

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

ECONOMIC REPORT NO． 20

CALF COSTS 1949－50
by
D．GOTTFREYY AND A．D．IMPER

Provincial Advisory Officer	Albert D_{0} Imper, II. B.E., B. Sc. (Agr.) $M_{1} S_{0}$ (Econ.), Ph.D., N. D.A.
Senior Advisory Officer	Gordon G. Hayes, B. Sc. (Jcon.), N. D. Ao
Advisory Officers	John Clark, B.Sc.(Agr.), N.D.A. Vermon Baker, B. Sc. (Econ.)
Assistants	Alexander Grant, B. Sc.(Agr.) Dip. Agr. Econ. David Godfrey, B. Sc. (Agr.) liiss liargaret Haughs, B. Sc. (Agr.) m. A. C. Jones, B.Sc. (Agr.) Iiss A. H. Chalrners, B. Sc. (Agr.) G. A. Williamson, S. D. A., S. D. D. (H).
Technical Assistants	George Cowie , alter A. Duthie liiss A. C. Paterson

During the year 1949-50 the cost of producing and rearing calves was obtained on seven farms in the North of Scotland. The number of costs is too small for the sample to be representative of the area, but the individual costs are of interest and they illustrate a variety of systems.

METHOD OF COSTING Where cows are being kept solely for rearing, the cost of rearing a calf is the cost of keeping the cows for the year divided by the number of calves reared. A bull service charge is added, hut no depreciation has been allowed on the cows since they usually bear calves for several years and when they are eventually sold the price received will generally be quite high. The period under consideration was from October, 1949 to October, 1950 when the spring borm calves were weaned. All the calves were suckled and there is no rocord of pail fed (cogged) calves.

Before going on to consider the cost of the cows for the year it is as well to get an idea of the types of farm and the system of rearing cmployed on them. These facts are set out in Table I.

TABLE I
TYPE OF FARA AND SYSTHII OF CAIF REARTING

Farm	1	2	3	4	5	6	7
County	Aberdeen	Banff	Aberdeen	Ross	Caithness	Caithness	Aberdeen
$\begin{gathered} \text { Type of } \\ \text { Cow } \end{gathered}$	Cross Shorthorn	Aberdeen Angus	Cross Shorthorn	Cross Shorthorn	Mined	Cross Shorthorn	Cross Highland
System	Thro Calves per cor	$\begin{gathered} \text { Mainly two } \\ \text { Calves } \\ \text { per cow } \end{gathered}$	Two Calves per cow	$\begin{gathered} \text { Wanly One } \\ \text { Calf } \\ \text { per cow } \end{gathered}$	One Calf per Cow		
Notes on System	Second Calf obtained from Hfrs. Fattened	Second. Calf Purchd. or Transfd. fr. Dairy Cows	Seciond Calf Furchased		Cows on Hill part of Sunmer	Covis out during day all the yr. Hill land used.	Cows out during day all the year. Act as "Scavengers".
Destiny of Calves	Retained on Farm and Mainly Pattencd.		Sold at 12-18 months as stores.	Reta.ined. on Farm usually Fattencd.	Sold as Spent Calves in Autumn 1950.		

The table emphasises just how different are the farms and the systems employed and we are faced with the intriguing but difficult question of which systems pay best on any particular type of farm.

The various standards used in the calculations arc set out in detail in the appendix. The cost por cow per week is show for each farm in Table II.

TABLE II

COST OF COWS PER TREK IN WITYER PERTOD 194.9-50.

FOODS form 71% of the average cost per cow per week and thus influcnce the ultimate Finter cost to a very great extent. The amounts of food fed on the difforent farms are shom in Table III.

TABIE III

AVERAGE FOODS FED IN IBS. PER DAY. WINTER PERIOD 1949/50.

	1	2	3	4	5	6	7	Average
Turnips	77.0	78.0	43.0	58.0	70.0	13.9	36.9	53.8
Hay	1.2	-	1.0	-	1.8	9.3	-	1.9
Total Straw	23.8	32.0	12.5	21.5	26.8	11.8	24.7	21.9
Oats	0.4	-	0.1	.4 .3	3.35	4.24	-	1.2
Silage	-	-	19.0	-	-	-	-	2.7
Other	0.4	-	(vetches)					

On Farms 1, 2 and 4 the cows were kept on turnips and straw with small quantities of hay and concentrates being fed to the autumn calvers on Farm 1. The food cost per week is very uniform on these farms and subsequent results indicate that this is a safe and not too costly system of bringing spring calvers through the winter. Where turnips do not grow sucessfully a case can be made for using hay and silage as on Farm 3.

