per acre	Iittle	Little	Stirks \& Sheep(Dec-F.)	Little	Little	Little	Cows" exercise		
Rests (days)	$\begin{aligned} & 10,3,6,6 \\ & 10,6,5,14 \end{aligned}$	17,9,26, 18	$\begin{gathered} 16,18,5,5,5 \\ 15,17,16 \end{gathered}$	$\begin{aligned} & \text { 21,16,13, } \\ & 16,8,7,5 \end{aligned}$	$\begin{gathered} 21,16,13,16 \\ 8,7,5 \end{gathered}$	26,26,39,20	27,7		

Field	Not mown: not mainly grazed by cows				Hown: grazed by cows			Hown: not mainly grazed by corrs			
	8	9	10	Average	11	12	Averase	13	14	15	Average
Area (acres)	7.75	17	12	36.75	17.5	18.5	36.0	4	5.5	4	13.5
Years old	2	3-4	$3-5$		2	1		1	1	1	
Length of lea	5	5	5		4	4		4	4	3	
1952 details per acre											
Stock units.	238	152	185	181	50	40	45	60	125	178	113
Gallons produced	0	0	0 -		75	114	95	68	26	222	96
Net stock units	232	152	179	177	. 35	38	$\therefore 37$	60	125	152	105
Net gallons	0	0	0	0	39	69	54	47	15	134	60
S.E. harvested (cwts)	0	3.1	0	1.4	32.4	15.2	23.6	14.7	15.6	16.7	14.5
S.E. produced (cuts)	17.1	14.3	13.2	14.5	35.9	19.5	27.5	20.1	25.2	32.9	24.2
Yamg stock etc. (\%)	73	93	60	77	. 47	. 0	26	60	93	57	71
Gallons per cow day	0	0	0	0	2.79	2. 84	- 2.81	2.85	2. 80	2.91	2.88
Cost (shillings)	164	117	126	130	341	147	24.1	259	176	173	199
Hanures applied	37	43	36	40	251	34	14.0	73	73	60	69
Net cost of manures (sh.)	84	53	57	61	187	56	119	141	88	77	100
Standardized do. (sh.)	47	45	38	4.3	145	38	90	78	67	66	70
Manures used up (crots) :	. 15	. 18	. 15	.16	. 99	0	. 48	. 30	. 30	- 2.9	. 30
$\mathrm{P}_{2} \mathrm{O}_{5}$. 61	. 51	. 43	. 49	. 75	.77	. 76	. 74	. 73	. 50	. 66
K 20	. 07	. 13	. 10	. 11	. 56	. 14	. 34	. 37	. 16	. 28	. 26
CaO	3.36	2.23	1.90	2.37	$\stackrel{.}{0}$	2.86	1.15	2.86	2.86	2.85	2.85
Method of use		Ordinary oung and	azing sto		$\begin{aligned} & \text { I Silage } \\ & \text { II Silage } \end{aligned}$	$\begin{gathered} \text { I Hay } \\ \text { II Silage } \end{gathered}$					
	of y	oung and			II Silage	II Silage		$\begin{aligned} & \text { I Hay } \\ & \text { II Oräy. } \end{aligned}$	III Ordy.	II Ozdy.	
					III Ordys.	IIT Ordy.					
Grazing season	24,5	4ac.hay	16/5-		15/10	7/10		$31 / 8$	25/10	18/10	
Grazing seasan	$-25 / 10$	4/5-4/10	25/10								
Winter stock per acre	None	Little	IVone		None	None		None	Little	A fevs sheep to 16 April	
Acres per cow at peak	. 20	. 53	. 25	.31	-	-	-	-	-.		- -
Resto(days)	None	None	20,14		n.a.	n. ${ }^{\text {a }}$		no. ${ }_{\text {a }}$	nc Ω.	$\mathrm{n}_{\mathrm{e}} \mathrm{a}$.	

FARM A2

MILK PER COW YEAR	800 gallons
$\%$ WINTER MIIK	43%
GRAZING SEASON	176 days
ACRES PER STANDARD COW	
FOR THAT SEASON	1.40 acres
NET GALIONS PER ACRE	
FRON COW FIELDS	279 gallons

Height	2501
Soil	Heavy loam
Contours	Rolling
General aspect	Southerly
Area	160 acres
Rent of grass land	40/-
No. of cows	44: spring and autumn calving
Other grazing stock	Followers: hoggs wintered. :
Fields not studied	Fields not grazed by cows
Stock grazed elsewhere.	None
\% of land under crop	22\%
Cropping purposes	Stock feed: - including good mashlum
Silage cutting acres per 100 acres	14
No. of years' cropping between leas	2:- lea mashlum, oats
Length of leas	Indefinite: ploughed before much deterioration
Sow-out crop	Oats
Seeds mixtures	For 1 to 2 years hay followed by 4 to 5 years grazing.
Mamuring	Ground limestone as required at sow-out. Young grass: dung in autumn and no other manure, or 1 cwt supers and 2 cwt grass manure. Grass to be mown: 2 cwts early potato manure, 3-4 cwts Nitro-Chalk: furthor 3 cwts Nitro-Chalk for a second cut. Timothy: dung
Surface cultivations	Harrow after dunging: harrow timothy twice more: Top all grass at about $4^{\prime \prime}$ before ond of June.
Goneral grazing systom for cows	Extensive grazing: day and night on same field.
Electric fence	The prospective additional troublo of erecting and maintaining the electric fence and especially of arranging suitable watering was judged unprofitablo because the existing stock could not use any more grass.
General comments	The farmer recognizos that the production from and intensity of cultivation of his grass might be much higher; but ho knows that in the year under review the needs of his stock were amply met. As the numbers of young stock - and perhaps of feeding beasts - increase, then ho will apply greater quantities of manures.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Field} \& \multicolumn{4}{|r|}{Not morm: mainly grazed by cows} \& \multicolumn{4}{|c|}{Mom: mainly grazed by cows} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { All } \\
\& \text { fields }
\end{aligned}
\]} \\
\hline \& 1 \& 2 \& 3 \& Average \& 4 \& 5 \& 6 \& Average \& \\
\hline \multirow[t]{28}{*}{\begin{tabular}{l}
```
Area (acres)
Years old
Length of lea
1952 details per acre
Stock units
Gallons produced
Net stock mints
Net gallons
S.E. harvested (cwts)
S.E. produced (corts)
Young stock etc. (%)
Gallons per cow day
Cost (shillings)
Manures applied (shlgs)
Net cost of manures (sh.)
Standardized do. (sh.)
Manures used up (cwts):
NN
P2O5
K
CaO
``` \\
Method of use \\
Acres per cow at peak \\
Grazing season \\
Rests (days) \\
Winter stock per acre - hoggs
\end{tabular}} \& \multirow[t]{28}{*}{20
5
7
163
468
154
463
0
21.7
0
2.87
115
50
36
23
\(\therefore 13\)
20
20
.11
0
\(0 r d i n a r y\)
Grazing
.62
\(17 / 5-23 / 10\)
\(11,15,26\)
1.75
3 mths} \& \multirow[t]{28}{*}{\[
\begin{gathered}
17 \\
1,3 \\
7 \\
105 \\
286 \\
90 \\
269 \\
0 \\
13.2 \\
0 \\
2.73 \\
145 \\
61 \\
65 \\
46 \\
\therefore 24 \\
.24 \\
.21 \\
0 \\
\text { Ordinary } \\
\text { Grazing } \\
.52 \\
1 / 5-22 / 10 \\
12,53 \\
1.75 \\
3 \text { mths }
\end{gathered}
\]} \& \multirow[t]{28}{*}{\begin{tabular}{c}
15 \\
010 \\
10 \\
145 \\
44 \\
145 \\
44 \\
0 \\
11.7 \\
41 \\
0.52 \\
59 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\(0 r d i n a r y\) \\
Grazing \\
1.7 \\
\(1 / 5-18 / 10\) \\
none \\
1.75 \\
3 mths \\
\hdashline
\end{tabular}} \& \multirow[t]{28}{*}{52
\(\because\)
\(\vdots\)
139
286
131
279
0
16.0
12
2.35
109
39
35
23
13
.132
.22
.11
0

