

The World's Largest Open Access Agricultural & Applied Economics Digital Library

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.





TROPICAL REGION

21st Annual Meeting of the Caribbean Food Crops Society and 32nd Annual Meeting of the American Society for Horticultural Science — Tropical Region



Published by the Caribbean Food Crops Society, Box 506, Isabela, Puerto Rico 00662

## FIELD PERFORMANCE OF TISSUE-CULTURED GIANT CAVENDISH BANANA (MUSA AAA GROUP) UNDER DIFFERENT FERTILIZER, NEMATICIDE AND PLANTING TREATMENTS ON ST. CROIX, V.I.

## A. Gonzalez and C. Ramcharan

### Agr. Expt. Station, College of the Virgin Islands P.O. Box 920, Kingshill, St. Croix, V.I. 00850

#### ABSTRACT

The feasibility of using imported propagules of Giant Cavendish Banana for field production is described. Best yield of 28.2 t  $ha^{-1}$  or 245, 070 fruits  $ha^{-1}$  in the plant were obtained with chicken manure at 3.5kg plant<sup>-1</sup> without any nematicide. In the 1st Ratoon crop overall production was better with a maximum yield of 37.1 t  $ha^{-1}$  or 272,181 fruits  $ha^{-1}$  in plots treated with chicken manure and Temik 10%G at 84g plant<sup>-1</sup>. Use of tissue culture material apparently did not increase crop production time with plants requiring 285 days from planting to flowering and an additional 75 days to harvesting. Both vegetative and fruiting characteristics of plants were very uniform with no apparent variability. Soil assays showed significant absence of the burrowing nematode and yield data indicated that nematicide application may not be required until the first ratoon crop. In comparison with plants produced from traditional suckers, tissue cultured plants had thicker pseudostems more leaves and produced heavier bunches (16kg vs. 12kg) with more fruits per bunch (127 vs. 101).

#### RESUMEN

Se describe la viabilidad de la utilización de propágulos importados de banano del tipo Giant Cavendish para la producción de campo. Se obtuvo el mejor rendimiento de 28,2 t/ha o 245 070 frutos/ha, usando la gallinaza en una relación de 3,5 kg/planta sin nematicida. En la primera cosecha de retoños, se obtuvo una producción global mejor un rendimiento máximum de 37,1 t/ha o 272 818 frutos/ha en los semilleros tratados con gallinaza y Temik 10%G en una relación de 84 g/planta. El uso de culitvos de tejido no parecía mejorar la duración de producción del cultivo, puesto que las plantas necesitaron un período de 285 dias desde la plantación hasta la floración, y unos 75 días más hasta la cosecha. Las características vegetativas y fructíferas permanecieron uniformes sin variación aparente. Los ensayos del suelo presentaron una ausencia significante del nematodo horadador; y los datos sobre el rendimiento indicaron que la aplicación de la nematicida no sería necesaria hasta la primera cosecha de retoños. Comparadas con las plantas producidas de retoños tradicionales, les plantas producidas de cultivos de tejido tenían seudocabezas más gruesas y más hojas; y produjeron racimos más grandes (16 kg contra 12 kg), con más frutos por racimo (127 contra 101).

Although bananas are an important part of the diet of many Virgin Islanders, most of the bananas consumed are imported from the U.S. (via Florida) or other Caribbean islands (Table 1). Planting material used in the Virgin Islands is usually brought in from neighbouring Caribbean islands creating transportation and quarantine problems. Propagation by tissue culture is a method of producing large numbers of pest-free material (Debergh and Maewe, 1983, Hughes *et al.*, 1978 and Murashige, 1974) that can be conveniently shipped between countries. Lui *et al* (1984) used meristem aspices of banana for rapid clonal multiplication and recovery of specific pathogen-free plants. Ramcharan (1983)

| Item                 | Quantity<br>('000kg) | Value<br>\$ | Country of origin | Year |
|----------------------|----------------------|-------------|-------------------|------|
| Plantain             | 1.5                  | 594         | Honduras          | 1980 |
| Plantain             | 23.3                 | 7,092       | Costa Rica        | 1980 |
| Plantain             | 34.0                 | 12,288      | Dom. Republic     | 1980 |
| Plantain             | 1.9                  | 577         | St. Lucia         | 1980 |
| Plantain &           |                      |             |                   |      |
| Banana<br>Plantain & | 661.0                | 296,935     | US (via Miami)    | 1980 |
| Banana               | 237.0                | 125,986     | US (via Miami)    | 1983 |

 
 Table 1.
 Amount and value (\$US) of banana and plantains imported into the US Virgin Islands for selective years.

