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Abstract13

Breeding crops for disease resistance is a sustainable approach to reduce yield losses. While significant14

research on the adoption and impacts of improved crop varieties exists, most studies have analyzed yield15

effects in general, without distinguishing between different varietal traits and characteristics. Here, panel16

data from wheat farmers in Ethiopia are used to compare improved varieties that are resistant to stripe rust17

(caused by Puccinia striiformis f. sp. tritici) with improved susceptible and traditional susceptible varieties.18

Production function estimates suggest that improved resistant varieties raise effective yields by 8% in19

comparison to local susceptible varieties. The yield difference between improved resistant and improved20

susceptible varieties is positive but small, because rust levels were not very high in the years under study.21

However, under drought and other abiotic stresses, improved varieties – with and without resistance to22

stripe rust – perform notably worse than local varieties. The worse performance under abiotic stress may23

also explain why many farmers recently switched back to growing traditional varieties. Sustainable24

adoption needs a combination of various traits in the same varieties, including high yield potential, grain25

quality, disease resistance, and tolerance to drought and other production stresses.26



1. Introduction27

Plant pests and diseases cause considerable crop losses in worldwide agriculture (Oerke 2006; Strange and28

Scott 2005; Savary et al. 2012; Savary et al. 2017). In many regions, crop losses caused by insects, fungi,29

bacteria, viruses, and other pathogens are estimated at 15-20% on average; during acute epidemics actual30

losses can be much higher (Oerke 2006; FAO 2014). Plant genetic improvement through breeding can help31

to reduce such losses without having to increase the use of chemical pesticides (Dixon et al. 2006; Savary32

et al. 2006, 2012; Stuthman et al. 2007; Velu and Singh 2013). Reducing crop losses and thus sustainably33

increasing effective yield is key for meeting future food demand (Hertel 2015; Kassie et al. 2015; Savary34

et al. 2017).35

However, breeding plants for resistance is a complex and enduring process. Evolving pest and pathogen36

populations can overcome existing plant genetic resistance so that there is continuous need to identify and37

develop new resistance mechanisms. Furthermore, pest and disease resistance traits have to be introduced38

to locally adapted and preferred varieties. Otherwise, advantages through lower crop losses from pests and39

diseases could be canceled out by disadvantages resulting from the use of germplasm not well adapted to40

soil and climatic conditions or quality preferences in a particular context (Krishna et al. 2016; Qaim et al.41

2006; Smale et al. 1998). Lack of local adaptation may in turn affect the willingness of farmers to adopt42

new pest- and disease-resistant varieties.43

While such linkages are well understood in theory, they have rarely been examined in empirical research44

with data from farmers’ fields. Many studies on the adoption of improved crop varieties have evaluated45

yield effects in general, yet without differentiating between different crop traits and varietal characteristics46

(Di Falco et al. 2007; Matuschke et al. 2007; Mazid et al. 2015; Teklewold et al. 2013; Walker and Alwang47

2015). We contribute to this literature by unpacking yield differentials of three varietal traits: disease48

resistance, yield potential, and adaptation to local abiotic stresses. Specifically, using data from a panel49

survey of wheat farmers in Ethiopia we compare yields of improved resistant varieties with and without50



disease resistance and yields of traditional varieties. The results could help to better understand whether51

crop improvement programs have succeeded in developing and disseminating varieties that are well adapted52

to biotic and abiotic stresses of local relevance.53

Wheat is one of the most important food security crops in the world, accounting for a sizeable share of the54

global calories and protein consumed (Shiferaw et al. 2013). The importance of wheat in Africa is also55

increasing. Wheat is affected by various diseases, the most important of which are rusts caused by fungal56

pathogens. There are different types of wheat rust with multiple races (Hodson 2011; Chen et al. 2014;57

Morgounov et al. 2012; Velu and Singh 2013). The most common rusts are stem rust (Puccinia graminis f.58

sp. tritici), leaf rust (Puccinia triticina), and stripe rust (or yellow rust) (Puccinia striiformis f. sp. tritici).59

The Ug99 pathotype of stem rust was recently detected in East Africa (Chaves et al. 2013). While Ug9960

has caused considerable damage in Kenya, in Ethiopia significant yield losses through Ug99 were not61

reported until very recently (Olivera et al. 2015). Over the last 10 years, stripe rust was much more62

damaging in Ethiopia (ICARDA 2013; Olivera et al. 2015; Yami et al. 2012). Hence, our analysis focuses63

on stripe rust. In what follows, we use the term “stripe rust-resistant” or “rust-resistant” varieties for wheat64

cultivars that show high or at least moderate levels of resistance to stripe rust. Such rust-resistant varieties65

have been promoted by Ethiopia’s extension service since 2010 (Olivera et al. 2015; Yami et al. 2012).66

According to our data, stripe rust-resistant varieties are now grown on about half of the total wheat area in67

Ethiopia. We are not aware of previous research that has evaluated the yield performance of these resistant68

varieties in farmers’ fields.69

The data used in this study were collected in Ethiopia in two rounds, namely in 2009/10 and 2013/14. We70

develop and estimate field-level production functions, including farmers’ varietal choices as explanatory71

variables while controlling for other inputs and for farm, farmer, and regional characteristics. We also72

include interaction terms between varietal traits and various production stresses, in order to gain a better73

understanding of the performance of improved and traditional varieties under local conditions. The panel74



structure of the data, with variation in the adoption of different types of varieties over time, help to reduce75

issues of selection bias that are commonplace in studies with observational data (Krishna et al. 2016). The76

next section introduces the data and the econometric strategy in more detail. Then, results are presented and77

discussed before the last section concludes.78

79

2. Materials and methods80

2.1 Data81

We use data from a panel survey of smallholder farmers in Ethiopia that were collected in two rounds by82

the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of83

Agricultural Research (EIAR). The purpose of this survey was to document wheat variety adoption84

dynamics in Ethiopia (Tolemariam et al. 2016). The two survey rounds cover the 2009/10 and 2013/1485

agricultural seasons. In the sampling frame, 148 major wheat-growing districts of Ethiopia were86

purposively selected. Within these districts, farmers’ associations (communities) were randomly selected.87

