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Should I farm or should I not?

Luca Di Corato� Dimitrios Zormpas y

May 26, 2017

Abstract

In this paper we use stochastic dynamic programming for modelling the investment decision
of a landowner contemplating the conversion of idle land to farmland. The landowner may, by
investing, develop land for active farming counting, whenever farming is not pro�table, on the
support secured by the CAP for land kept in good agricultural and environmental condition,
i.e. land "passively" farmed. We determine, under the current CAP frame, the optimal capital
intensity and the optimal investment timing and show that, if compared to a scenario where
no support is provided, land development occurs earlier in expected terms and the associated
capital intensity is lower. Our results contradict arguments against the support paid to farmers
that passively manage their land and show that the current policy frame allows maintaining
land in good state at limited cost in terms of excess capacity.
keywords: Real Options, Land development, Capital Intensity, Passive Farming.
jel classification: C61, Q15, R14.

1 Introduction

The Common Agricultural Policy (CAP) is one of the oldest and more dynamic policies of the Euro-
pean Union. It was �rst launched back in 1962 in order to guarantee food security for the consumers
and market stabilization for the farmers. Since then, the CAP has changed radically. The 1992
reform, the Agenda 2000 and especially the 2003 reform attempted to improve the competitiveness
of the European farmers ensuring at the same time, budget control and rural development.1 As of
today, the CAP has two main components: Pillar 1, that deals with direct payments to farmers
and Pillar 2, that the Member States use to fund rural development programmes. Prior to the 2003
CAP reform, the farmers in EU received direct payments per hectare of crops through Pillar 1, a
policy that a¤ected both their individual cropping decisions and, consequently, the overall produc-
tion of agricultural commodities making the farming industry less market-oriented than intended.
The 2003 CAP reform addressed this distortion by introducing the decoupled Pillar 1 payments.
Farmers can choose not to grow crops and still receive support conditional on the ful�lment of
the so called cross-compliance requirements that consist of statutory management requirements
(SMRs) (i.e. public, animal and plant health, environmental and animal welfare requirements) and

�Dipartimento Jonico, University of Bari Aldo Moro, Via Duomo, 259, 74123 Taranto, Italy. Email:
luca.dicorato@uniba.it.

yCorresponding author: Department of Civil, Architectural and Environmental Engineering, University of Padova,
Via Marzolo 9, 35131, Padova, Italy. Email: dimitrios.zormpas@studenti.unipd.it.

1For a detailed description of the mission and the historical development of the CAP one can refer to the website
of the European Commission: http://ec.europa.eu/agriculture/cap-history/index_en.htm.
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land maintenance according to Good Agricultural and Environmental Condition (GAEC) standards
which are de�ned by the EU Member States.2

It is true that farmers are still adjusting to the 2003 CAP reform and as a result, it is too early to
observe the true e¤ects of the decoupled payments. Nevertheless, the implementation of the reform
gave rise to a debate concerning the actual environmental, industrial and �nancial consequences
of the policy. Some parties within the EU, perceived the decoupling as a measure that encourages
land abandonment or might jeopardize the food security and the raw material autonomy in areas
with few economic alternatives.3 Further, according to Ciaian et al. (2010), evidence from several
countries suggests that decoupled payments might, by hindering farm exit and increasing part-time
farming, prevent structural change in the agricultural industry.

An issue related to the 2003 CAP reform that is currently debated in Sweden is the so-called
"passive farming". As grass-sown fallow land meets the GAEC standards, some landowners have
in fact chosen not to produce any commodities and manage their land as fallow in order to qualify
for the CAP payments. The Federation of Swedish Farmers has taken a clear position against
passive farming practices arguing that active farming is crucial for rural development and that land
managed passively is a lost resource (see e.g. Brady et al., 2015).4 Further, active farmers stress
that, due to the capitalization in land values of the support secured to passive farmers, buying
or leasing land has become expensive.5 This in turn deters active farmers from aiming at the
expansion of their farm business (see Björnsson, 2011).

In this paper, we attempt to address the issues presented above focusing particularly on the
linkage between support to passive farming and land development. We consider a landowner who
contemplates the opportunity to invest in the conversion of a plot of idle land into farmland. Once
invested, the landowner will, whenever farming is pro�table, sell the crop yield on the market
and cash, as active farming automatically secures that GAEC standards are met, the subsidy. In
contrast, whenever farming, due to commodity price �uctuations, is not pro�table, the landowner
may suspend farming operations keeping the option to restart as soon as farming becomes again
pro�table. In the meanwhile, by maintaining land in GAEC, s/he can qualify for the subsidy.