.70} \& \multirow[t]{28}{*}{} \& 14 \& 20 \& 45 \& 97

\hline \& \& \& \& \& \& old \& 1 \& \&

\hline \& \& \& \& \& \& ? \& 6 \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& 16 \& 13 \& 19 \& 83

\hline \& \& \& \& \& \& 41 \& 31 \& 44 \& 174

\hline \& \& \& \& \& \& 16 \& 13 \& 17 \& 78

\hline \& \& \& \& \& \& 37. \& 31 \& 42 \& 169

\hline \& \& \& \& \& \& 30.0 \& 23.6 \& 23.6 \& 11.0

\hline \& \& \& \& \& \& 32.0 \& 25.2 \& 25.9 \& 20.6

\hline \& \& \& \& \& \& 0 \& 0 \& 0 \& 1

\hline \& \& \& \& \& \& 2.65 \& 2.47 \& 2.37 \& 2.35

\hline \& \& \& \& \& \& 186 \& 124 \& 162 \& 133

\hline \& \& \& \& \& \& 157 \& 34 \& 87 \& 61

\hline \& \& \& \& \& \& 119 \& 43 \& 82 \& 57

\hline \& \& \& \& \& \& 105 \& 37 \& 71 \& 45

\hline \& \& \& \& \& \& 91 \& 30 \& 57 \& 33

\hline \& \& \& \& \& \& . 08 \& . 10 \& -11 \& . 17

\hline \& \& \& \& \& \& . 11 \& . 09 \& . 13 \& 12

\hline \& \& \& \& \& \& . 93 \& 0 \& 1.30 \& 60

\hline \& \& \& \& \& \& Hay \& I Hay \& \&

\hline \& \& \& \& \& \& iI Ord. Graz. \& II Ord.Graz. \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& . 0 \& .63 \&

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& 1.75 \& 1.75 \& 1.75 \&

\hline \& \& \& \& \& \& 3 mths \& 3 mths \& 3 mths \&

\hline
\end{tabular}

FARM A3

| MILK PER COW YEAR | 800 gallons |
| :--- | :---: |
| \% WINTER MILK | 63% |
| GRAZING SEASON | 195 days |
| ACRES PER STANDARD COW | \vdots |
| FOR THAT SEASON | 1.10 acres |
| NET GALIONS PER ACRE | |
| \therefore FROM COW FIELDS | 219 gallons |

| Height | 450' - 600' |
| :---: | :---: |
| Soil | Rich open alluvium: heavy loams. |
| Contours | Flat at two levels: rough banks between the two |
| Area | 120 acres (levels. |
| Rent of grass land | 32/8 |
| No. of cows | 30 (varied). The high proportion of winter milk |
| | in 1951/52 followed reorganization to increase the value of the output from the farm. A continuation of this relation of summer yield to winter yield could not be expected. |
| Other grazing stock | Followers |
| Fields not studied | Fields not grazed by cows |
| Stock grazed elsewhere | None |
| \% of land under crop | 16 |
| Cropping purposes | Stock feed |
| Silage cutting acres per 100 acres | 53. |
| No. of years' cropping between leas | 0 to 2: grass is considered the most profitable |
| Length of leas | 4 (crop. |
| Sow out crop | Oats or direct without cover |
| Seeds mixtures | Seeds mixtures prior to 1953 have been fairly complex, as the following table indicates; but the intention now is to sow mixtures of one grass with S100 clover. |

| Field 6 | Field 7 | Field 5 |
| :---: | :---: | :---: |
| Grass dry- | 1 yr . hay | |
| ing \& 4 yrs | 3 years | Local |
| Special grazing | Special grazing | Mixture |

Italian ryegrass: Ayrshire Hybrid Irish \quad.
Perennial ryegrass: $\because \quad 9 \quad 9 \quad 8 \quad 16$

| Ayrshire | \because | 9 | 9 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

vergreen
S23
7
3
3
3
Danish
4
. .short rotn.
Irish
Kent indigenous
Timothy: S51
Scotch
American
Cocksfoot:S37
S143
Danish
8
6
6
.
Manuring Shell lime as required. \quad Grass to be mown for silage and drying

Spring: 5 cwts potassic supers, . 3-4 " Nitro-Chalk.
Late summer: 4-6 owt grass or maincrop potato manures.
Grass not to be mown: lighter spring dressings; no late summer dressing.

Topping
General grazing system for cows

None in 1952
Ration the lush grass by daily movements of the fence, (day and night on separate fields). In the 6 weeks or so between the two periods of intensive grazing, it was desired to dry the cows off and rest them before preparation for calving again; for this purpose the rougher grass on the higher land was adequate and did not warrant the use of the fence. This grass had deteriorated, and would not have responded sufficiently to nitrogenous manuring to warrant conserving.