Within each selected farmers’ association, 15 to 18 households were randomly selected, leading to 209688

households in the sample. Most of these households were interviewed in both survey rounds. The sample89

is representative of farmers in major wheat-growing areas of Ethiopia.90

The structured questionnaire for the survey was developed by CIMMYT scientists in Ethiopia together with91

EIAR colleagues and field officers. The questionnaire was pre-tested in a pilot survey before it was92

finalized. The actual survey data were collected through face-to-face interviews with farmers conducted by93

well-trained enumerators in local languages. A wide range of farm and farmer characteristics and variables94

describing the broader socioeconomic context were elicited. In both survey rounds, detailed data for all95

fields cultivated by sample farmers were also collected.96



The pooled data include over 20000 fields, out of which 6001 were grown with wheat. For the wheat fields,97

farmers were asked to report the types and quantities of inputs used and the output harvested during the98

particular season. Farmers were also asked to specify the wheat variety used in each field. For the analysis,99

we differentiate between traditional and improved varieties. Traditional varieties are mostly of the durum100

type, whereas improved varieties are bread wheat. All traditional varieties are susceptible to stripe rust101

(Gebre-Mariam et al. 1991). For the improved varieties, we further differentiate between varieties that are102

either resistant or susceptible to stripe rust. Farmers reported 34 different improved varieties. The resistance103

classification is based on the available literature and additional discussions with experts from EIAR, as104

shown in Table A1 in the Appendix. Overall, we consider and compare three types of varieties, namely (i)105

traditional varieties susceptible to stripe rust, (ii) improved varieties susceptible to stripe rust, and (iii)106

improved varieties resistant to stripe rust.107

Farmers were also asked whether or not they had experienced particular production stresses for each field108

during the particular season. These were closed-ended questions, meaning that a set of biotic (pests and109

diseases) and abiotic (e.g., drought) stress factors were specified in the questionnaire. As yield losses due110

to particular stress factors are difficult to estimate for farmers, the response options for each stress were111

simply “yes” or “no”. The list of stress factors included was developed after a thorough review of the major112

wheat production problems in the country. Pre-testing of the questionnaire helped to use classifications that113

farmers could easily distinguish. Closed-ended questions are easier to use than open-ended questions in the114

statistical analysis. However, in addition to the pre-defined stress factors, other stresses mentioned by115

farmers were recorded and coded during data processing.116

Unfortunately, out of the 6001 total wheat field observations, we are only able to use 4751 for the statistical117

analysis. A sizeable number of field observations (1132) had to be dropped because the official name of the118

wheat variety grown was not known and could not be found out, even after further investigation. Without119

knowing the official name, we could not reliably verify whether the variety is resistant or susceptible to120



stripe rust. Dropping these observations may mean that the sample is not fully representative of wheat121

farming in Ethiopia anymore. In addition, we dropped 106 extreme yield observations: recent research122

showed that observations below the 1st or above the 99th percentile of the yield distribution may affect the123

results in unexpected ways (Abdul-Salam and Phimister 2017; Aguilar et al. 2015). Finally, we had to drop124

12 observations with missing data for some of the other variables of interest.125

126

2.2 Econometric strategy127

Large bodies of literature exist on the estimation of yield losses resulting from crop diseases. One literature128

strand focuses on the estimation of actual yield losses using field experiments, regression approaches,129

simulation models, and other tools (Cooke et al. 2006; James 1974; Savary et al. 2006, 2012). Another130

literature strand analyzes potential yield losses and losses avoided by breeding disease-resistant varieties131

(Lantican et al. 2016; Marasas et al. 2003, 2004; Mather et al. 2003; Smale et al. 1998). Some of the latter132

studies also go beyond reporting percentage yield losses (or losses avoided) and calculate benefit-cost133

ratios, which is useful for research priority setting (Pardey et al. 2006). However, whenever yield losses (or134

avoided losses leading to effective yield gains) are estimated from data collected in farmers’ fields, outside135

of controlled experimental settings, it is important to account for possible confounding factors, such as136

differences in input use, soil quality, farmers’ management ability etc.137

In this study, we analyze yield losses that farmers can avoid by using wheat varieties that are resistant to138

stripe rust. In particular, we analyze the yield of improved rust-resistant wheat varieties in comparison to139

the yield of improved susceptible and traditional susceptible varieties after controlling for input use, field140

characteristics, and other contextual variables. We estimate a production function of the following type:141

௜ܻ௝௧ = ߙ + ௜௝௧ܴܫଵߚ + ௜௝௧ܵܫଶߚ + ௜௝௧ࡿߜ + ௜௝௧ࢄߛ + ௜௝௧ࡲߩ + ௝௧ࡴߴ + ௝ࡰߨ + ߬ ௧ܶ + ௜௝௧ߝ 									 (1)142



where ௜ܻ௝௧ is wheat yield on field i of farm household j in year t, and ௜௝௧ܴܫ  and ௜௝௧ are two dummy variables143ܵܫ

representing the use of improved resistant and improved susceptible varieties, respectively (referring to144

stripe rust). The coefficients ଵ andߚ ଶ compare yield levels of these two improved types of varieties with145ߚ

those of traditional susceptible varieties. Since improved varieties are generally higher yielding than146

traditional varieties, we expect positive and significant coefficients for ଵ andߚ ଶ.147ߚ

When researchers breed for rust resistance, the objective is to develop new varieties with yield levels at148

least as high as those of susceptible varieties (Gebre-Mariam et al. 1991). We expect positive yield effects149

of rust-resistant varieties in years with high rust infection (because of lower crop damage with resistant150

varieties), whereas the difference may be small or non-existent in years with low rust infection. We have151

the advantage of being able to compare yields of improved wheat varieties with and without the rust152

resistance traits. If ଵ is greater thanߚ ଶ, the resistance traits help to reduce crop losses and increase effective153ߚ

yields. The difference between ଵ andߚ ଶ is an indication of the yield loss that would have occurred had the154ߚ

resistant varieties not been developed and adopted (Marasas et al. 2003).155

The other variables in equation (1) control for possible confounding factors. ௜௝௧ isࡿ  a  vector  of  dummy156

variables representing the incidence of different production stresses (e.g., diseases, drought, and other157

abiotic stresses), ௜௝௧ࢄ  is a vector of other production inputs, such as labor, fertilizer, and pesticides, and ௜௝௧158ࡲ

is a vector of field-level controls, such as field size, soil quality, and slope of the land. ௝௧ࡴ is a vector of159

household-level characteristics, such as farmers’ age and education, and ௝ is a vector of district dummy160ࡰ

variables to control for differences in unobserved regional factors (e.g., infrastructure, rainfall,161

agroecological potential). ௧ܶ is a time dummy variable that takes a value of one for the second survey round162