The cost per week is considerably higher on Farm 5 because more oats were fed; the yield of oats per acre was low on this Caithness farm and the cust per cwt. was therefore high.

On Farms 6 and 7 the cows were out grazing during the day all through the winter. On farm 6 the cows were not given much hand feeding until December, but thereafter large quantities of hay and oats were fed and here again the yields per acre were low and thus helped to make the net food cost per week rather high. On Farm 7 there were 12 cows and heifers rough wintered and the only feeding apart from their grazing was some turnips and straw during the coldest weather.

TABLS IV
MAN HOURS PER COW WERK - WIVTHR PERRIOD

	1	2	3	4	5	6	7	Average
Man Hours per Week	1.30	0.93	1.28	1.7	1.65	0.88	0.48	1.17

ITAN LABOUR forms an average of 20.5% of the average cost per cow week and Table IV shows the great farm to farm variation which may be due to all kinds of factors. The horse and tractor labour costs on Farms 6 and 7 (Table II) were incurred in carting foods out into the fields.

IJENGYH OF WINTTR PERTOD This varicd from $24 \frac{1}{2}$ to $29 \frac{1}{2}$ wocks and most of tho cows were brought in towards the end of Cotober and turned out again near the ond of April.

COST OF KHEPING COWS THRCUGH THE SUNARR 1950.

Here the main charge is the cost of grazing and Table V shows how that was worked out.

TABLE V
AVERAGE GRAZING COST PER ACRE TOR THEST FARMS

	£. s. d.	\%
Rent	1. -. 4	20.6
$\begin{array}{r} \text { Labour }-\operatorname{Van} 1 / 4 \mathrm{~d} . \\ \text { Tractor } 1 / 1 \mathrm{~d} . \end{array}$	-. 2.5	2.5
Sowing Down Charge	-. 15.11	16.1
Net Manures	2. $4.10 \frac{1}{2}$	45.4
Overlhead Costs	-.15. 3	15.4
	4.18. $9 \frac{1}{2}$	100.0
Less Proportion of Hay \& Silage Average Grazing Cost por Acre	-.15. $2 \frac{1}{2}$	
	£4.3.7	

Average Grass Cost per fore	$£_{4} .3 .7$
Average Grass Cost per Farm	$£_{4} 69.18 .5$
Less $1 / 6$ Winter Grazing	$£ 78.6 .5$
Summer Grass Cost per ITarm	$£ 391.12 .-$
Divide this by Number of L. S. U. Weeks 2185.9	
to give Net Grazing Cast of 3/7d. per L.S.U. Week.	

The cost of the grass is obtained for cach field or group of fields and these costs are added together to give grass cost per farm. Onc sixth is then deducted as an allowance for winter grazing. The remaining figure is the sumner grass cost per farm and this divided by the total number of livestock grazing the grass, gives the grazing cost per livestock unit (exprossed in Table V as a cost por livestock unit week).

The summer cost of keeping the cors on the seven farms is shorm in Table VI.

TABLTE VI
COST OF COITS PER TEEFK - SUMAER, 1950.

Farn	1	2	3	4	5	6	7	Average
	s. ${ }^{\text {d. }}$	s. a .	s. d.					
Grazing	4. 2	4. $4 \frac{1}{2}$	3.7	3.7	1.4	1.11年	5.111	3.7
Labour	-. $3 \frac{1}{2}$	-. $2 \frac{1}{4}$	1. $5 \frac{1}{4}$	-. $8 \frac{1}{2}$	-. $3 \frac{1}{2}$	-. 7	-. $3 \frac{1}{2}$	-. $6 \frac{1}{2}$
Overheads	-. - $-\frac{3}{4}$	-. - $\frac{3}{4}$	-. 5	-. $2 \frac{1}{2}$	-. 1	-. 2	-. $-\frac{3}{4}$	-. $1 \frac{3}{4}$
Net Cost per Animal Week	4. $6 \frac{1}{4}$	4. $7 \frac{1}{2}$	5. $5 \frac{1}{4}$	4.6	1. $8 \frac{1}{2}$	2. $8 \frac{1}{2}$	6. $3 \frac{3}{4}$	4. $3 \frac{1}{4}$
Average Number of Weeks	25.7	24.0	30.4	24.14	27.7	23.43	26.14	25.9
Summer Cost per Cow	£5.16.212	E5.11.-	\&8.5.31	¢5.8.73	£2.7.1	£3.3.3	£8.4. 8.8	$25.10 .10 \frac{1}{2}$