The problem that the landowner faces is twofold. Firstly, the landowner must determine the
level of capital intensity, i.e., the capital-land ratio, taking into account that pro�ts from agriculture
are random and that s/he has, by holding the options to suspend and to restart, some operational
�exibility. Secondly, the landowner needs to decide when the investment should be undertaken.
These decisions are a¤ected by the sunk investment cost that such an investment requires as well as
the price volatility of the produced commodities. Additionally, the potential farmer keeps in mind
that s/he will be able to mothball the project whenever the harvest price is lower than the unit
cost of production and restart it whenever active farming starts to pay o¤. Using the real option
approach, we show that decoupled subsidies actually encourage land development since they act as
a bu¤er for the farmer in the periods when, because of low pro�tability, the project is laid up. Our
result clearly con�rms the appropriateness of decoupled subsidies as a measure that encourages
rural development and contradicts the main statement against passive farming subsidization.

The remainder of the paper is organized as follows. In Section 2 we present the model set-up,

2The main argument in favor of decoupling is that the direct payments need to support farmers�incomes and not
the production itself. See for instance Keenleyside and Tucker (2010, pp. 31). A discussion on cross-compliance is
presented in Ciaian et al. (2010).

3See for instance Renwick et al. (2013).
4The support to passive farmers is also questioned by the Swedish Agricultural Leaseholders Association and by

the Dairy Association who are concerned about its impact on the land rental market. Further, concerned about the
di¢ cult promotion of energy crops, also the Swedish Bioenergy Association has been critical (see Trubins, 2013).

5See Ciaian et al. (2010) on this speci�c issue.
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in Section 3 we introduce our model and determine the optimal capital intensity, in Section 4 we
study the value and the timing of investment. Section 5 concludes. The Appendix contains the
proofs omitted from the text.

2 The basic set-up

Consider a landowner contemplating investment for the development of idle land. The decision
involves the choice of both the timing and the capital intensity of the investment. The land parcel
considered has a surface which is normalized to 1.

Denote by � 2 [0; 1] the capital-land ratio or capital intensity6 that the landowner may choose for
developing idle land (see Capozza and Li, 1994). The initial sunk investment cost, I(�), associated
with the project takes the following functional form

I(�) = k1 + k2�, k1 � 0 and k2 > 0 (1)

where k1 and k2 are dimensional parameters.7 The term k1 includes any �xed cost associated with
the mere land conversion while the term k2� considers any cost associated with a higher capital-land
ratio.

Assume that a subsidy s > 0 is paid to the landowner (i.e., the single farmer payment) if
developed land is kept in Good Agricultural and Environmental Condition (GAEC, hereafter).
Keeping land in GAEC requires periodic maintenance8 costing m � 0 which means that a periodic
net amount s�m � 0 accrues to the landowner.9

Once invested in a land development project characterized by a generic intensity level �, the
following two post-investment scenarios are considered

- active farming: the land is cultivated and the corresponding yield is increasing and concave
in the selected capital intensity �. Consequently, we assume that the yield is equal to:

q(�) =
�




with 
 2 (0; 1) (2)

Unit production costs are constant and equal to c. We assume that the unit market price for
the commodity10 produced, xt, is stochastic and �uctuates according to the following geometric
Brownian motion:

dxt
xt

= �dt+ �dLt with x0 = x

where � is the drift parameter, � > 0 is the instantaneous volatility of the market price and dLt is
the standard increment of a Wiener process (or Brownian motion) uncorrelated over time satisfying
E [dLt] = 0 and E

�
dL2t

�
= dt.

Summing up, under active farming, the periodic total pro�ts are

�at =
�




(xt � c) + s�m (3.1)

6Note that, at no loss, we have normalized our frame by setting the maximum intensity level equal to 1.
7Note that we could have allowed for a more general functional form such as I(�) = k1 + k2 �

!