Source: Bureau of Statistics, Dept. of Commerce, Charlotte Amalie St. Thomas, U.S. Virgin Islands. developed a suitable method of transplanting and a container for use in hardening-off Giant Cavendish banana propagules shipped into St. Croix. Pool (1984) in Puerto Rico obtained excellent yields with tissue cultured clones of Ziv and Dwarf Cavendish cultivars introduced from Israel.

The Giant Cavendish banana is now a major commercial cultivar and like the rest of the Cavendish group is resistant to the Fusarium wilt but susceptible to nematodes (Rowe and Richardson, 1975). In St. Lucia (Holder and Gumbs, 1983), Giant Cavendish was found to have comparable yields to other Cavendish types, but was shorter and more wind resistant.

This paper describes an experiment to evaluate the feasibility of importing Giant Cavendish propa-

gules and their subsequent field performance using different cultural treatments.

#### Materials and methods

The study was conducted at the Virgin Islands Agricultural Experiment Station on St. Croix, U.S. V.I. The climate is tropical with an annual average maximum and minimum temperature of 30 °C and 23 °C, respectively. The average annual rainfall is 1092mm. The soil is a Fredensborg clay loam characterized by an underlying layer of limestone or marl (Lugo-Lopez and Rivera, 1980). Soil chemical characteristics of the experimental plot are shown in Table 2.

|                    | Table 2. Soil chemical analysis of the experimental plot |           |            |               |                |                |              |
|--------------------|----------------------------------------------------------|-----------|------------|---------------|----------------|----------------|--------------|
| C.E.C.<br>meq/100g | pН                                                       | O.M.<br>% | P<br>ug/ml | K<br>meq/100g | Ca<br>meq/100g | Mg<br>meq/100g | Fe<br>ug./ml |
| 35.6               | 7.9                                                      | 2.9       | 14.6       | 0.36          | 38.9           | 2.7            | 1.8          |

Table 2. Soil chemical analysis of the experimental plot

The experiment was initiated on 1 December, 1982, using Stage III plantlets of Giant Cavendish bananas air-freighted into St. Croix from Oglesby Nursery of Holiday, Florida. The plantlets were hardened-off and established according to methods previously described (Ramcharan, 1984).

Plants were spaced at 2.4m x 2.1m (about 1945 plants ha-1 in a 2 x 2 x 3 factorial experiment using a completely randomized design with three replicate plots, each containing six plants. Treatments used were: method of planting - either tractor dug or hand dug holes; fertilizer - chicken manure or ammonium sulfate and nematicides - Temik (Aldicarb) 10%G, Furadan (Carbofuran) 5%G and a control without nematicide. Chicken manure was applied initially at 3.5kg. of well rotted manure in the planting holes but broadcast around the plants in the subsequent yearly applications. Ammonium sulphate was applied at a rate of 1.7kg. plant<sup>-1</sup> yr<sup>-1</sup> divided into six applications. Potassium sulfate was applied at an overall rate of 800kg K<sub>2</sub>O ha<sup>-1</sup>. Temik 10%G at 84g plant-1 and Furadan 5%G at 56g plant<sup>-1</sup> were incorporated at the time of planting and again at 6 and 4 months intervals respectively on the soil surface.

A trickle irrigation system consisting of 1.25cm black polyethylene tubes, one  $3.8 \ 1 \ hr^{-1}$  emitter plant<sup>-1</sup> and battery operated timers (Water Watch Corp, Seattle, Washington) was used to apply water and FE 138 sequestrene chelate (Ciba Geigy, Greensboro N.C.) at 60g ha<sup>-1</sup> wk<sup>-1</sup>.

Weed growth was controlled with post-emergent applications of Paraquat at 0.3kg a.i ha<sup>-1</sup>.

The bunches were harvested when the fruit reached the light full or full ¾ stages.

#### Results and discussion

Of major significance in this study was the good uniformity both in the vegetative and fruiting phases of banana plants. Unlike a previous field study using tissue cultured plantain (Ramcharan and Gonzalez, 1984), the Giant Cavendish bananas showed no variability problems.

Yield data are represented in Tables 3 and 4. In the plant crop (Table 3) overall mean yield and fruits

| Mean yield (t/ha) <sup>1</sup> |                    |                   | <u>Fruits/ha</u> |                |  |
|--------------------------------|--------------------|-------------------|------------------|----------------|--|
| Nematicide                     | $NH_4SO_4$         | Chicken manure    | $NH_4SO_4$       | Chicken manure |  |
|                                |                    | Tractor-dug holes |                  |                |  |
| Without                        | 22.2b <sup>2</sup> | 24.9 ab           | 203,641 b        | 233,400 ab     |  |
| Furadan 5%G                    | 23.5 ab            | 24.5 ab           | 208,115 ab       | 232,816 ab     |  |
| Temik 10%G                     | 23.5 ab            | 26.4 ab           | 223,091 ab       | 232,030 ab     |  |
|                                |                    | Hand-dug holes    |                  |                |  |
| Without                        | 20.9 c             | 28.2 a            | 202,280 b        | 245,070 a      |  |
| Furadan 5%G                    | 24.5 ab            | 24.3 ab           | 221,146 ab       | 227,565 ab     |  |
| Temik 10%G                     | 23.0 b             | 23.1 ab           | 209,476 ab       | 227,954 ab     |  |
| Mean                           | 22.9               | 25.2*             | 211,291          | 233,139*       |  |