The summer grazing cost tends to be low on farms with hill land since there is usually no charge to be made for manures or sowing down and moreover the rent is very littlc. Such land usually produces a fair amount of keep in the sumner and the resultant grazing cost is low. This effect is seen on farms 5 and 6 both of which had sone rough grazing. The very high cost per animal week on Farm 7 hardly gives a truc idea of the cost of grazing the cows and heifers. They did not get the pick of the grass, but followed the grazing of other stock. It was not possible to "grade" the grass however, so a flat rate was taken. No supplenentary foods werc fed to the cows at grass and the only other items making up the summer cost por cow week are man labour

Man labour consisted of routinc looking round the calves together with the occasional odd jobs of earmarking, moving then from field to field, etc. The overheads were charged on the man labour. The length of the grazing scason varied from $23 \frac{1}{2}$ to $30 \frac{1}{2}$ weoks and the very long period on Farm 3 helps to make the total sumer cost high on that farm. The total cost of keeping a cow for a year rorked out at just over £24 (average of the 7 farms) of which $\frac{3}{4}(\$ 18.10 /-)$ was incurred in the vinter. The cheapness of grass compared with other foods is thus evident and thesc figures emphasise the advantage of getting gord grass for as long a timo as possible. This is a practical method of reducing costs. It my be noticed in comparing Tables II and VI that the "cow year" does not stand uniformly at $521 / 7$ wooks. This is because it is fixed by the tine when the calves becone spent (i.e. are weaned) and this varies a little from year to year. Her ce the cow your may be 53 weoks one yoar and another year 51 weeks. Another cost - O be put against the calves is the

BUL工 SERVICE CHARGE

Where a bull is hired this is simply the service fee per cow. All these famers however had bulls of their om and the service charge was deternined by getting the cost of keeping the bull for the year and adding to it the annual depreciation cost.

The resultant bull cost is divided by the number of cows served in the year to get the service charge per cow. The calculation for the average of the individual costs i.s shown in Table VII.

This is the difference between the prospective selling price and the purchase price
divided by the number of seasons the bull is likely to be used.

TABLE VII
CALCULAFION OF THE BULU SERVICE CFIARGE (AVERAGE PIGURE)

Winter Pericd	26.52 wreks
Cost per Week - Turnips	7. $3 \frac{1}{2} \mathrm{~d}$.
Eating Strav	-. 11
Bedding Strav	1.10-1
İay	1. $2 \frac{3}{4}$
Oats	2. $2 \frac{1}{2}$
Other	-. $7 \frac{1}{2}$
	14. $1 \frac{3}{4}$
Less R.M.V.'s of Foods	2. $9 \frac{1}{4}$
	11. $4 \frac{1}{2}$
Labour	3.-
Overheads	-. $10 \frac{1}{4}$
Winter Cost per Bull Week 1	15. $2 \frac{3}{4}$
I'OTAL WINTER COST	£20. $2.10 \frac{1}{2}$
Sumer Pericd	25.56 wks .
Cost per Bull Week - Grazing Overheads Labour	$\begin{aligned} & \text { 3. }-\frac{3}{4} \\ & -.2 \\ & =6 \frac{1}{2} \\ & \hline \end{aligned}$
Sumer Cost per Bull Week	3. $9 \frac{1}{4}$
Surmer Cost per Bull	£4.16.8
	24.19. $6 \frac{1}{2}$
Add Bull Depreciation	7.-63
	£32. -. $1 \frac{1}{4}$
Divide by Number of Cons Served - 25.16	
Service Charge per Cow - £1.8.-	

The charge per cor varied from th to $£ 1.17 .11$. The cost of keeping the bull does not affect the service charge so much as the number of cows served and the famer with fewer cows will nomally bear an increased exponse for the advantage of having his own bull on the farm. Four of the farmers used an Aberdeen Angus bull and one a Shorthorn. Two farmers used two bulls - one of each breed.

COST OF BREEDING AND REARTNG THE CALVES

Most of the calves were born in the early spring (February to April) and the nurnbers for the various nonths are shom in Table VIII.