!
; with ! � 1. This

would have, however, no impact on the quality of our results.
8Note that, for the sake of simplicity, we abstract from the consideration of maintaining e¤orts that the landowner

may, in any case, undertake.
9We implicitly assume that the farmer would never apply for a subsidy paying s < m.
10Note that our frame may be easily extended to the consideration of several farm outputs and prices.
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- passive farming: once invested, the farmer, when not actively using the land, may secure
the maintenance needed for keeping the land in GAEC which again allows cashing the subsidy.
Hence, under passive farming, the periodic total pro�ts are

�pt = s�m (3.2)

Once invested, the actual pro�tability of farming depends on the margin between the price xt and
the unit production costs c. If the margin is positive then active farming is pro�table whereas, if
it is negative, then active farming would generate losses and the landowner decides to temporally
stop farming. Summing up, the gains associated with the investment are as follows

�t =

� �



 (xt � c) + s�m; for xt > c
s�m; for xt � c

(3.3)

As a positive payo¤ is associated with passive farming, the active farmer may be viewed as
holding the option to suspend her/his activities whenever farming is not pro�table. Similarly, a
passive farmer may be viewed as holding the option to restart the agricultural activity as soon as
farming becomes pro�table. In this respect, we assume that passing from active to passive farming
and vice versa is costless. This makes sense considering that land has been, in any case, kept in
GAEC. Last, for the sake of simplicity, we assume that i) once invested, the project runs forever11

and ii) the capital installed does not "rust" i.e., no maintenance is required.12 Finally, it is assumed
that the farmer is risk neutral and discounts future payo¤s using the interest rate r > �.13

3 The model

Let V (xt;�) represent the farm�s operating value upon investment. Solving a standard dynamic
programming problem we have14

V (xt;�) =

( eAx�2t + �



 (
xt
r�� �

c
r ) +

s�m
r for xt > ceBx�1t + s�m

r for xt � c
(4)

for any � 2 [0; 1]

where �2 < 0 and �1 > 1 are the roots of the characteristic equation �(�) � 1
2�

2�(�� 1)+��� r.

As shown in Section A.1 of Appendix A, by imposing the value matching and smooth pasting
conditions at xt = c, we can determine the value of the constants eA and eB, that is,

eA =
�




A =

�





r � ��1
(�1 � �2)r(r � �)

c1��2 (5.1)

eB =
�




B =

�





r � ��2
(�1 � �2)r(r � �)

c1��1 = eAr � ��2
r � ��1

c�2��1 (5.2)

Note that both constants are nonnegative and concave in the capital intensity �.15 This makes sense
considering that the value associated with both options depends on the capacity q(�) corresponding
to the chosen capital intensity �.
11This is an assumption that does not a¤ect the quality of our results.
12A complete analysis on the cost of suspending, maintaining and restarting a project is presented in Dixit and

Pindyck (1994, chap. 7).
13This restriction is needed in order to ensure convergence. See Dixit and Pindyck (1994, pp. 138).
14See Section A.1 in Appendix A.
15On the value of the options to switch see Dixit and Pindyck (1994, pp. 188-189).
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In Eq. (4) we observe that for xt > c (active farming scenario), the value of the farm is given
by the value of the option to switch to passive farming, eAx�2t , plus the net bene�t from farming,
�



 (
xt
r�� �

c
r ), and the discounted �ow of the net subsidy,

s�m
r . Note that the value of the option to

switch to passive farming is, consistently, decreasing in the price level xt and increasing in the unit
production cost c. This makes sense considering that this option becomes less valuable if pro�ts
from active farming decrease. On the other branch of the value function, i.e., for xt � c (passive
farming scenario), the operating value of the farm is given by the value of the option to switch
from passive to active farming as soon as active farming becomes pro�table, i.e., eBx�1t , plus the
discounted �ow s�m

r . Note that the value of the option to restart agricultural activities is increasing
in the price level xt and decreasing in the unit production cost c. This makes sense considering
that this option becomes more valuable if pro�ts from active farming are higher.

In the following, we will assume that s�m
r � k1. This is to avoid the consideration of trivial

investment projects where, as the discounted �ow of net subsidy, s�mr , is higher than k1, it would
be worth investing immediately with minimum capital intensity.