2013/14, with 2009/10 as the reference. ௜௝௧ߝ = ௝ݑ + ݁௜௝௧ , where ௝ is the unobserved heterogeneity for farm163ݑ

household j, and ݁௜௝௧  is the random error term. As many farm household have more than one wheat field,164

we need to account for the possibility that the error term is heteroskedastic. This could lead to incorrect165



standard errors of the coefficient estimates. To avoid bias, we use a procedure to estimate standard errors166

that are cluster-corrected at the farm household level (Greene 2012).167

168

2.3 Functional form169

The technical relationship between inputs and outputs in a production function tends to be non-linear; higher170

input use usually leads to higher yield, but with decreasing marginal effects. The most commonly used171

functional forms in production function analysis are the Cobb-Douglas and the translog, both of which use172

logarithms of the input and output variables (Coelli et al. 2005). The translog function is more flexible, as173

it does not impose restrictions on the substitutability between different inputs. Which of the two functions174

is more appropriate in a particular context can be tested. In our case, the statistical test rejects the null175

hypothesis that the more restrictive Cobb-Douglas function fits the data well (test results are shown below),176

so we use the translog specification to estimate the production function in equation (1).177

One problem with log-transforming inputs and output is that several farmers used zero quantities of certain178

inputs. As the logarithm of zero is not defined, these observations would be lost if not dealt with specifically.179

We use the method proposed by Battese (1997) to handle zero input quantities: after taking logs, undefined180

values are replaced by zero, and additional dummy variables are added to indicate zero quantities of181

particular inputs. Battese (1997) showed that this method leads to consistent production function estimates.182

183

2.4 Testing for local adaptation of improved varieties184

In equation (1), we only included dummy variables for the improved varieties with and without stripe rust185

resistance to look at simple yield effects. To gain a better understanding of whether improved varieties are186

well adapted to different types of local production stresses, we estimate another set of production function187

models with interaction terms as follows:188



௜ܻ௝௧ = ߙ + ௜௝௧ܴܫଵߚ + ௜௝௧ܵܫଶߚ +߮൫ܴܫ௜௝௧ × ௜௝௧൯ࡿ + ߱	൫ܵܫ௜௝௧ × ௜௝௧൯ࡿ +⋯+ ௜௝௧ߝ 									 (2)189

Other control variables are included as in equation (1), but not shown in equation (2) for brevity. To190

illustrate the interpretation of the coefficients of the interactions between production stresses (ࡿ௜௝௧) and the191

improved varieties (ܴܫ௜௝௧  and ,௜௝௧), we use the incidence of drought as an example. In equation (2)ܵܫ ଵ192ߚ

alone indicates the yield effect of rust-resistant varieties in situations with no drought, whereas ߮ shows193

whether rust-resistant varieties perform better or worse than local varieties under drought conditions. A194

negative coefficient ߮ would indicate that rust-resistant varieties perform worse under drought. This could195

happen when the rust-resistance traits were not integrated into germplasm that is well adapted to drought196

situations. Such lack of local adaptation would discourage the adoption of rust-resistant varieties in drought-197

prone locations. In addition to drought, ௜௝௧ࡿ  can also represent other production stresses.198

199

2.5 Accounting for possible selection bias200

The models in equations (1) and (2) involve panel data and can be estimated with either random effects201

(RE) or fixed effects (FE) estimators (Greene 2012). The RE estimator is more efficient but can lead to bias202

when there is unobserved heterogeneity that is jointly correlated with any of the explanatory variables and203

the outcome variable. For instance, farmers who adopt certain types of varieties may systematically differ204

from non-adopters (Alemu and Bishaw 2015; Barrett et al. 2004; Mather et al. 2003). Such systematic and205

unobserved heterogeneity between adopters and non-adopters would be a typical case of selection bias. The206

FE estimator builds on differencing within households over time so that time-invariant unobserved207

heterogeneity is canceled out. This is a neat way of reducing selection bias. However, for robust estimation208

the FE estimator requires sufficient variation over time for all variables of interest. If the variation over209

time is small, an alternative to the standard FE estimator can be used, as proposed by Mundlak (1978). We210

employ the random effects model with the Mundlak FE version, rewriting equation (1) as follows:211



௜ܻ௝௧ = ߙ + ௜௝௧ܴܫଵߚ + ௜௝௧ܵܫଶߚ + ௜௝௧ࡿߜ + ௜௝௧ࢄߛ + ௜௝௧ࡲ	ߩ + ௝௧ࡴߴ + ௝ࡰߨ + ߬ ௧ܶ + ௜௝௧ࡹߠ + 				௜௝௧ߝ (3)212

where ௜௝௧ is a vector of cluster means of all time-varying observations. Mundlak’s FE estimator controls213ࡹ

for unobserved heterogeneity that may correlate with the explanatory variables in equation (3) (Di Falco214

and Veronesi 2014; Mundlak 1978). If the estimated parameters are jointly zero, unobserved215 ߠ

heterogeneity does not cause bias, so that the RE estimator can be used. Testing for the significance of is216 ߠ

an alternative to the Hausman test (Greene 2012; Rabe-Hesketh and Skrondal 2012).217

218

3 Results and discussion219

3.1 Descriptive statistics220

Table 1 shows a list of variables used in the analysis with explanations and units of measurement. Table 2221

characterizes the role that wheat production plays in sample farm households. The total average cultivated222

area per farm household is around 2 ha, out of which one-third is cultivated with wheat. Wheat accounts223

for over 40% of the total value of production (approximately 8500 Birr or 446 US$ in both survey years).224

Insert Table 1 here225

Insert Table 2 here226

Wheat is affected by various production stresses, with significant temporal and spatial variation. According227

to farmers’ own statements, 8% of the wheat fields were affected by drought in 2009/10 as shown in Table228