In 1953 the plan has been to strip graze twice, mow once, and then strip graze again. The mowing removes any flowering stalks that have been left by the grazing animals.

In general the policy is to manure heavily and to ration the grazing in the first half of the season to allow the maximum amount to be mown for conservation.

Fence.
3 sets of controller and battery are needed for the somewhat scattered fields. Each movement takes about 15 minutes' work.

The table gives details of the several fields. It may be observed that the very high yield of the $1 \frac{1}{2}$ acre field was authentic and the result of heavy manuring prior to ploughing out.

The field(No.7) of Italian ryegrass sown in 1952 gave a yield of 25 cwts of S.E. in 2 cuts, followed by strip grazing. The grazing yield was rather disappointing and corresponds with the experience on Farm I. 2.

On the 3 fields which were grazed and mown, the cost per cwt of S.E. was about 50% higher than the estimated average cost on all the cow fields of this enquiry which were not mow, but about a third less than the corrosponding costs on this farm for the cow fields not mown.

FARM A. 3

| Field | Not mown: mainly grazed by cows | | | | Mown: mainly grazed by cows | | | | ${ }_{192}{ }^{\text {Som }}$ \%ut | $\begin{aligned} & \text { All } \\ & \text { fields } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | Average | 4 | 5 | 6 | Average | 7 | |
| Area (acres) | 5 | 1.5 | 5.5 | 12 | $3 \because$ | 9 | 12 | 24 | 9 | 45 |
| | | | | | | | | | | |
| 1952 details per acre | | | | | | | | | | |
| Stock units Gallons produced | 123 171 | 419 777 | 204 152 | $\begin{array}{r}197 \\ 238 \\ \hline 177\end{array}$ | 261 579 | 175 423 | 69 160 | 311 | 84 | 131 246 |
| Net stock units | 95 | 382 | 196 | 177 | 213 | 175 | 67 | 126 | 37 | 121 |
| IVet gallons | 161 | 689 | 143 | 219 | 525 | 333 | 136 | 259 | 4.9 | 206 |
| S.E. harvested (crots) | 0 | 0 | 0 | 0 | 3.1 | 5.6 | 31.9 | 18.4 | 20.7 | 14.0 |
| S.E. produced (cvts) | 10.6 | 43.5 | 17.6 | 17.9 | 30,5 | 25.9 | 39.9 | 33.5 | 24.6 | 27.5 |
| Young stock etc. (\%) | 26 | 7 | 18 | -13 | 0 | 1 | 10 | 3 | 10 | |
| Gallons per cow day | 1.56 | 1.99 | 0.91 | 1.39 | 2.22 | 2.43 | 2.58 | 2.41 | 250 | 2.03 |
| Cost (shillings) | 213 | 412 | -251 -150 | 256 | 271 | 295 | 374 334 | 331. | 287 | 302 24.4 |
| Manures applied (shlgs) | 141 | 218 | - 150 | 155 152 | 186 : | 270 187 | 334 24.6 | 292 213 | 182 | 206 |
| Net cost of manures (sh.) | 129 125 | 224 228. | 153 137 | 152 143 | 161 167 | 187 252 | 24.6 268 | 249 | 174 | 191 |
| Standardized do. (sh.) | 125 | 228. | 137 | 143 | 167 | 252 | 268 | 249 | 174 | 191 |
| Manures used up (curts): | 0.69 | 1.47 | . 90 | . 88 | 1.00 | 1.39 | 1.76 | 1.53 | . 91 | 1.23 |
| Method of use $\begin{aligned} & \\ & \mathrm{P}_{2} \mathrm{O}_{5} \\ & \mathrm{~K}_{2} \mathrm{O} \\ & \mathrm{CaO}\end{aligned}$ | 1.01 | 1.11 | . 82 | . 94 | 1.00 | 1.23 | . 94 | 1.05 | . 89 | . 99 |
| | . 60 | . 89 | . 52 | . 60 | . 67 | 1.30 | 1.42 | 1.28 | 1.04 | 1.05 |
| | 0 | 2.87 | 0 | .36 | 2.38 | 5.44 | 0 | 2.34 | 3.18 | 1.98 |
| | I Strip | | I Strip | | I Strip | I Cut | I Cut | | I Cut weeds | |
| | II Strip | II Strip | II Ordy. | | II Strip | II Pt.Cut | II 8ac. | | II Trrice cut | |
| | III Ordy. | III Re- | | | IV Silage | twice | cut thrice | | III Strip | |
| | IV Ordy. | seeded | | | IV Silage V Strip | again Rest | $4 \mathrm{ac}$ strip | | III Strip | |
| | | | | | V Strip | Rest strip | . strip | | IV Strip | |
| Grazing seasan | 28/4-6/10 | 12/5- | 13/5-8/11 | | | | | | 12/9-8/11 | |
| Winter stock per acre | 9 hoggs pt. | | 8 hoggs | | | | | | | |
| | , | | pt.time | | | | | | | |
| Rests (days) | 28,20,78 | 27 | $\begin{array}{r} 8,7,21, \\ 21,22,32 \end{array}$ | | 14,6,49,45 | 14,21 | $\begin{gathered} 53,28 \\ 14 \end{gathered}$ | | between cuts \& 35 | |

FARM A4

| MILK PER COW YEAR | 864 gallons |
| :--- | :--- |
| $\%$ WINTER MILK | 50% |
| GRAZING SEASON | 180 days |
| ACRES PER STANDARD COW | |
| FOR THAT SEASON | 1.38 acres |
| NET GALLONS PER ACRE | |
| FROM COW FIELDS | 220 gallons |

| Height | $60{ }^{\prime}$ |
| :---: | :---: |
| Soil | Medium loam: heavy loam: peat. |
| Contours | Gentle |
| General aspeot | Southerly |
| Area | 132 acres |
| Rent of grassland | 26/- |
| No. of cows | 40: Autumn calving |
| Other grazing stock | Young stock |
| Fields not studied | None |
| Stock grazing elsewhere | Some young stock |
| \% land under orop | 9 |
| Cropping purposes | To prepare for seeding |
| Silage: cutting acres per 100 acres. | 16 |
| No. of years' cropping between leas | 1 or 2 |
| Length of leas | Indefinite: until they deteriorate. |
| Sow-out crop | Oats |
| Seeds mixtures | The mixtures are general purpose and usually contain a good proportion of cocksfoot, a grass which appears to suit the farm and the system well. Ryegrass is, however, the dominant grass. |
| Manuring | Dung after sowing out.
 Dung on fields for silage.
 2 to 4 cwts potato manure to most fields.
 5 cwts additional sulphate of amonia to meadows. |
| Surfaco eultivations | Harrow twice to level molehills: 1953 top all pastures in June. |
| General grazing systom for cows. | Extensive. Day and night on same fiold. |
| Fence | Not used: intended to make paddocks for rotational grazing; but water supply difficulties and shortage of labour prevented this. |