3.1 The optimal intensity

In this section we determine the optimal intensity level �� that the landowner should adopt. As
discussed above, the landowner sets �� taking also into account the options implicitly purchased by
investing. The options to switch between passive and active farming (and vice versa), due to the
�exibility associated, may result particularly valuable as they allow hedging against the volatility
that, via the market price, may characterize pro�ts from farming. The value associated with this
�exibility depends on the capital intensity adopted, thus it does not come for free. The landowner
must then set �� trading o¤ the associated bene�ts in terms of production capacity and �exibility
with the corresponding investment cost.

In the following we will restrict our analysis to the scenario where farming is pro�table, i.e.,
xt > c.16

3.1.1 Optimal land development under active farming

When xt > c, as active farming is pro�table, the landowner would use land for production as soon
as the investment has been undertaken. The optimal level of intensity should then be set so that
the corresponding expected net present value is maximized. The optimal � solves the following
problem

� = argmaxNPV a(xt; �), s.t. 0 < � � 1 (6)

where

NPV a(xt; �) = V (xt; �)� I(�) = eAx�2t +
�





�
xt
r � � �

c

r

�
+
s�m
r

� (k1 + k2�) (6.1)

The solution of problem (6) leads to the following proposition

Proposition 1 Provided that 	 = k2 � Bc�1 > 0,17 the optimal intensity level when investing at
16The less realistic scenario where the landowner considers converting idle land to farmland when farming is not

pro�table, is presented in Appendix B where we show that the relative investment timing problem has no interior
solution.
17 In Section A.2 of Appendix A, we also derive the optimal capital intensity for 	 = k2 �Bc�1 � 0. In that case,

�(xt) is equal to 1 for any xt > c. Note that the relative analysis is similar to the one provided for �(xt) = 1 under
	 > 0.
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xt > c is

�(xt) =

8<:
�
O(xt)
k2

� 1
1�


for c < xt < x

1 for x � xt
(7)

where O(xt) � Ax�2t + xt
r�� �

c
r , and x is such that O(x) = k2.

Proof. See Section A.2 in Appendix A.
As one may easily check, the optimal intensity level �(xt) is increasing in xt in the interval

c < xt < x. This is the result of two opposing forces. First, as xt increases, due to the higher
expected net bene�ts associated to farming, i.e., xt

r���
c
r , the landowner would prefer to invest more

intensively. Second, �(xt) is increasing in the value of the option to switch to passive farming, i.e.,
Ax

�2
t . This makes sense considering that the option allows hedging against the volatility of pro�ts

from active farming. However, as xt increases, switching to passive farming is less likely and then
the value associated to this option is lower. As shown in Section A.2 of Appendix A, the �rst force
is prevailing for any xt 2 (c; x]. Last, substituting Eq. (7) into Eq. (6.1) yields

NPV a(xt; �(xt)) =

8<:
�
O(xt)
k2

� 1
1�

�
1

 � 1

�
k2 +

s�m
r � k1 for c < xt < x

O(xt)

 + s�m

r � (k1 + k2) for x � xt
(8)

4 Value and timing of the investment

Let�s now study the timing of the investment and derive the value of the option to invest in a land
development project. We consider the option to invest in the continuation region xt � bx where bx
is the price threshold triggering investment. The value of the option is given by

F (xt) = max
�
Et
�
e�r�NPV a(x� )

�
(9)

where � = inf ft � 0 j xt = bxg is the optimal investment stopping time.
Eq. (9) can be rearranged as follows18

F (xt; bx) = maxbx
��xtbx ��1 NPV a(bx)

�
(9.1)

From the �rst-order condition for the optimal bx we have19
bx = �1NPV a(bx)@NPV a(bx)

@bx (10)

Let�s now consider the two investment scenarios illustrated in Proposition 1.
We start by considering the region where it is optimal to invest with the highest possible capital

intensity, �(xt) = 1, i.e., x � xt. In Appendix A we show that

Proposition 2 Provided that x
r�� �

c
r � �, the optimal investment threshold, x�, for a project

with capital intensity �(xt) = 1 is the solution of the following equation

x� +
�1 � �2
�1 � 1

Ax��2(r � �)� �1
�1 � 1

(r � �)
�
c

r
� 


�
s�m
r

� (k1 + k2)
��

= 0 (11)

where � =
c
r
+k2�2��1[k2(1�
)+
( s�mr �k1)]

�2�1
.