3. In 2013/14, the share of drought-affected fields was only 1%. Other abiotic stresses, such as229

waterlogging, frost, or hailstorms affected around 9-10% of the fields in both seasons. Wheat diseases,230

including stripe rust and other disease problems, were reported in 13% and 20% of the fields in 2009/10231

and 2013/14, respectively. While wheat rust problems have increased in Ethiopia in recent years, both232

survey rounds refer to seasons with moderate rust infection levels.233



Insert Table 3 here234

Figure 1 shows the adoption of different types of wheat varieties over the two survey rounds (Figure A1 in235

the Appendix differentiates by agroecology). The use of traditional varieties is limited. In 2009/10, only236

7% of all wheat fields were grown with traditional varieties. Strikingly, however, this share had increased237

to 20% in 2013/14. This increase in the use of traditional varieties suggests that not all farmers were satisfied238

with the performance of improved varieties in previous years, possibly due to the role of biotic and abiotic239

stress factors. Among the improved varieties, in 2009/10 most were susceptible to stripe rust. By 2013/14,240

the share of improved varieties with resistance to stripe rust had increased to 51%. The increased adoption241

of rust-resistant varieties reflects intensified promotion efforts by various organizations in Ethiopia as a242

response to recent rust epidemics in East Africa (Olivera et al. 2015; Tolemariam et al. 2016; Yami et al.243

2012).244

Insert Figure 1 here245

Insert Figure 2 here246

Figure 2 shows aggregate mean wheat yields obtained by farmers, differentiating by type of variety grown.247

Traditional varieties consistently have the lowest average yields, whereas improved rust-resistant varieties248

have the highest average yields. Yields in our survey are lower than the national average of 2200 kg reported249

by CSA (2015). Differences may possibly be due to different methods used in yield estimations. While our250

data are based on farmers’ statements, CSA (2015) uses actual crop cuts. It is possible that farmers251

underestimate yields, or that the crop cut method overestimates the actual harvest obtained by farmers.252

Discrepancies between yield data obtained with different methods were also reported in other studies253

(Sapkota et al. 2016). Regardless of the method used, average wheat yields obtained by farmers are much254

lower than those on experimental stations in Ethiopia (Figure 2). One reason is that experimental stations255

are often located in areas with good soil quality and water availability. Furthermore, due to various256

constraints farmers often use lower than recommended quantities of fertilizer and other inputs (Bellon 2006;257

Getnet et al. 2016; Gollin et al. 2005).258



Figure 3 depicts density functions of wheat yield by type of variety. Improved susceptible varieties259

dominate the distribution of traditional varieties, while improved resistant varieties dominate both other260

distributions. This pattern is observed consistently for both survey rounds. In line with the literature, the261

yields are not normally distributed but positively skewed to the left, suggesting that more than half of the262

farmers have below average yields (Ramirez et al. 2003).263

Insert Figure 3 here264

Table 4 reports the intensity of input use. For fertilizers and herbicides, different types of products are used265

(e.g., DAP, urea fertilizer), so we express them in monetary terms. Farmers reported that they had used266

fertilizer in more than 80% of their wheat fields. However, the intensity of fertilizer use shows significant267

variation. Table 4 also shows that wheat is grown in a very labor-intensive way in Ethiopia, with an average268

of 89 labor days and 24 oxen days per ha and season.269

Insert Table 4 here270

Figure 4 shows input use by type of wheat variety. On average, improved varieties are grown on somewhat271

larger fields than traditional varieties. Also the intensity of input use seems to differ across varietal types.272

Farmers with improved wheat varieties tend to spend more on fertilizers and herbicides. On the other hand,273

farmers with improved rust-resistant varieties use less manure and less labor. The differences in input use274

underline the importance of controlling for possible confounding factors when analyzing yield effects of275

different types of wheat varieties.276

Insert Figure 4 here277
278

3.2 Econometric results279

Before looking at the production function estimates, we discuss the statistical tests that we carried out for280

functional form and possible selection bias. The test results shown in Table 5 refer to the models explained281

above in equations (1) and (3). The first test relates to functional form. Our null hypothesis is that the282



coefficients of the input interaction terms in the translog production function are jointly insignificant. In283

that case, the Cobb-Douglas functional form would be appropriate. However, the test rejects this null284

hypothesis, so we conclude that the more flexible translog functional form with input interaction terms is285

appropriate to use. The second test relates to the role of unobserved heterogeneity among farmers, which286

could lead to selection bias. The null hypothesis is that the coefficients for the Mundlak fixed effects are287 ߠ

jointly zero. This null hypothesis cannot be rejected. We conclude that the normal RE estimator can be used288

to obtain unbiased results.289

Insert Table 5 here290

The translog production function estimates are shown in Table 6. For brevity, the coefficients of the input291

interaction terms and district dummy variables are not shown in Table 6. These additional coefficients are292

shown in Table A2 in the Appendix. The coefficients of the district dummies in Table A2 suggest that there293

are significant regional differences in yield, even after controlling for inputs and other field and farmer294

characteristics. These differences may be due to agroecological factors. In all models in Table 6, the inputs295

are mean centered, so the coefficients can be interpreted directly as elasticities at sample means. The296

elasticity is the percentage change in yield for a 1% change in a particular input.297

In model (1) of Table 6, we only include inputs and other control variables. We control for neither the298

variety dummies nor dummies for production stresses. As can be seen, all input coefficients have the299

expected positive signs, and most of them are statistically significant. These estimates suggest that wheat300

farmers can obtain higher yields by further increasing their input intensity. The highest input elasticity is301

observed for chemical fertilizer: a 1% increase in the use of fertilizer increases yield by 0.3% on average.302

The results of model (1) further suggest that higher yields are obtained on smaller fields, which may be303

related to a higher share of family labor on small farms. Due to different incentives, family labor is often304

more productive than hired labor. A negative correlation between farm/field size and yield has also been305



shown in other studies (Barrett et al. 2010; Carletto et al. 2013; Kilic et al. 2017; Sen 1966). Fields managed306

by households with better-educated household heads have higher yields. On the other hand, the sex of the307

household head does not seem to influence yield after controlling for field characteristics and input use. In308

terms of land characteristics, lower yields are obtained on land with steep slopes than on flat land. Less309

favorable land is also associated with lower wheat yields, as one would expect.310