FARMI A. 4

FARM I1

| MIIK PER CON YEAR | 745 gallons |
| :--- | :--- |
| \% WINTER MILK | 53% |
| GRAZING SEASON | 168 deys |
| ACRES PER STANDARD COW | |
| FOR THAT SEASON | 1.86 acres/adj. |
| NET GAILONS PER ACRE | |
| FROM COW FIELDS | 122 gallons |

Height
Soil
Contours
General aspect
Area
Rent of grassland
No, of cows
Other growing stock
Fields not studied
Grazing stock elsewhere
$\%$ of land under crop
Cropping purpose
Silage: cutting acres per 100 acres
No. of years' cropping
between leas
Length of leas
Sow-out crop
Seeds mixtures

Subsequent treatment

Manuring

Surface cultivations
General grazing system for cows

Electric fence
800^{\prime}
Peaty land bordering on a moss
Gentle
Little shelter
86 acres equivalent to 70 adjusted acres
30/-
27: autumn calving
Followers
Fields not grazed by cows
The young stock
8
Stock feed

7

1
7 to 10 years
The lea oats
The normal seeds mixture has been:-
Ibs per acre
Italian ryegrass : 6
Perennial " 20
Timothy 5
Rough stalked meadow grass 1
Red clover, broadleavod 2
lateflowering . 2
$\begin{array}{ll}\text { Alsyke clover } & 1 \\ 1\end{array}$
White clover, N.Z. $\quad \frac{1}{38}$
Meadow fescue has been added experimentally in 1952 to make a mixture costing 104/- an acre. Broadcasting is with a spinner type fertilizer distributor.
1st year, silage, aftermath grazed:
2nd, 3 rd and 4 th year, hay, aftermath grazed: thereafter: grazed
Hay and silage: 12 tons dung.
All grass as well as the above, except the
rough ground: 3 cwts grain manure $1 \frac{1}{4}$ " Nitro-Chalk
Harrow poached gateways, hand weed.
Topping is unusual.
Paddocks are grazed rotationally. Day and night on different paddocks. Foggage, strip grazed, with lieback on paddocks. Normally graze down to 1 ".
In addition to its use as a permanent fence
to permit rotational grazing, the electric fence was used for strip grazing foggage. Because of its exposure to all weathers, batteries costing about $£ 5.10 /-$ lasted only about 2 years. For this reason and the inconvenience due to breakdowns, a transformer has been fitted, at a total cost of about \&12, to connect the 240 volt public supply to the 6 volts required for the fence.

FARM L. 1

| Field | Not mown: mainly grazed by cows | | | | | | | Foggage | $\begin{aligned} & \text { All } \\ & \text { fields } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | Average | | |
| Area (acres) | $2 \frac{1}{2}$ | 3 | 4 | | - 8 | | $47 \frac{1}{2}$ | $\begin{aligned} & 12 \\ & 10 \end{aligned}$ | $59 \frac{1}{2}$ |
| Adjusted area (acres) | $2 \frac{1}{2}$ | 3 | 4 4 | 1 10 | $\begin{array}{r}\text { - } \\ \hline 10\end{array}$ | $\begin{array}{r} 12.8 \\ ? \end{array}$ | 31.3 | $\begin{gathered} 12 \\ \text { Iised } \end{gathered}$ | $43 . \overline{3}$ |
| Years old | 6 | 5 | (Pl 17 | 10 | 10 | $?$ | | | |
| Length of lea | 8 | 9 | $\begin{gathered} \text { (Ploughed } \\ 1953) \end{gathered}$ | Permanent | Permanent | | | | |
| 1952 details per acre | | | | | 119 | 101 | 122 | 81 | 111 |
| Stock Units | 140 | 126 | 156 308 | \% 220 | 264 | 18 | 181 | 178 | 180 |
| Gallons produced | 310 | 277 | 308 | $\begin{array}{r}7.494 \\ \hline 219\end{array}$ | 117 | 101 | 120 | 63 | 104 |
| Net stock units | 137 | 125 | 143 | 319 | 200 | 8 | 122 | 9 | 91 |
| Net gallons | 197 | 204 | 165 0 | 358 0 | 0 | \cdots | 0 | 23.3 | 6.5 |
| S.E. harvested (cwts) | 1 | 0 138 | 0 14.2 | 24.1 | 13.1 | 7.7 | 11.5 | 28.1 | 16.1 |
| S.E. produced (cirts) | 14.5 | 13.8 | 14.2 | 24.1 | 13.1 0 | 7.7 30 | 11.5 10 | - 0 | 8 |
| Young stook, etc. (\%) | 0 | 0 | 0 | ${ }^{0}$ | 2. 22 | 30 0.25 | 1.65 | 2.20 | 1.77 |
| Gallons per cow day | 2.21 | 2.20 | 1.97 | 2.25 | 2.22 | 51 | 99 | 375 | 181 |
| Cost (shillings) | 175 | 226 | 84 | 126 | 109 | 51 | 15 | 274 | 87 |
| Manures applied (shlgs) | 25 | 54 131 | 0 | 54 62 | 25 46 | 5 | $\begin{array}{r}15 \\ \hline 3\end{array}$ | 255 | 99 |
| Net cost of manures (sh.) | 88 | 131 | 26 24 | 32 | 46 | 4 | + 32 | 253 | 93 |
| Standardized do. (sh.) | 97 | 65 | 24 | 32 | 47 | 4 | 32 | 253 |) |
| Mianures used up (cwts): | . 23 | .15 | 0 | 0 | . 22 | 0 | . 09 | 1.69 | . 53 |
| | . 23 | . 15 | 11 | 26 | | . 04 | . 13 | . 74 | . 30 |
| $\mathrm{P}_{2} \mathrm{O}_{5}$ | . 23 | . 50 | .11 | . 26 | . 11 | . 04 | | | |
| $\mathrm{K}_{2} \mathrm{O}$ | 1.09 | . 78 | . 09 | .18 | . 09 | . 03 | . 21 | 1.38 0 | .54 1.94 |
| CaO | 5.14 | 0 | 5.00 | 5.00 | 5.14 | . 39 | 2.68 | 0 | 1.94 |
| Method of use | Rot.Graz. | Rot.Graz. | Rot.Graz. | Rot.Graz. | Night past. throughout | Rot.Graz. | | Hay,strip; lieback elsewhere | |
| | | | | | | | . 23 | | |
| Acres per cow at peak | . 11 | . 13 | . 17 | $\stackrel{.04}{15}$ | | | . 23 | | |
| Grazing season | 2/6-18/10 | 24/5-25/10 | 11/5-20/9 | 19/5-4/10 | 16/5-11/10 | 18/5-25/10 | | | |
| Rests (days) | 20,22,21,38 | 20,21,21,58 | 21,17,19,18 | 25,27,24,27,7 | None | None | | None | |
| Winter stock | None | None | None | None | Y.Stock to: mid March | Cowis exercise | | None | |