18For the calculation of expected present values, see Dixit and Pindyck (1994, pp. 315-316).
19See Section A.3 in Appendix A for the derivation of Eq. (10). A more general presentation of how to approach

similar maximization problems is given in Dixit et al. (1999).
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Proof. See Section A.3.1 in Appendix A.
We observe that investment is conditional on having an expected pro�tability of active farming,

xt
r�� �

c
r , higher than the level � at x. Otherwise, the project is not worth investing.

Let�s now turn to the region of prices where the landowner invests with capital intensity �(xt) <
1, i.e., c < xt < x. We �nd that

Proposition 3 Provided that x
r�� �

c
r � �, the optimal investment threshold, x��, for a project

with capital intensity �(xt) < 1 is the solution of the following equation

x��
@�(x��)

@x��
� �1

�
�(x��) +




1� 


s�m
r � k1
k2

�
= 0 (12)

Proof. See Section A.3.2 in Appendix A.
In this case, the restriction posed requires that the expected pro�tability of unit active farming

is below the level � at x. Otherwise, it does not make sense investing with a capital intensity lower
than the maximum possible. Let�s now study the impact that the requirement for securing that
land is in GAEC has on the timing of investment. In Section A.3 of Appendix A we show that

Proposition 4 A landowner who contemplates investing in the development of idle land will, in
expected terms and irrespective of the capital intensity chosen, hasten the investment decision as
the net subsidy s�m increases.

This result is interesting since it implies that, if compared with a scenario where the policy is
absent, i.e., s = 0 ! (s�m)+ = 0 , compensating farmers for keeping arable land in GAEC does
not deter investment but, in contrast, fosters land development.

Interestingly, studying the case where the price level is such that it is optimal investing with
capital intensity �(xt) < 1, we can easily show that

Proposition 5 When investing in the region c < xt < x, the chosen capital intensity is decreasing
in the net subsidy s�m.

As shown above, � is increasing in xt, hence, as by Proposition 4 @x��=@ (s�m) < 0, then
@�(x��)=@ (s�m) < 0. The result is interesting since it implies that, if compared with a scenario
where the policy is absent, compensating landowners induces not only earlier investment but, at the
same time, investment in development projects with lower capital intensity. Note that this would
be in line with an underlying target behind the choice of having decoupled payments. In fact, as
capital intensity is lower, the impact on market prices of additional capacity q(�) is more limited.

5 Epilogue

The decoupling of direct payments from commodity production was certainly a step further towards
responsible production and sustainable management of natural resources but at the same time gave
rise to several issues. In this paper, we have been focusing on the so-called passive farming, that
is, maintaining land in GAEC without producing any commodity in order to be entitled to CAP
support. Several parties have strongly criticized the support paid to passive farmers arguing that
it may hinder rural development and an e¢ cient use of land. We have focused on this speci�c issue
and studied how decisions concerning investment in land development projects are a¤ected by the
current policy frame. We show that the policy, by implicitly providing hedging against volatile
agricultural pro�ts, may actually foster investment initiatives and land development. This result
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contradicts one of the main arguments presented against the CAP support to passive farming.
In addition, we show that landowners opt for investment projects characterized by lower capital
intensity. This suggests that the current policy frame induces investment projects that secure the
maintenance of land in GAEC (under both active and passive farming) with a lower impact in
terms of capacity added, thus limiting the formation of excess capacity.
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A Appendix A

A.1 The farm operating value

The standard arbitrage and hedging arguments (Dixit, 1989, pp. 624-628) require that the farm
operating value, V (xt;�), is the solution of the following dynamic programming equations:

�V (xt;�) = �
h
�



 (xt � c) + s�m
i
; for xt > c;

�V (xt;�) = � (s�m) ; for xt � c;
(A.1.1-A.1.2)

where � is the di¤erential operator: � = �r + �x @
@x +

1
2�

2x2 @
2

@x2
. The solution of Eq. (A.1.1) and

Eq. (A.1.2) requires the following boundary conditions

limx!1
n
V (xt;�)�

h
�





�
xt
r�� �

c
r

�
+ s�m

r

io
= 0; for xt > c;

limx!0
�
V (xt;�)� s�m

r

	
= 0; for xt � c:

Hence, from the assumptions and the linearity of (A.1.1) and (A.1.2), using the above boundary
conditions and imposing the value matching and the smooth pasting conditions at xt = c we obtaineAc�2 + �



 (
c

r�� �
c
r ) +

s�m
r = eBc�1 + s�m

reA�2c�2�1 + �




1
r�� =

eB�1c�1�1 (A.1.3)

where �2 < 0 and �1 > 1 are the roots of the characteristic equation �(�) � 1
2�

2�(�� 1)+��� r.
Solving, the system (A.1.3) yields:

eA =
�




A =

�





r � ��1
(�1 � �2) r(r � �)

c1��2 (A.1.4)

eB =
�




B =

�





r � ��2
(�1 � �2) r(r � �)

c1��1 = eAr � ��2
r � ��1

c�2��1 (A.1.5)

which are non-negative.20

A.2 Optimal intensity

Suppose that xt > c, the optimal intensity level, �, should then be given by the solution of the
following problem

� = argmax

� eAx�2t +
�





�
xt
r � � �

c

r

�
+
s�m
r

� I(�)
�

= argmax

�
�





�
Ax

�2
t +

xt
r � � �

c

r

�
+
s�m
r

� (k1 + k2�)
�
: (A.2.1)

The �rst-order condition,

�
�1
�
Ax

�2
t +

xt
r � � �

c

r

�
� k2 = 0 (A.2.1a)

yields

� =

0@Ax�2t + xt
r�� �

c
r

k2

1A 1
1�


(A.2.2)

20On the value of options to switch see Dixit and Pindyck (1994, pp. 188-189).
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It is easy to check that the second-order condition for Problem (A.2.1) always holds.
Note that, for having a sensible �, we need to check the conditions under which � 2 [0; 1] or,

alternatively
0 � O(xt) � k2

where O(xt) � Ax�2t + xt
r�� �

c
r .

Note that O(xt) is convex in xt since

O00(xt) = �2(�2 � 1)Ax
�2�2
t > 0

Further,

O(c) =
r � ��2

(�1 � �2)r(r � �)
c = Bc�1 > 0

and

O0(c) =
r � ��2

(�1 � �2)r(r � �)
�1 > 0

Hence, it follows that O(xt) > 0 and O0(xt) > 0 for any xt > c.
Let us now check under what conditions O(xt) � k2 (or � � 1). In general, the equation

O(xt) = k2 has at most two (positive) roots. However, as O0(c) > 0, the only admittable root, x,
must lay above c and should be such that

O(x) = Ax�2 +
x

r � � �
c

r
= k2 and O0(x) > 0

Note that
� = 1 for any x � xt

Now, in order to completely characterize the function �, let�s de�ne

	 = O(x)�O(c) = k2 �Bc�1

Hence, it follows that
Scenario A � � 1, if 	 > 0! x > c
Scenario B � = 1, if 	 � 0! x � c

It is worth discussing the role played by the sign of 	. Note that this term represents the net
marginal cost of capital intensity � = 1. In particular, it is given by the di¤erence between the
marginal investment cost, k2, and the marginal value of the option to switch to active farming,
Bx

�1
t , when evaluated at the boundary xt = c. Then, even if at such a low price level, the marginal

bene�t, Bc�1 , is higher than the marginal cost, k2, the farmer should just go for the highest capital
intensity possible. Otherwise, a lower intensity is optimal. Note in fact that, in the latter case, only
for price su¢ ciently high, i.e., xt � x, investing in the highest intensity possible is optimal.

A.3 Timing of land development

The net present value corresponding to the land development projects identi�ed above can be easily
computed by substituting the optimal intensity level, �, into the function

NPV (xt;�) = V (xt;�)� I(�) (A.3.1)

Substituting �(xt) into Eq. (A.3.1) we obtain:

10



(a) for 	 > 0

NPV a(xt; �(xt)) =

8<:
�
O(xt)
k2

� 1
1�

�
1

 � 1

�
k2 +

s�m
r � k1 for c < xt < x

O(xt)

 + s�m

r � (k1 + k2) for c < x � xt
(A.3.2)

(b) for 	 � 0

NPV a(xt; �(xt)) =
O(xt)

 + s�m

r � (k1 + k2) for x � c < xt (A.3.3)

The value of the option to develop the land is given by the following function

F (xt) = max
�
Et
�
e�r�NPV (x� )

�
(A.3.4)

where � = infft � 0 j xt = bxg is the optimal stopping time where land development occurs.
Equation (A.3.4) is equivalent to

F (xt; bx) = maxbx
��xtbx ��1 NPV a(bx)