In Model (2) of Table 6, we include a dummy variable for the incidence of wheat diseases as an additional311

control variable. As mentioned, the most relevant disease is stripe rust, but other diseases are also included.312

The coefficient for this variable suggests that stripe rust and other diseases have caused yield damage of313

19%. Note that this is not the average loss for the entire sample, but only refers to those fields where farmers314

reported disease incidence during the respective years. For comparison, during the 2010 stripe rust outbreak315

in Syria, yield declines of 20-70% were reported, depending on infection levels in a particular region316

(ICARDA 2011). Also in Ethiopia, yield losses through stripe rust of more than 20% were reported for317

particular years (Alemu et al. 2015; Denbel et al. 2013; Hailu and Fininsa 2007; Tadesse et al. 2010).318

Against this background, the 19% loss derived from our data on fields with disease incidence are relatively319

low. But it should be mentioned that overall stripe rust levels were not particularly high in the two years320

covered by the survey.321

In model (3) of Table 6, we include the two dummy variables for improved varieties with and without322

resistance to stripe rust. The estimates suggest that improved resistant varieties outperform traditional323

varieties that are susceptible to stripe rust. Compared to traditional varieties, growing improved resistant324

varieties increases yield by 8% on average. It can be expected that yield gains of resistant varieties will still325

be higher in locations with high rust infection levels. One way to analyze this further would be to interact326

the variable for resistant varieties with rust infection levels. Unfortunately, this is not possible with our327

farmer-reported disease incidence variable, because this variable is endogenous: when farmers have328

adopted rust-resistant varieties they naturally observe lower disease problems in their own fields.329



Model (3) further suggests that the yield gain of improved susceptible varieties is 6%. The difference330

between improved resistant and improved susceptible varieties is 2%. The 2% extra yield gain is the331

percentage that would have been lost if resistant varieties had not been adopted. That this difference is small332

(and statistically not significant) should not surprise given that there was no major rust epidemic in the two333

seasons covered by the survey. It seems that breeders were successful in terms of avoiding a yield penalty334

when introducing the rust resistance traits into improved germplasm. Such a penalty could potentially occur335

if rust resistance was negatively correlated with other plant traits that influence yield.336

In model (4) of Table 6, we additionally introduce an interaction term between rust-resistant varieties and337

the year dummy variable. The positive and significant coefficient of this interaction term suggests that the338

yield gains of rust-resistant varieties were higher in 2013/14 than in 2009/10. This difference between years339

suggests that there is temporal variation in disease infection levels. In seasons with severe rust infection,340

the benefits of resistant varieties are likely much larger.341

In model (5), we include two dummy variables for different types of abiotic stresses, one for drought and342

the other for shocks such as waterlogging, frost, and hailstorms combined. Both variables have large343

negative coefficients, suggesting that abiotic stresses can reduce wheat yield significantly; each type of344

shock reduces yield by more than 30%. Hence, the attractiveness and performance of improved and disease-345

resistant varieties will also depend on their adaptation to common abiotic stresses. This is further analyzed346

in the following.347

Insert Table 6 here348

In Table 7, we present results of models with interaction terms between the types of varieties and different349

production stresses (see equation 2). In each model, we also control directly for the same stress factors so350

we can interpret the coefficients of the interaction terms as the yield performance of improved varieties in351

comparison to local varieties in situations of abiotic stress.352



Insert Table 7 here353

In model (6) of Table 7, we focus on drought situations. In model (7), we look at other abiotic stresses,354

whereas in model (8), we combine all stresses together in one dummy variable. All interaction terms have355

a negative sign, but some of the coefficients are statistically insignificant. The statistical insignificance of356

the coefficients is due to the small number of farmers reporting production stresses and a certain degree of357

collinearity that is common when including variables directly and as interaction terms. Nevertheless, some358

of the negative interaction term coefficients are quite large in magnitude, suggesting that improved varieties359

– with and without stripe rust resistance – perform notably worse under abiotic stress than traditional360

varieties. At the same time, especially in model (8), the coefficients of the variety dummies themselves361

increase in comparison to results in Table 6, where these interaction terms were not included.362

These results suggest that the improved wheat varieties commonly grown in Ethiopia are yield increasing363

under favorable production conditions, but not perfectly adapted to drought and other relevant abiotic364

stresses. The inferior performance of improved varieties under abiotic stress and the growing frequency of365

weather extremes through climate change may also explain why many farmers recently switched back to366

growing traditional varieties, as observed in the second round of the survey (see Figure 1). The dis-adoption367

of improved varieties is associated with lower average productivity, as traditional varieties perform worse368

than improved varieties when there are no extreme production stresses. Combining high yield potential with369

disease resistance, as successfully done for improved rust-resistant varieties, is one important step towards370

developing better-adapted high-yielding varieties. Further adding higher tolerance to drought and other371

abiotic stresses remains an important future challenge for wheat breeding programs.372

373

4. Conclusion374



In developing country agriculture, sizeable crop losses due to a wide range of pests and diseases occur.375

Breeding crops for pest and disease resistance is a sustainable way to reduce such losses without having to376

increase the use of chemical pesticides. However, in order to make resistant varieties attractive for farmers377

and really increase effective yields, pest and disease resistance traits have to be combined with other378

important crop traits such as high yield potential and tolerance to drought and other abiotic stresses.379