FARM L2

| MILK PER COW YEAR | 860 gallons |
| :--- | :--- |
| $\%$ WINTER MILK | 43% |
| GRAZING SEASON | 180 days |
| ACRES PER STANDARD COW | |
| FOR THAT SEASON | 1.08 acres |
| NET GALLONS PER ACRE | 322 gallons |
| FROM COW FIELDS | |

| Height | $30{ }^{\prime}$ |
| :---: | :---: |
| Soil | Heavy clay |
| Watering of grazed fielids | All good |
| Contours | Level |
| Area | 100 acres |
| Rent of grassland | 13/4d |
| No. of cows | 27, autumn calving |
| Other grazing stock | Normal followers |
| Fields not studied | None |
| Grazing stock elsewhere | Young stock |
| \% of land under crop | 24 |
| Cropping purposes | Stock feed: some sale potatoes and wheat. |
| Silage: Cutting acres per 100 acres | 36 |
| Mo. of yoars'coropping between leas | |
| Length of leas | Until they deteriorate or have failed. |
| Sow out crops \therefore Ibs. per acre | |
| | Italian ryegrass 6 |
| ? | Perennial ryegrass: $\begin{array}{rlr}\text { Ayrshire } \\ \text { Kentish } & 14 \\ \end{array}$ |
| - . . . | N.Z.ifother 2 |
| | Cocksfoot: S143 2 |
| | S26 2 |
| | Timothy: Canadian ... 3 |
| | Scotch 3 |
| | Roughstalked meadow grass $\quad 1$ |
| \cdots | Chewing's fescue $\frac{1}{2}$ |
| - | Glover: Red 2 |
| | Latefloworing red 1 |
| , | Alsyke 1 |
| | N.Z. Wite Kentish wild whito |
| | Kentishwid whito $\overline{42 \frac{1}{2}}$ |

The first year is usually mown once for silage: thereafter the sward is grazed for several years. 10 tons dung to crop before sow-out.
10 cots potassic minoral phosphate and ground limestono as necessary, to sow-out.
5 cots potato fertilizer in other years.
If necessary
Botational grazing on small ficlds: day and night on some field.
Surplus on paddocks is ensiled.
Electric fence is used as permanent divisions for paddocks.

A very favourable year for grass.

I Notc: This field is included in this group to be with the rest of the paddocks.

FARM L3

| MIIKK PER COW YEAR | $n \approx$ |
| :--- | :--- |
| $\%$ WINTER MILK | 45% |
| GRAZING SEASON | 187 days |
| ACRES PER STANDARD COW | |
| FOR THAT SEASON | 1.60 acros |
| NET GATLONS PER ACRE | |
| FROM COW FIELDS | 246 gallons |

Height
Soil

Area of farm
Rent of grassland
No, of cows
Other grazing stock
Fields not. studied
Stock grazed elsewhere
\% of land under crop
Silage, cutting acres per 100 acres
No. of years' cropping
between leas
Length of leas
Seeds mixtures:

300^{\prime}

Sandy loam: majority of these fields are on black oily peat. Some water logging and some flooding.
Over 300 acres.
21/-
120: calving in spring and autumn
Followers
Fields not grazed by cows in mill.
Dry cows and followers 44

7 (arable)
On this grassland, 2.
Indefinite: until deterioration is great.
Ibs.per acre
Ryegrass - Italian

| Perennial |
| :--- |
| Evergreen |

Cocksfoot
Timothy
Red clover - Broadleaved
Wild white clover8

$$
18
$$

$$
\because \quad 4
$$

3
3
$1 \frac{1}{2}$
$1 \frac{1}{2}$
$1 \frac{1}{2}$
clover
$\frac{1}{40}$
Arable silage: 4 cwts potato manure.
Sow-out oats: no manure.
1st year seeds: 1 cwt Nitro-Chalk.
Other grass: 0 to 5 cwts Nitro-Chalk.
Nearly all grass is.Parmiter harrowed in spring:
One field was divided into paddocks.
Others are grazed extensively: normally a week
or fortnight on one field night and day.
One paddock was ensiled once.
The grass management is based on the experience that enough silage can be made from the ample growth prior to August, which is also adequate for the grazing stock. Whether more intensive treatment of the grass would produce growth that could be profitably used cannot be proved from these details of yields.
The paddocks were made with permanent barbed wire fences.
In interpreting these results some allowance should be mado for the effect of lomeness which the cows devoloped during their long daily walks to the pastures.

(a) Includes one 15-acre field not listed in detail and includes Field 1, part of which was mown once.

FARM IT4

| MILIK PER COW YEAR | 850 gallons |
| :--- | :---: |
| \% WINTER MITK | 48% |
| GRAZING SEASON | 171 days |
| ACRES PER STANDARD COW | |
| FOR THAT SEASON | 1.46 acres |
| NET GALIONS PER ACRE | |
| FROM COW FIELDS | 208 gallons |

Height
Soil
Contours
Aspect
Area
Rent of grassland
No. of cows
Other grazing stock
Fields not studied
Stock grazed elsowhere
\% of land under crop
Cropping purposes
Siloge, cutting acres
per 100 acres
No.of years' cropping
between leas
Length of leas
Sow-out crop
Seeds mixtures

Manuring

Surface cultivations General grazing system for cows.