Table 3. Yield (t/ha) and fruits/ha of the plant crop of tissue-cultured Gaint Cavendish banana

<sup>1</sup> Based on a plant population of 1945 plants/ha

<sup>2</sup> Mean separation within columns by Duncan's multiple range test, 5% level

\*Significant at the 0.05 probability level

ha-1 of the chicken manure treatments were significantly higher than the ammonium sulphate treatment. In the 1st ratoon crop (Table 4) there were no significant differences although overall yields were higher than in the plant crop.

With respect of nematicides and method of planting treatments, no significant difference was found within the treatments. Although using a tractor for preparing planting holes did not improve yields, this method would certainly reduce labour costs for planting.

The average yield and fruits  $ha^{-1}$  between the treatments were 24.1 and 33.75t  $ha^{-1}$  with 222, 315 and 272, 818 for the plant crop and second crop respectively.

|             | Mean yie          | ld (t/ha) <sup>1</sup> | En         | uits/ha        |
|-------------|-------------------|------------------------|------------|----------------|
| Nematicide  | $NH_4SO_4$ C      | hicken manure          | $NH_4SO_4$ | Chicken manure |
|             |                   | Tractor-dug hol        | es         |                |
| Without     | 35.5 <sup>2</sup> | 30.4                   | 258,685    | 275,412        |
| Furadan 5%G | 30.1              | 31.2                   | 278,718    | 270,938        |
| Temik 10%G  | 35.3              | 34.6                   | 258,685    | 294,473        |
|             |                   | Hand-dug hole          | es         |                |
| Without     | 32.4              | 35.7                   | 258,685    | 275,421        |
| Furdan 5%G  | 36.5              | 35.2                   | 278,718    | 270,938        |
| Temik 10%G  | 31.0              | 37.1                   | 258,685    | 294,477        |
| Mean        | 33.5              | 34.0                   | 265,362    | 230,274        |

Table 4. Yield (t/ha) and fruits/ha of the 1st ration crop of tissue-cultured Gaint Cavendish banana

<sup>1</sup> Based on a plant population of 1945 plants/ha.

<sup>2</sup> Means without a letter do not differ significantly (p=.05) according to Duncan's multiple range test.

The maximum yield in the plant crop was 28.2t ha<sup>-1</sup> obtained with chicken manure and without nematicide. In the second crop the maximum yield was 37.1t ha<sup>-1</sup> obtained with chicken manure and Temik 10%G. Chicken manure therefore appears to be superior to ammonium sulfate, particularly in the plant crop, when the plants are relatively free of nematode infestation. Soil OM content and CEC were low (Table 2) and better yields with chicken manure may have been mainly due to soil amelioration properties of the manure itself. It would therefore be interesting to observe effects of chicken manure used in combination with ammonium sulphate.

In the 1st ration crop, when soil nematode populations had built up, the use of Temik with chicken manure appeared to increase yields. This interaction between chicken manure and nematicide is therefore an important one that has so far not been reported.

In data not presented, it was shown that Giant Cavendish bananas originating from tissue culture took 285 days to shooting and an average of 75 days from shooting to harvesting. Table 5 presents the total populations of major nematodes found in soil assays. These data corresponded to the second year of the experiment. Because the method of planting has no effect on the number of nematodes, this information was compiled to simplify data.

The F value in the analysis of variance showed no interaction between fertilizer and nematicides treatments. Also, the data in general showed that heither nematicide application nor fertilizer had any significant effect on the number of nematodes.

Of major significance was the total absence of the burrowing nematode (*Radopholus similis*) which is a common pest of the Giant Cavendish banana. Although high pH is known to suppress nematode population (pers. comm ., G. Goseco. United Fruits, Honduras), the use of tissue-cultured material may partly be responsible for this notable absence of *Radopholus*. Tissue culture may therefore afford a practical and effective means of excluding the burrowing nematodes from areas such as the Virgin Islands where this pest has so far not been extensively found.