TABLE VIII

TIVE OF CALVING AND PURCHASIVG OF CALVES

	Nov. or carlicr	Doc.	Jon.	Fob.	Minr.	Apr.	Miny	June or Later	Total
Calves Borm	4	1	7	19	41	19	3	1	95
Calves Furchased or Transferred	4	-	2	13	22	5	-	2	48

21 calves irere purchased and 27 were "transforred". "Transferred" calves are the progeny of other cows on the farm (e.g. Dairy Coms) which are taken from their dams and put on to the rearing cows when a for days old. There vere no losses of cows and altogether only 3 calves died on these seven farms. In considering the financial results Table IX gives at "A" the cost per calf on the scven farms ignoring calves purchased or transferred (i.e. it is as if they all reared one calf to the coir). The figure at "B" shows the net cost per calf reared on each farm. (Table IX see p.8)

It will be seen that the cost of rearing a single calf per cow was $£ 25$ on farms 5 and 6 whilst on the true Iowland farms 1 - 4 it would have worked out at nearer $£ 30$ if they had not had sone corrs with two calves.

IS THE SINGLE CALF SYSTTM PROFITABLE?

Farmers 5, 6 and 7 sold their calves in the auturn 1950 and the results are sumariscd in Table X.

> | TABLE X |
| :---: |
| REIURIUS ON SINGLIE SUCKLGD CALVES |

Farm	5	6	7
Cost of Rearing Calves	$£ 26.18 .5$	$£ 24.9 .8$	$£ 21.2 .10 \frac{1}{2}$
Sale Price	$15.10 .-$	17.12 .6	19.18 .4
Margin (All losses)	$£ 11.8 .5$	$£ 6.17 .2$	$£ 1.4 .6 \frac{1}{2}$

In the case of Farm 7 the loss was on paper rather than real since as has been mentioned before the cows acted as scavengers and little would have been saved if they had not been there.

In such cases when the cows fit into the farming system without much additional expense being incurred by keeping then, the single suckling systen may prove worth while. Similarly if the cows can be kept mainly on hill land without heavy wintor feeding the systern should pay well enough. On lowland farms where the cows were kept inside or wherever hoavy feeding is necessary in the winter the single calf system is liable to result in losses (as on Faras 5 and 6) unloss the price received

Farm	1	2	3	4	5	6	7
No. of Cows Cost per Cow per year	\& s. d. 19 25: 5: $3 \frac{1}{2}$	$\begin{array}{cc} \mathcal{E} & \mathrm{s} \cdot \\ 11 \\ 22: & 9: 11 \end{array}$	\& s. 14 $26: 5: 8 \frac{1}{2}$	${ }_{2}^{2}$ s. d. 22 $26: 14: 5 \frac{3}{4}$	\& s. d. 10 $25: 14: 3$		$\begin{gathered} \mathcal{E} \text { s. } \mathrm{d}_{0} \\ 12 \\ 18: 14: 10 \frac{3}{4} \end{gathered}$
Herd Cost Servioe Charge Foods fed to Calves	$\begin{gathered} 480:-: 6 \frac{1}{2} \\ 19: 14: 3 \\ 16: 11: 8 \end{gathered}$	$\begin{array}{r} 2+7: 9: 1 \\ 20: 17: 1 \end{array}$	$\left\lvert\, \begin{aligned} & 367: 19: 11 \\ & 25: 13: 4 \end{aligned}\right.$	$\begin{gathered} 587: 18: 6 \frac{1}{2} \\ 31: 5: 2 \end{gathered}$	$\begin{aligned} & 257: 2: 6 \\ & 12: 1: 8 \end{aligned}$	$\text { 187:17: } 2$	$\begin{aligned} & 224: 18: 3 \\ & 16: 16:- \end{aligned}$
Total Cost (Z) Calves Born Calves Died	$\left\|\begin{array}{cc} 516: & 6: 5 \frac{1}{2} \\ 19 & \\ & \end{array}\right\|$	$\begin{gathered} 268: 6: 2 \\ 11 \end{gathered}$	393:13: 3	$\left\|\begin{array}{r} 619: 3: 8 \frac{1}{2} \\ \\ 21 \end{array}\right\|$	$\begin{gathered} 269: 4: 2 \\ 10 \end{gathered}$	$\left\lvert\, \begin{gathered} 195: 17: 2 \\ 8 \end{gathered}\right.$	241:14: 3
Net Calves 'Born \& Reared	19	11	12	21	10	8	11 入
Cost per Calf born \& reared	27:3: 6	24: 7:11	32:16: $1 \frac{1}{4}$	29: 9: $8 \frac{1}{2}$	26:18: 5	24: 9: 8\%	21:19: $6 \frac{1}{4}$
Calves purcha. Calves Trnsfd.	3 20	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 13 \vdots \\ - \\ - \end{gathered}$	1	-	-	1 -
Cost of Calves purchased	33: -: -:	31: -: -	3:10:-	3:15: -	-	-	12: -: -
Cost of Calves Transferred	190: -: --	$\text { \| } 25: 10:-$		38: -: -	- -	-	-
Cost of foods fed to calves transferred	$\text { 16:11: } 8$		$-$		-		-
Cost to calves (from 2 above)	516: 6: $5 \frac{1}{2}$	268: 6: 2	393:13: 3	619:3: $8 \frac{1}{2}$	269: 4: 2	195:17: 2	241:14: 3
TOTAL COST ALL CALVES	755:18: $17 \frac{3}{4}$	324:16: 2	527:3:3	660:1s: $8 \frac{1}{2}$	269: 4: 2	195:17: 2	253:14: 3
TOTAL CALVES REARED	42	17	25	26	10	8	12
Net Cost per Calf Reared	17:19:112	19: $2: 1$ [年	21: 1:?	25: 8: 5	26:18: 5	24: 9: 8 ,	21: $2: 10 \frac{1}{2}$