Goneral
650^{\prime}
Loam: sandy loam with rock: peat. Gontle
South easterly
125 acres
28/6
37: chiefly carly autumn calving.
Followers: a fow B.I. ewes: some hoggs wintered. Fields not grazed by cows in milk
Young stock
25
Stock feod

5

3
Over 8: ploighed in turn to keep up the area of oats to cover the stock needs.

Oats

Local mixture of repute: now reducing cocksfoot because the practice of taking as many as 5 years hay tends to encourage complete predominance of cocksfoot.
In past yoars, lime and potato manures usually.
19525 cwts potato manure on. one field and
5 cwts potassic mineral phosphate, with
3 cuts Nitro-Chalk on another.
In future, ground mineral phosphate.
None: topping by machine, or hand weeding.
Rotational grazing of paddocks until the end of July: then extensive grazing.

The individual paddocks were grazed bare the milk yiold usually falling somewhat as they became bare - and were then rested except for a very light stocking of sheep for from 11 to 31 days. It was not thought worth while to attempt to ensilc any of the foggage or any parts of the pasture fields that were relieved of stock.

Silago was takon on grass and arable crops in 1950, 1951 and 1952; but none was made in 1953 because of the groater convenience, on this form, of foeding roots.
Used for dividing the one cow field into 5 paddocks in 1951, fanning out from one corner where the water was. The enorgy was providod by a spare tractor battery and the normal attention required was meroly half a day at the boginning of the season and a negligible amount to take the battery for charging. Changing the 'gate' took a matter of seconds only. But this was not a 'normal' yoar, and one cow developed an immunity from the shock, would put her back under the wire and break it. This happened frequently. Hence although there was apparently an increase in carrying capacity associated with the manuring and fencing, the fence was not used in 1953.
The wintered hoggs and the half score Border Leicester owes and their lambs keep the ragwort down.

It is thought that the wintering of the sheop does not delay the opening of the cow grazing season; for at 650 feet it is unlikely, the farmer thinks, that spring growth will commence before warmth devolops.

The farmer considors that the 1952 grazing season was not quite so good as that of 1953, and has tentatively concluded that it will be more profitable for him to avoid applying nitrogen to his grass land.

| Fields not mow, mainly grazed by cows | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Field | 1 | 2 | Avorage | Foggage |
| Arca (acres) | 29 | 20 | 49 | 33 |
| Years old | 5 | 388 | | |
| Length of Iea | Over 8 | Over 8 | | |
| 1952 details per acre | | | | |
| Stock units | 131 | 173 | 148 | 25 |
| Gallons produced | 324 | 159 | 256 | 67 |
| Net stock units | 131 | 150 | 139 | 22 |
| Net gallons | 284 | 98 | 208 | 21 |
| S.E. harvested (cwts) | 16.0 | 13.2 | 14.9 | 35.4 37.5 |
| S.E. produced (crvts) | 16.0 9 | 13.2 42 | 14.9 25 | 4 |
| Young stock ctc. (\%) Gallons per cow day | 2.72 | 1.57 | 2.30 | 2.77 |
| Gall ons per cow day Cost (shillings) | 145 | 142 | 144 | n.a. |
| Manures applied (shlgs.) | 80 | 92 | 83 | n.a. |
| Net cost of manures (shlgs.) | 75 | 80 | 77 | n.a. |
| Standardized. do. "'. | 92 | 77 | 86 | n.a. |
| Manures used up (owts): | . 30 | . 30 | . 30 | no. |
| $\mathrm{P}_{2} \mathrm{O}_{5}$ | . 83 | . 86 | . 84 | n.a. |
| - $\mathrm{K}_{2}{ }^{\mathrm{O}}$ | . 64 | . 50 | . 59 | n.a. |
| U... CaO | 2.86 | - | 1.69 | n.a. |
| Method of use | Rotational | Ord. | | I Hay |
| | (5padaocks) | | | II Stries |
| Acres per cow at peak Grazing season | : $27 / 4-27 / 9$ | $\frac{6^{6}}{17 / 4-18 / 10}$ | . 24 | |
| Grazing season Winter stock per acre | . 6 shecp | . 6 shecp | | - |
| Rests (days) . | from 11 to | None | | |

FARM K1

MILK PER COW YEAR \% WINTER MIIK GRAZING SEASON ACRES PER STANDARD COW FOR THAT SEASON NET GALIONS PER ACRE FROM COW FIEEDS

650 gallons
40\%
184 days
1.55 acres

222 gallons

Height
Soil

Area
Rent of grassland
No. of cows
Other grazing stock
Fields not studiod Stock grazed olsewhero \% of land under crop Cropping purpose Silage No. of years' cropping betwoen loas
Length of Ieas
Sow-out crop

General grazing system for cows

Fence

Between sea level and 100^{\prime}
Belts of deep clay and thin soil on granite: some salt marshes. Young stock fields wero rough, with whins.
400 acres
20/-
60: half spring, half autumn calving.
Young stock: bought lambs fattened, hoggs wintered.
Fields not grazed
None
29
Sale grain \& hay: stock feed.
None
Better Iand, 3-4;
Poor land, 2.
Better land, 2: poor land, as long as possible.
Oats
In 1952 roseoding of old pasture after two years under crop (barley, then roots) necessitated ploughing, and took in all 6.8 man hours, and 6.8 tractor hours per acre, and cost, with seeds at 95/- an acre, and overheads, £9.13/- an acre. Because of the presence of charlock seeding was without a nurse crop.
Grass, about 5 cwits ground mineral phosphate.
$1 \frac{1}{2}$ owts muriate of potash, and $1 \frac{1}{2}$ cwts sulphate
of ammonia. Clover grows well despite high lime
requirement. Basic slag is used.
Corn crops, 6 cwts grain manure.
Roots, heavy dung.
Mown at $2^{\prime \prime}$ or so if necessary: this occurred on the sow-out and one other field.
Electric fence to give two days' supply at a time, ($2-3$ days' on foggage). Night and day on same field.
Infrequent moving of the fence to save labour and because of awkward shape of fields. He had no reel. The variation in the quality of the soil made it difficult to estimate the area needed for a single day. Cows were continually breaking through and it was difficult to find time for attention to the fence. The farmer attributed the lack of rospect for the fence to having failed to train the cows properly; for they had been introduced to the fence in a spell of dry weather on an area so small that when fighting commenced cows were quickly driven through the wire, and learned to ignore it. The only occasion on which the fence was used in 1953 was to feed foggage in•3-acre breaks to provent waste. It happoned that during the wet weathor the strips were on the heavy clay belts, and during the dry weathor they happened to be on the thin belts.