 Table 5.
 Total population of nematodes\* extracted from 100cc of soil from rhizosphere on banana grown from explants and treated with different fertilizer and nematicides<sup>1</sup>

|                                                   | No nematicide               | Furadan 5%G    | Temik 10%G     |
|---------------------------------------------------|-----------------------------|----------------|----------------|
| Chicken manure<br>NH <sub>4</sub> SO <sub>4</sub> | 291.2 <sup>2</sup><br>276.0 | 253.2<br>277.0 | 366.5<br>306.5 |
| Total                                             | 567.2                       | 480.2          | 673.0          |

<sup>1</sup> Furadan applied at 4 month and Temik at 6 month intervals

<sup>2</sup> Means without a letter do not differ significantly (P.05) according to Duncan's multiple range test \*Including spiral, root-knot, and reniform types

Since the use of nematicides apparently had no effect on the number of nematodes at least in the plant crop, when using tissue-cultured plantlets, it may be possible to recommend that nematicides not be used locally until the 1st ratoon crop.

Table 6 shows comparative characteristics between Giant Cavendish grown from tissue culture and from suckers in the same soil type. The superiority of tissue-cultured Giant Cavendish is evident. The thicker pseudostem of the tissue-cultured plants is well suited to the windy conditions in the Virgin Islands. Also the apparent larger bunch and numbers of fruits produced from cloned plants could significantly increase total banana production in the islands.

Table 6. Comparative growth and yield characteristics of regular & tissue cultured Giant Cavendish banana.

| P1                         | anting material          |                               |
|----------------------------|--------------------------|-------------------------------|
| Parameter                  | Regular<br>sword suckers | Tissue-cultured<br>propagules |
| Height at shooting (m)     | 1.8                      | 1.7                           |
| Pseudostem diameter * (cm) | ) 13.2                   | 16.5                          |
| Bunch weight (kg)          | 12.0                     | 16.0                          |
| Fruit/bunch                | 101.0                    | 127.0                         |
| Hands/bunch                | 7.0                      | 7.6                           |
| Functional leaves          | 8.3                      | 9.5                           |

\*measurement taken about 0.6 m above soil level.

In summary, the feasibility of using Giant Cavendish banana from tissue culture as planting material was established. The mature plants from tissue culture showed good uniformity in both the plant and succeeding crops and comparatively higher yields than traditionally grown plants. Tissue culture may therefore afford an effective means of excluding the burrowing nematode from the Virgin Islands, reduce the dependence on the use of chemical pesticides and generally increase production from the present acreage under banana cultivation.

#### References

Debergh, P.C. and Maewe, L.J. (1983) Contribution of tissue culture techniques to horticultural research and production. Acta Horticulturae. 131 23 - 27.

Holder, G.D. and Gumbs, F.A. (1983) Agronomic assessment of the relative suitability of the banana cultivars 'Robusta' and 'Giant Cavendish' (Williams hybrid) to irrigation. *Trop. Agric (Trinidad)* 60 (1) 17 - 24.

Hughes, K., Henke, R., and Constantin, M. (eds). (1978). Propagation of higher plants through tissue culture, a bridge between research and application. Tech. Inf. Center, US Dept. Energy.

Liu, L.J., Gupta, P.P., Monllor, A.C., Rosa, E., Licha, M., Lizardi, E., Diaz, N., and Arocho, A. (1974) Tissue culture propagation of tania, banana, plantains, papaya, yam and sugar cane. *Proc. 20th Caribb. Food Crops. Soc. Mtg.* 2I - 26 Oct. 1984. St. Croix, V.I.

Lugo-Lopez, M.A., and Rivera L.H. (1980) Updated taxonomic classification of the soils of the U.S. Virgin Islands. J. Agric. Univ. P. R. 64 (2) 131 - 137.

Murashige, T. (1974) Plant propagation through tissue culture. Ann. Rev. Plant Physiol. 25 135 - 136.

Pool, D.J. (1984) Evaluation of banana cultivars for fresh fruit market in Puerto Rico. Fruits 39 (2) 112 - 114.

Ramcharan, C. (1984) Studies on hardening-off method and starter container for Giant Cavendish banana explants shipped into St. Croix, V.I. Proc. 19th Caribb. Food Crops Soc. 89 - 96.

Ramcharan, C., and Gonzalez, A. (1984) Yield, agronomic characteristic and variability of Regular Maricongo and Dwarf Plantain (Musa AAB) using tissue-cultured plantlets in St. Croix, U.S. V.I. *Proc. 20th Caribb. Food Crops Soc. Mtg.* 21 - 26 Oct. 1984. St. Croix, V.I.

Rowe, P.R., and Richardson, D.L. (1975) Breeding banana for disease resistance, fruit quality and yield. Bull. 2 Dec. 1975. Tropical Agriculture Research Services, La Lima, Honduras, C.A.