Previous research on the impact of improved crop varieties has mostly looked at yield effects in general,380

without differentiating between different varietal traits and characteristics. In this study, we have used panel381

data from wheat farmers in Ethiopia to analyze yield effects of varieties that are resistant to stripe rust. In382

particular, we have compared yields of improved rust-resistant wheat varieties with yields of improved383

susceptible and traditional susceptible varieties.384

Production function estimates suggest that the adoption of improved rust-resistant varieties has raised yields385

by 8% in comparison to traditional susceptible varieties. Improved susceptible varieties have 6% higher386

average yields than traditional varieties, after controlling for other factors. The yield difference between387

improved resistant and improved susceptible varieties is relatively small, which is largely because the388

survey data were collected in seasons with only moderate stripe rust infection levels. While wheat rust389

problems have increased recently in Ethiopia and other countries of East Africa, the survey does not cover390

seasons with severe stripe rust outbreaks. Rust-resistant varieties perform equally well or better than other391

improved varieties in years with low or moderate rust infection. The above average performance of the rust-392

resistant improved varieties, relative to the improved susceptible varieties, indicates that breeders were able393

to combine rust-resistance traits with high yield potential successfully. In years with higher rust infection,394

resistant varieties will likely outperform improved susceptible varieties.395

We have also analyzed the performance of improved wheat varieties in fields where abiotic production396

stresses (e.g., drought, waterlogging) affect yield by using interaction terms. Under abiotic production397

stresses, improved varieties – with and without stripe rust resistance – perform notably worse than398



traditional varieties. In other words, the improved wheat varieties commonly grown in Ethiopia are not399

perfectly adapted to drought and other unfavorable weather conditions. This – together with the fact that400

the frequency of weather extremes is rising with climate change – may explain why many farmers in401

Ethiopia recently switched back to growing traditional varieties. In order to foster sustainable adoption,402

traits of high yield potential, disease resistance, grain quality, and tolerance to drought and other abiotic403

stresses need to be combined in the same varieties. This is a challenge for breeders not only because some404

of these traits may be negatively correlated in available genetic pools, but also because pathogens evolve405

so that searching for new plant resistance mechanisms remains a continuous task. Modern biotechnology,406

including new tools for genome editing, may help to overcome some of the complexities involved.407

Our results may contribute to further tailoring breeding programs to the needs of smallholder farmers. Yet,408

more conceptual and empirical research is needed to better understand the linkages between different types409

of varietal traits, evolving environmental, climatic, and socioeconomic conditions, farmers’ technology410

adoption behavior, and impacts of technologies on agricultural productivity.411
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Table 1. Description and measurement of variables used in the analysis

Variables Description and measurement
Dependent variable
Yield Quantity of wheat output per hectare (kg/ha)
Types of wheat varieties
TS (traditional susceptible) 1 if traditional varieties susceptible to stripe rust were used; 0 otherwise
IS (improved susceptible) 1 if improved varieties susceptible to stripe rust were used; 0 otherwise
IR (improved resistant) 1 if improved varieties resistant to stripe rust were used, 0 otherwise
Input use
Fertilizer Expenses on fertilizer (Birr/ha), log transformed
Herbicide Expenses on herbicide (Birr/ha), log transformed
Oxen days Oxen days per hectare, log transformed
Labor Labor days per hectare, log transformed
Manure Quantity of manure(kg/ha), log transformed
Pesticide 1 if fungicides or insecticides were used, 0 otherwise
Field level biotic and abiotic shocks
Drought 1 if there was an incidence of drought; 0 otherwise
Other abiotic 1 if there was an incidence of waterlogging, frost, or hailstorm; 0 otherwise
Diseases 1 if there was an incidence of wheat diseases; 0 otherwise
Any stress 1 if there was an incidence of any production stress; 0 otherwise
Other field level characteristics
Field size Size of field (ha)
Good soil 1 if the soil is of good quality, according to farmer; 0 otherwise
Medium soil 1 if the soil is of medium quality, according to farmer; 0 otherwise
Poor soil 1 if the soil is of poor quality, according to farmer; 0 otherwise
Flat slope 1 if the field was flat sloped; 0 otherwise
Medium slope 1 if the field was medium sloped; 0 otherwise
Steep slope 1 if the field was steep sloped; 0 otherwise
Farmer characteristics
Age Age of the farmer (household head) in years
Male 1 if the farmer (household head) is male; 0 if female
Education Years of schooling of the farmer (household head)
Survey round
Year 1 if the observation if from the 2013/14 survey round; 0 if 2009/10
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Table 2. Importance of wheat for sample households

Variables 2009/10 2013/14
Mean SD Mean SD

Total crop area cultivated by the household (ha) 2.11 1.77 2.45 2.02
Total wheat area cultivated by the household (ha) 0.74 0.88 0.70 0.71
Share of wheat area to total area cultivated (%) 36 21 31 19
Share of wheat to total value of crop production (%) 44 26 43 26
Value of total crop production (Birr) a 15649 18235 14633 21114
Value of wheat production (Birr) a 8638 13616 8312 13506
Number of household observations 2069 1921

a The official exchange rate was 1 US$ = 19.05 Birr in 2013. Monetary values are expressed in real terms for easier comparison
across survey rounds.

Table 3. Field level incidence of various abiotic and biotic stresses

Type of stress Number of fields Both rounds 2009/10 2013/14

Drought 4751 0.04 0.08 0.01
Other abiotic a 4751 0.09 0.09 0.10
Diseases 4751 0.17 0.13 0.20

 a Other abiotic stresses include waterlogging, frost, and hailstorm.
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Table 4. Intensity of input use

Inputs Both rounds 2009/10 2013/14
Mean SD Mean SD Mean SD

Fertilizer use (% of fields) 84 80 88
Fertilizer (expenses) 847 685 762 687 914 676
Herbicide use (% of fields) 60 62 59
Herbicide (expenses) 39 57 33 43 42 66
Oxen days 24 12 24 13 25 11
Labor 89 68 91 69 88 66
Manure use (% of fields) 17 18 17
Manure 284 900 308 976 265 837
Pesticide use (% of fields) 4 3 4
Number of fields 4751 2096 2655

Notes: Expenses are expressed in Birr/ha. The official exchange rate was 1 US$ = 19.05 Birr in 2013. Monetary values are expressed
in real terms for easier comparison across survey rounds. For other details of variable definitions, see Table 1.