FARM K1

FARM W1.

| MILK PER CON YEAR | n.a. |
| :--- | :--- |
| \% WINTER MIIK | 45% |
| GRAZING SEASON | 210 days |
| ACRES PER STANDARD COW | |
| FOR THAT SEASON | 1.13 acres |

NO COW FIELDS NOT MOWN

Although the farmer has not had long experience of this farm he has decided to reduce the amount of cocksfoot in the seeds mixtures and to substitute timothy. The reason is the difficulty he experiences of getting the cocksfoot eaten once it attains a certain degree of maturity. One field sown with a mixture containing a good doal of commercial cocksfoot and now duc for ploughing probably owes its relatively poor yield to this fact.
Manuring

12 tons dung to greencrop before sow-out oats. 3 tons of ground limestone at sow-out if necessary, (repeated two years later on one field), and, normally, 7 , cwts potassic mineral phosphate each year. In/

Manuring (Conta.)

Surface cultivations

General grazing system for cows

Electric fence

In addition, 4 cwts early potato fertilizer or 2 to 4 cirts Nitro-Chalk was applied in the year under review. All crops receive some kind of manuro.
Roll in spring and sometimes chainharrow. No weeding necessary on these fields all of which were mown.
Graze in strips: night and day on same field. Lieback on same field. Graze extensively when dung would become over concentrated at the lieback end. Miake silage or hay of surplus grass as is convenient. Fields are eaten bare at each grazing. In all, the fence required 100 hours of labour. It is used for folding kale as well as grass.

The fencing unit consisted of a 6 volt accumulator and controller, light wire and stakes: The essentials of a straight, taut wire were soon learned in the hard school of the experience of having to mend a broken fence singlehanded.

The farmer is confident that his return in 1951, 1952 and 1953 from controlled grazing has been substantially higher than under ordinary grazing, which he practised in the two years before... As the labour staff and equipment are adequate to deal with silage and hay cuts, the arrangement seems to be both highly productive and convenient. It should, however, be said that 1952 and 1953 were favourable seasons for this farm。

FIELDS MOWN AND GRAZED

Note: Some addition might properly be made for live-weight increase of dry stock on Field 1.

FARM W2

| MILK PER COW YEAR | 880 gallons |
| :--- | :---: |
| \% WINTER MILK | 27% |
| GRAZING SEASON | 238 days |
| ACRES PER STANDARD COTN | |
| FOR THAT SEASON | 1.27 acres |
| NET GALIONS PER ACRE | |
| FROM COW FIELDS | 515 gallons |

Height
Soil
Contours
General aspect
Area
No. of cows
Rent of grassland
Other grazing stock
Grass fields not studied
Grazing stock elsewhere
\% of land under crop
Cropping objectives

Silage

No. of years' cropping between leas Length of leas Sow out crop Seeds mixtures:

Farm W2 (contd.) Manuring (contd.)

Topping:
General system of grazing

Notes:
only nitrogenous manures brought on to the farm in the past 20 years have been the relatively small amount in compound manures applied to the mangold crops on one field in 1950 and 1951. The lime status, built up early in the 1939-45 war, is kept up by dressings of $20-30$ cwts ground limestone in the year before the leas are broken.
None in 1952; only necessary for weeds; docks dug; no spring cultivations.
At the height of the season the method of grazing of the four main cow fields is to keep one quarter of the herd permanently night and day on one field, if necessary putting the cows on the young stock field or on: one of the other 3 cow fields. The remainder of the herd grazes by day alternately on one of a pair and by night continuously on a third field. For the rest of the season there is no set pattern, and no fields are rosted more than 3 days.

Growth was so good that the 90 cows could be kept on less than 100 acres and never were allowed to eat a pasture bare: indeed there was normally some $5^{\prime \prime}$ of grass left when cows were removed from any field.

It may be that this leaving of a big part of the plants intact enables the plants to continue to produce a hoavy yield very steadily throughout the season. The grass rarely 'shoots' and the only. topping done is whon a patch becomes weedy. There is good clover development. Even in the dry summer of 1949, although the pastures were eaten bare by mid July, the whole herd and its followers was maintained on the farm. Some hand feed was necessary, and the milk yield dropped; but by the ond of the season the year's yield was up to normal. Although it would be possible to increase the output from grass on this farm, the system nevertheless appears to be admirably suited to the strain of cows, the soil and the climate.
Tho winter-dry herd can be inoxpensively wintered on oats, straw and turnips. Concentrates are needed for the milking stock from Soptember until they dry off and before May 28th.

The curve of preduction from the grass is shown as Figure 2 .

FARM W2

FARM W3

| MILK PER COW YEAR | 809 gallons |
| :--- | :--- |
| \% WINTER MILK | 46% |
| GRAZING SEASON | 191 days |
| ACRES PER STANDARD CON | |
| FOR THAT SEASON | 1.19 acres |
| NET GALLONS PER ACRE | |
| FROM COW FIELDS | 308 gallons |

Manuring

Surface cultivations

General grazing system for cows

Normally 12 tons of dung is ploughed in for the sow-out, whether or not a cover crop is used. Dressings of 2 couts per acre of compound grass fertilisers or of 2 cwts each of mineral phosphates and murjate of potash were applied to a very few fields in 1952.
Weeding included spraying to kill docks. Most fields were rollod in April.
Strip graze, each strip bare, with lic-back on another field usually. Cows clean up the lieback portion.

Surplus grass

The fence

Hay, silage and dried grass are made from ficlds that can be spared.

The electric fence was first used in 1948. Because the farm is cut up by public roads, 3 controllers are necessary and there is some interference from passersmb. The wire is of light gauge and the posts are oithor sheop stobs with porcelain insulators tied with twine or, on the part to be movod, iron types that can be pressed in with the feet. The cows are dohorned. The farmer considers that the fence prevents waste of grass and thus enables him to avoid sending young stock awoy for summering and to reduce the area of grass to leave more for the production of winter fodder from arable crops. It is also noteworthy that since lush grass has been rationed daily with the olectric fence bloat, formerly a heavy scourge, has been happily absent. Swards are dense.