exceeds 25 per calf. Would it have been better to retain the calves until they wore older? Table XI has been compiled fron the various cattle costs and gives a build up of the average cost of cattle fron birth to $3 \frac{1}{2}$ years old. The figures arc of course very approximate but my be a useful cuide.

TABLE XI
APPROXIIATE COST OF RTARTIVG STORES

If the rearer could keep the calf to the age of 18 months and sell it as a $6 / 4$ animal at about $\mathscr{L}_{4} 0$ he should make a profit especially as the calf subsidy will then have been payable to hir. If he does not sell then his only hope is to grade the animal fat at under $2 \frac{1}{2}$ years old (i.e. before the 3rd winter). If the animal is kept to near 3 years old or over the total cost will have been over $£ 70$ and it is unlikely that he will see any return fron the animls. The average price received for a bunch of fat steers rarely exceeds $\& 70$ per beast and is usually well below that figure. ϕ In this connection it should also be remembered where aninels are kept on the farm for a long time (e.g. 3 years) then even a profit of £lo per animal is only a very small return on the capital locked up (invested) in the cattle.

In many cases of course lack of accomodation and keep neans it is inpossible to retain the animals beyond the spent calf stage. In such eases consideration could be given to keeping less cows and rearing two calves to the cow. Then if prices are poor in the Auturm Sales sone of the calves might be retained on the fara until they are older.

All the above remarks are of course only suggestions and the individual farmer alone can decide which systen will fit in nost profitably on his farm.

Iz The prices in 1950 were generally below this figure.
\$ These renarks apply to the fixed prices for $1950 / 51$ before the changes announced. in the 1951 Price Review.

RTBARING TTWO CALVES TO THE COW

The effect of being able to rear two calves to the cow is show distinctly in the lower half (B) of Table IX. Iransferred calves have been charged at 85% of what similar calves werc costing on the market at that tine. The foods fed to the calves on Farm 1 occur because four hejfers calved in autum and subsequently reared 3 calves each. The first 2 calves were given supplenentary foods sonetine before being turned out to grass. The table shows that the rearing of 2 calves to the cow has reduced the costs per calf on farms 1 and 3 by $£ 9.5 /-$ and $\$ 11.15 /-$ respectively. On farms 2 and 4 a proportion on the cows reared 2 calves and as a result the costs per reared calf have been brought dow by $£ 5$ and Q_{4} respectively.

These systens then provide calvos at $£ 18$ - 220 por hoad which neans that even if the animals are kept through their third winter (i.o. to rising 3 yoars old) the cost of production por anjma is not likely to exceed $£ 65$. That means that if the animels are to be kept and sold of f fat there is a good chance of getting a profit especially as the calf subsidy will have bocn paid to the farmer.