Table 5. Model diagnostics

Null hypothesis
Chi squared test

statistic
Degrees of

freedom
Chi squared
critical value p-value

Cobb-Douglas function fits the data 71.75 15 24.996 0.000
Mundlak's fixed effects are jointly zero 14.7 11 19.675 0.197
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Table 6. Determinants of wheat yield (different model specifications)

Model (1) Model (2) Model (3) Model (4) Model (5)
Coeff. SE Coeff. SE Coeff. SE Coeff. SE Coeff. SE

IR (improved resistant) a 0.080*** 0.027 0.019 0.037 0.070*** 0.027
IS (improved susceptible) a 0.059** 0.028 0.044 0.028 0.046* 0.027
IR x year 0.081** 0.036
Drought -0.328*** 0.061
Other abiotic -0.332*** 0.042
Diseases -0.188*** 0.029
Fertilizer 0.229*** 0.020 0.226*** 0.020 0.226*** 0.020 0.224*** 0.020 0.227*** 0.019
Herbicide 0.074*** 0.020 0.079*** 0.019 0.075*** 0.020 0.072*** 0.020 0.077*** 0.019
Oxen days 0.047 0.044 0.036 0.044 0.049 0.044 0.049 0.044 0.043 0.044
Labor 0.094*** 0.036 0.104*** 0.036 0.095*** 0.036 0.096*** 0.036 0.090** 0.035
Manure 0.057** 0.024 0.054** 0.024 0.056** 0.024 0.058** 0.024 0.053** 0.023
Pesticide 0.093 0.075 0.116 0.071 0.092 0.074 0.099 0.073 0.078 0.074
Field size -0.127*** 0.039 -0.127*** 0.039 -0.128*** 0.039 -0.126*** 0.040 -0.117*** 0.036
Medium soil b -0.039* 0.022 -0.036* 0.022 -0.038* 0.022 -0.037* 0.022 -0.026 0.021
Poor soil b -0.082** 0.035 -0.076** 0.035 -0.083** 0.035 -0.082** 0.034 -0.071** 0.033
Medium slope c -0.035 0.023 -0.022 0.023 -0.035 0.023 -0.034 0.023 -0.038* 0.022
Steep slope c -0.108** 0.046 -0.093** 0.045 -0.106** 0.046 -0.110** 0.045 -0.120*** 0.046
Age -0.003*** 0.001 -0.003*** 0.001 -0.003*** 0.001 -0.003*** 0.001 -0.003*** 0.001
Male 0.026 0.040 0.022 0.040 0.027 0.040 0.028 0.040 0.026 0.039
Education 0.015*** 0.003 0.014*** 0.003 0.015*** 0.003 0.015*** 0.003 0.014*** 0.003
Year -0.008 0.020 0.005 0.020 -0.006 0.020 -0.037 0.025 -0.025 0.020
Constant -0.529*** 0.203 -0.471** 0.203 -0.590*** 0.203 -0.559*** 0.203 -0.568*** 0.200
Number of fields 4,751 4,751 4,751 4,751 4,751

Notes: The dependent variable in all models is the logarithm of wheat yield (kg/ha). Coefficient estimates are shown with cluster-corrected standard errors in parentheses. For variable
definitions, see Table 1. Dummies to correct for zero input use, input interaction terms, and district dummies are included in all models but not shown here for brevity (see Table A2
in the Appendix). a The base catergory are traditional varieties. b The base category is good soil. c The base category is flat slope. *** p<0.01; ** p<0.05; * p<0.1
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Table 7. Role of interactions between types of varieties and production stress in explaining wheat

yield

Model (6) Model (7) Model (8)
Coeff. SE Coeff. SE Coeff. SE

IR (improved resistant) 0.076*** 0.027 0.076*** 0.028 0.104*** 0.029
IS (improved susceptible) 0.055** 0.028 0.054* 0.029 0.091*** 0.031
Drought -0.124 0.148 -0.329*** 0.061
Abiotic stress -0.332*** 0.041 -0.292*** 0.075
Any stress -0.217*** 0.051
Interaction terms
  IR x drought -0.195 0.155
  IS x drought -0.246* 0.145
  IR x abiotic stress -0.039 0.084
  IS x abiotic stress -0.055 0.078
  IR x any stress -0.122** 0.055
  IS x any stress -0.084 0.053
Constant -0.574*** 0.201 -0.575*** 0.201 -0.528*** 0.200
Number of fields 4,751 4,751 4,751

 Notes: The dependent variable in all models is the logarithm of wheat yield (kg/ha). Coefficient estimates are shown with cluster-
corrected standard errors in parentheses. Only the main variables of interest are shown. Other included variables are the same as
those in model (1) of Table 6. *** p<0.01; ** p<0.05; * p<0.1
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Figure 1: Percentage of wheat fields by type of variety
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Figure 2. Mean wheat yields on sample fields and experimental stations (kg/ha)
Note: Experimental yields are average values obtained from various sources listed in Table A1 in the Appendix.
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Figure 3. Distribution of wheat yield by type of variety
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Figure 4. Field characteristics and input use by type of wheat variety

Note: TS, traditional susceptible; IS, improved susceptible; IR, improved resistant (stripe rust resistant).
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Appendix

Table A1. List of improved wheat varieties and levels of stripe rust resistance

Variety name Level of stripe rust
resistance

Frequency of fields
(%)

Year
released

Sources of information for stripe rust
resistance

Kubsa Susceptible 32.18 1994 Alemu et al. (2015)
Digelu Resistant 19.09 2005 Alemu et al. (2015)
Galema Susceptible 8.66 1995 Yami et al. (2012)
Dashen Susceptible 8.34 1984 Bishaw et al. (2014)
Pavon Resistant 4.58 1982 Yami et al. (2012)
Tusie Resistant 4.38 1997 Yami et al. (2012)
Dakeba
(Picaflor) Resistant 4.06 2010 http://wheatatlas.org/ug99

Mada-Walabu Resistant 3.91 2000 Alemu et al. (2015)
Dande'a
(Danphe) Resistant 3.76 2010 http://wheatatlas.org/ug99