In 1953 the plan has been (a) to use a soparate night field if one was available and (b) to give 1 day's ration at a time with liemback on the seme field.

| FIETD W. 3 | Not Mown: mainly grazed by cows. | | | | | | Not mown: not mainly grazed | | | | | Mown | | | | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | 1 | 2 | 3 | 4 | 5 . | Average | 6 | 7 | 8 | 9 | Average | 10 | 11 | 12 \|A | Average | A1. 1 |
| Area | 30 | 4 | 15 | 8 | $4 \frac{1}{2}$ | $61 \frac{1}{2}$ | $3 \frac{1}{4}$ | $36 \frac{1}{3}$ | 8 | 6 | $53 \frac{1}{2}$ | $7 \frac{1}{4}$ | $19 \frac{1}{2}$ | $17 \frac{3}{4}$ | $44 \frac{1}{2}$ | $159 \frac{1}{2}$ |
| Years old | 3 | 3 | 5 | 5 | 8 | | 9 | 2/old | 7 | 1 | | 5 | 5 | 1 | | |
| Length of lea | 4 | 4 | 5 | 5 | $8+$ | | $8+$ | 4/ind. | 8 | 4 | | 5 | 5 | 4 | | |
| 1952 details per acre | | | | | | | | | | | | | | | | |
| Stock units | 211 | 210 | 126 | 164 | 160 | 181 | 145 | 214 | 123 | 319 | 208 | 60 | 130 | 19 | 75 | 160 |
| Gallons produced | 423 | 442 | 153 | 386 | 344 | 348 | 141 | 1 | - | - | 8 | 111 | 293 | 30 | 158 | 181 |
| Net stock units | 211 | 210 | 126 | 164 | 160 | 181 | 121 | 214 | 104 | 223 | 193 | 60 | 130 | 19 | 75 | 155 |
| Net gallons | 405 | 413 | $1 \cdot 14$ | 261 | 297 | 308 | 141 | - | - | - | 8 | 67 | 208 | 30 | 114 | 153 |
| S.E.harvested (cwts) | - | - | - | - | - 5 | - | - | - | - | - | - | 23.4 | $7 \cdot 4$ | 18.8 | 14.5 | $4 \cdot 1$ |
| S.E.produced (cwts) | 24.6 | 24.7 | 11.8 | 17.9 | 18.5 | 20.2 | 12.1 | 15.8 | 7.6 | 16.4 | $\therefore 14.4$ | 29.3 | 21.6 | 20.9 | 22.6 | 18.9 |
| Young stock etc. (\%) | 5 | 4 | 49 | 0 | 0 | 11 | 60 | 100 | 100 | 100 | $\because 98$. | 0 | 0 | 0 | 0 | 48 |
| Gallons per cor day | 2.10 | 2.20 | 2.36 | 2.35 | 2.14 | 2.17 | 2.42 | - | - | - | 2.42 | 1.85 | 2.24 | 1.55 | 2.12 | 2.16 |
| Cost (shillings) | 112 | 111 | 122 | 71 | 57 | 105 | 94 | 98 | 80 | 163 | $\because 103$ | 183° | 64 | 164 | 123 | 109 |
| Manures applied (shlgs.) | - | - | 17 | - | - | 4 | 36 | - | 36 | 39 | . 12 | 132. | $\because-$ | 40 | 37 | 16 |
| Net cost of manures(") | 25 | 25 | 23 | 18 | 6 | 20 | 29 | 30 | 24 | 60 | $\therefore 33$ | 81 | - 0 | . 68 | 40 | 30 |
| Standardized do. (") | 9 | 24 | 28 | - | 13 | 13 | 18 | 17 | 16 | 54 | $\therefore 21$ | - 113 | $\therefore 0$ | 61 | 43 | 24 |
| Manures used up (cwts) : | 0 | 0 | . 15 | 0 | 0 | . 04 | . 01 | 0 | . 10 | 0 | $\because .02$ | . 81% | \because $\because 0$ | 0 | .13 | . 06 |
| $\mathrm{P}_{2} \mathrm{O}_{5}$ | . 06 | . 06 | 0 | 0 | 0 | . 03 | . 01 | .15 | . 10 | . 50 | -. 18 | $\because \quad 13$ | $\because 06$ | .70 | . 30 | -16. |
| $\mathrm{K}_{2} \mathrm{O}$ | 0 | \bigcirc | 0 | 0 | 0 | 0 | . 01 | . 21 | . 06 | . 87 | $\because \cdot 25$ | $\therefore .53$ | $\therefore 0-\cdots$ | .90 | .41 | . 20 |
| CaO | 2.13 | 1.25 | 3.87 | 0 | 3.86 | 2.41 | 0 | . 94 | 0 | 0 | $\because 63$ | 3.86 | 80 | O_{2} | .63 | 1.32 |
| Method of grazing I | Ord. | Ord. | Strip | Lie- | Ord. | | Ord. | Ord. | Ord. | Ord. | | Ord.to | Strip | Ord. | | |
| | | | for12 | back | | | | | | | | 1/5 | | | | |
| | | | days | to | | | | | | | | | | | | |
| | | | | 25/5 | | | | | | | | | | | | |
| II | Strip | Lie- | Ord. | Ord. | | | | | | | | Hay | Silage | Silage | | |
| | | back | | | | | | | | | | 8/7 | | Dried | | |
| | | | | | | | | | | | | Ord. | | Silage | | |
| III | | Ord. | | Strip | | | | | | | | Ora. | $\text { to } 1 / 8$ | D.grass | | |
| | | | | | | | | | | | | | | pt. grazed | d | |
| IV | | Strip | | | | | | | | | | | Ord. | Ord. | | |
| Winter stock per ac. | . 6 | . 6 | None | None | Non | | 2 | . 4 | Cow | | | | | | | |
| Ninter stock per | Stinks | Stirks | | | | | Calves | beast | exer | - | | - | - | - | | |
| | | | | | | | | stray | cise | | | | | | | |
| | | | | | | | | | | | | | | n.a. | | |
| Rests (days) | 6,7,6, | 6,7,6, | 14, ${ }^{\text {56, }}$ | 51,45 | Non | | None | None | None | None | | (68,74, | 8,4,46to silage | n.a. | | |
| | 5,4 | 5,4 | | | | | | | | | | \& after | 17 after | | | |
| Grazing season | | | | | | | | | | | | ${ }^{\text {chay }}$) | Silage | | | |
| Grazing season | -20/10 | -20/10 | $-2 / 10$ | $-20 / 10$ | -20 | /10 | | | | | | | 13,10 | | | |