On the other hand if the animls are to be sold as spent calves they are very unlikely to make the prices of single suckled animals and in a year of low prices the loss sustained may be heavier than that incurred on the single suckling systeri.

The two calves to the cow systen provides cheaper calves of lower quality but the better quality of single suckled calves can be offset by subsequent managenent (e.g. during the store poriod) and ultirately results indicate thet wany calves reared two to the cow becone top quality animals.

SUPPLY OF CAI,VES WHEN REARING TWO CALVES TO THE COV

This often constitutes a major problem. The second calf is difficult to obtain and much time may be lost and money spent in rearing the right type of animal. Last year (economic Report No. 13) details were given of the system whereby heifers on Farm 1 were served at about the sare time as the breeding covs were being served. When the cows and heifers calved in the spring time the heifors' calves were taken from them and put on to the cows, the heifers being subscquently fattened.

This year the same systen was successfully followed and 10 of the heifers were fattened off the grass after calving in the spring at 2 years old. The cost of keeping them is shown in Table XII:

Grading of Heifers - 2 S.s.: 7 S.: 1 At
Average Weight - 9 cwtṣ. 3 qrs.

This system requires care and good management. It would be difficult to work on small forths and the use of 2 bulls is required to prevent undesirable inbreeding.

The female calves of the heifers are not used for breeding, but do make good fattening animls. The system has worked well on Farm 1 for two years and other farmers would do well'to explore its possibilities. It is not only profitable
\Rightarrow but also an intensive systen giving the country more of the beef that it so desperately requires.

Yet another variation occurred on Farm 1 in that 4 older heifers calved in the auturin 1950 and each brought up 3 calves. Tho of these were suckled through the winter and the third was put on in April just before the stock wore turned out to grass.

The heifers had to be fod heavily during the rinter and Table XIII ocupares the average costs for the four hoifers with those of the 15 cows.

TABIE XIII
AVERAGE COSTS FOR RRARING TWO AND TFHEE CALVES PER COM

The cost of extra winter feeding meant that the calves reared by the heifers cost more than those of the eows. The quality of the calves should not be very dinferent for the tro groups and it is possible that sometimes the grater intensity of production (i,e. the fact that you have 3 calves instead of 2) will counterbalance the groter oost entailed, making it worthwile to use this method in part. Details of the supsequent crowth rates of auturn and spring born calves will also be required in making a comparison between then.

ACKNOTIEDGIUNTI

The Feonomics Departnent of tho North of Scotlend. College of Agriculture wish to thank the farmers who have provided the data used in this report and discussion on their individual results is invited. It should again be enphasised that results from such a small number of faris must not be taken too far and the economic discussion in this report needs to be substontiated by further costings involving more farms. Moreover the question of the suckling of nore than two calves has only been skimished with whilst that of pail fed (cogged) calves has not been touched.

The Economics, Department are continuine this oosting schene and it is hoped that many more records will be completed for the yoar 1950-51.

HOME GROWN FOODS have been charged at cost of production. A sliding scale was used so that on farms with low yields the cost per cwt. or ton was higher. The figures were based on the cost of production figures in Economic Report No. 15 of this Department.

PURCHASED FOODS have been charged at purchase price.
IABOUR has generally been charged at rates recomnended by the Conference of Scottish Agricultural Economists.

These were - Man	$2 / 6$
	$1 / 3$
	Horse
	Wheoled Tractor
	$3 / 9$

OVERHEADS have also been charged at the reconmerded rates.
These were - $5 / 9$ per $\&$ direct man labour

- 3/6 per tractor hour or 4 horse hours
- 13/9 per acre

MANURIAL RESIDUFS of foods and manures (R.In.V.'s) have been calculated as set down in Miscellaneous Publications No. 7 of D. O. A.S.

In the Summer Grazing Costs:
CHARGE OF SOWING DOWN THE GRASS was taken as

$$
\frac{\text { Average Cost of Establishing Grass }}{(\text { Estimated Years duration of Lea }+1 \text {) }}
$$

LIVESTOCK UNITS The scale used was -
1 Horse, Bull, Cow or 2-3 yr. Cattle = 1 Unit
1-2 yr. 01d Cattle $=.75$ Unit
Young Horses; Cattle 6 monthsm yr. old $=.50$ Unit
Sheep over 6 months $=.25$ Unit
Sheep 3-6 months $\quad=.07$ Unit
Lambs under 3 months)
Calves suckling)
No Charge