ET-13 Resistant 3.59 1981 Yami et al. (2012)
Enkoye Susceptible 1.94 1974 Bishaw et al. (2014)
Simba Resistant 1.25 2000 Communication with experts from EIAR
Wabe Susceptible 1.06 1994 Hailu and Fininsa (2017)
Hawii Resistant 1.06 2000 Yami et al. (2012)
Sof-Oumer Resistant 0.39 2000 Alemu et al. (2015)
Dure Resistant 0.39 2001 Alemu et al. (2015)
Millennium Susceptible 0.37 2007 Alemu et al. (2015)
Kulilit/Kulkulit Resistant 0.25 2009 Zerihun et al. (2012)
Shina Susceptible 0.25 1999 Communication with experts from EIAR
Menzie Resistant 0.07 2007 Zerihun et al. (2012)
K6295-4A Resistant 0.07 1980 Yami et al. (2012)
Sirbo Resistant 0.05 2001 Tadesse et al. (2010)
Wetera Susceptible 0.05 2000 Communication with experts from EIAR
Doddota Susceptible 0.05 2001 Communication with experts from EIAR
Bobitcho Resistant 0.05 2002 Communication with experts from EIAR
Bollo Susceptible 0.02 2009 Zerihun et al. (2012)
KGB-01 Resistant 0.02 1980 Yami et al. (2012)
Obsa Resistant 0.02 2006 Communication with experts from EIAR
Magala Susceptible 0.02 1997 Communication with experts from EIAR
Tay Resistant 0.02 2005 Communication with experts from  EIAR
Gasay Resistant 0.02 2007 Communication with experts from EIAR
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Table A2. Input interaction terms and district dummies from wheat yield model

Coeff. SE Coeff. SE

0.5 x fertilizer squared 0.070*** 0.024 Hitosa (yes=1) 0.685*** 0.101
0.5 x herbicide squared 0.048*** 0.018 Limuna Bilbilo (yes=1) 0.584*** 0.102
0.5 x oxen days squared -0.017 0.054 Munesa (yes=1) 0.606*** 0.101
0.5 x labor squared 0.159*** 0.029 Seru  (yes=1) 0.044 0.119
0.5 x Manure squared 0.022 0.017 Shirka  (yes=1) 0.383*** 0.100
Fertilizer x herbicide -0.002 0.002 Sude  (yes=1) 0.185 0.114
Fertilizer  x oxen days -0.008 0.007 Gasera (yes=1) 0.594*** 0.121
Fertilizer x labor -0.009 0.006 Goba (yes=1) 0.180 0.140
Fertilizer x manure 0.000 0.001 Adami Tulu Jido Komb  (yes=1) 0.308*** 0.114
Herbicide x oxen days -0.008 0.012 Adea (yes=1) 0.391*** 0.091
Herbicide x labor 0.002 0.008 Dugda (yes=1) 0.195* 0.113
Herbicide x manure -0.002 0.002 Lomme (yes=1) 0.438*** 0.137
Oxen days x labor -0.010 0.027 Mulo (yes=1) 0.029 0.112
Oxen days x manure 0.004 0.007 Qercha (yes=1) -0.252* 0.131
Labor x manure -0.005 0.006 Uraga (yes=1) -0.275** 0.138
Fertilizer is zero (yes=1) -0.087 0.506 Dedo (yes=1) -0.045 0.112
Herbicide is zero (yes=1) 0.056 0.148 Kuyu (yes=1) -0.263** 0.115
Oxen days is zero (yes=1) 0.289 0.234 Wuchale  (yes=1) -0.138 0.114
Manure is zero (yes=1) -0.001 0.372 Wonchi (yes=1) -0.084 0.116
Awabel (yes=1) 0.217** 0.108 Adaba (yes=1) 0.240** 0.106
Enarj Enawga (yes=1) 0.075 0.138 Arsi Negele  (yes=1) 0.452*** 0.098
Enemay (yes=1) 0.242* 0.131 Dodola  (yes=1) 0.517*** 0.101
Goncha Siso Enese (yes=1) 0.173* 0.094 Gedeb Asasa (yes=1) 0.704*** 0.109
Huletej Enese (yes=1) 0.068 0.105 Shashemene  (yes=1) 0.381*** 0.108
Angolelana Tera (yes=1) 0.219* 0.112 Adea Berga (yes=1) 0.160* 0.096
Basona Werana (yes=1) 0.231** 0.101 Gende Beret (yes=1) 0.108 0.114
Menz Gera Meder (yes=1) -0.025 0.109 Meskan  (yes=1) 0.008 0.126
Menz Mama Meder (yes=1) 0.032 0.133 Sodo (yes=1) 0.248** 0.112
Bugna (yes=1) 0.388*** 0.125 Soro (yes=1) 0.031 0.107
Meket (yes=1) 0.066 0.117 Kedida Gamela (yes=1) -0.374*** 0.129
Kay Gayint (yes=1) -0.052 0.144 Hula  (yes=1) -0.157 0.154
Misrak Este  (yes=1) -0.225* 0.129 Halaba S/district  (yes=1) 0.124 0.202
Debresina (yes=1) -0.291*** 0.095 Yem special  (yes=1) -0.244** 0.113
Delanta  (yes=1) 0.083 0.120 Degua Temben  (yes=1) 0.146 0.171
Sayint  (yes=1) -0.083 0.101 Werei Leke (yes=1) 0.179 0.113
Were Ilu (yes=1) 0.158 0.103 Saese Tsaeda Emba  (yes=1) 0.085 0.107
Wogidi (yes=1) -0.267** 0.114 Enderta  (yes=1) 0.172 0.176
Bure (yes=1) 0.256* 0.131 Ofla  (yes=1) 0.513*** 0.111
Sekela  (yes=1) -0.078 0.109 Dabat (yes=1) 0.025 0.113
Arsi-Robe  (yes=1) 0.021 0.106

Notes: These estimates belong to model (5) in Table 6 with the logarithm of wheat yield (kg/ha) as the dependent variable.
Coefficient estimates are shown with cluster-corrected standard errors in parentheses. The base category for the district
dummies is Ankasha Guagusa. *** p<0.01; ** p<0.05; * p<0.
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Figure A1. Field level adoption of varieties by agroecology (both survey rounds).

Notes: H2, tepid to cool humid mid-highlands (n=888); H3, cold to very cold humid sub-Afro-Alpine (n=107); M1, hot to
warm moist lowlands (n=143); M2, tepid to cool moist mid-highlands (n=1350); SA2, tepid to cool semi-arid mid highlands
(n=62); SH1, hot to warm sub-humid lowlands (n=2019); SH2, tepid to cool sub-humid mid highlands (n=668); SM2, tepid to
cool sub-moist mid highlands (n=1314).
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