�
(A.3.5)

Following Dixit et al. (1999) the threshold bx solves the following problem
@
�
xtbx ��1 NPV a(bx)

@bx = 0 (A.3.6)

By rearranging it is easy to show that

@NPV (bx)
@bx �xtbx ��1 +NPV (bx)@

�
xtbx ��1
@bx = 0

!bx = �1
NPV (bx)
@NPV (bx)

@bx (A.3.7)

Last, note that for the problem to be well-posed, the following condition must hold at xt = bx
@2NPV (bx)(xtbx )�1

@x2t

�����
xt=bx

>
@2NPV (xt)

@x2t

����
xt=bx

!
@NPV (bx)

@bx >
bx

�1 � 1
@2NPV (bx)

@bx2 (A.3.8)

A.3.1 Scenario A: �(xt) = 1

Let�s start our analysis by considering the interval where �(xt) = 1, i.e., c < x � xt. Denote by x�
the optimal development threshold. Substituting Eq. (A.3.2) in Eq. (A.3.7) and rearranging, we
obtain the equation

x� +
�1 � �2
�1 � 1

Ax��2(r � �)� �1
�1 � 1

(r � �)
�
c

r
� 


�
s�m
r

� (k1 + k2)
��

= 0 (A.3.9)

which must be solved for x�.
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Existence and uniqueness of x� - De�ne the function

�(xt) = xt +
�1 � �2
�1 � 1

Ax
�2
t (r � �)�

�1
�1 � 1

(r � �)
�
c

r
� 


�
s�m
r

� (k1 + k2)
��

Note that �(xt) is convex and that �(x�) = 0.
The existence of a solution requires that �(c) � 0. It is easy to prove that, by the assumption

s�m
r � k1, this condition is always met since

�(c) =
�1

�1 � 1



�
s�m
r

� (k1 + k2)
�
(r � �) < 0

This proves that the solution x� is unique. Note also that at xt = x�

@�(xt)

@xt

����
xt=x�

= 1 + �2
�1 � �2
�1 � 1

Ax��2�1(r � �) > 0

which, in turn, implies that the condition (A.3.8) holds as

@NPV (x�)

@x�
>

x�

�1 � 1
@2NPV (x�)

@x�2
!

(�1 � 1)
1




@O(x�)

@x�
>

x�




@2O(x�)

@x�2
!

1 + �2
�1 � �2
�1 � 1

Ax��2�1(r � �) > 0 (A.3.8a)

Last, the following necessary and su¢ cient condition must hold for having x � x�

�(x) � 0

!
x

r � � �
c

r
�

c
r + k2�2 � �1

�
k2(1� 
) + 


�
s�m
r � k1

��
�2 � 1

Policy impact on the investment timing - By di¤erentiating Eq. (A.3.9) with respect to
s�m we obtain

@x�

@ (s�m) = �


r

�1
�1�1

1 + �2
�1�1

r���1
r

�
x�
c

��2�1 (r � �) (A.3.10)

Note that, by condition (A.3.8a), the denominator must be strictly positive. Hence, we may
conclude that @x�

@(s�m) < 0.

A.3.2 Scenario A: �(xt) < 1

Let�s now consider the interval where �(xt) < 1, i.e., c < xt < x. Denote by x�� the optimal
development threshold. Substituting Eq. (A.3.2) in Eq. (A.3.7) we obtain the equation

x��
@�(x��)

@x��
� �1�(x��)�




1� 


s�m
r � k1
k2

�1 = 0 (A.3.11)

which must be solved for x��.
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Existence and uniqueness of x��- De�ne the function

�(xt) = xt
@�(xt)

@xt
� �1�(xt)�




1� 


s�m
r � k1
k2

�1

First and second order derivatives with respect to xt are as follows

@�(xt)

@xt
= xt

@2�(xt)

@x2t
� @�(xt)

@xt
(�1 � 1)

@2�(xt)

@x2t
= xt

@3�(xt)

@x3t
� @

2�(xt)

@x2t
(�1 � 2)

Note that in the interval considered

@�(xt)

@xt
=

@�(O(xt))

@O(xt)
O0(xt) > 0

@2�(xt)

@x2t
=

@�(O(xt))

@O(xt)
O00(xt) > 0

@3�(xt)

@x3t
=

@�(O(xt))

@O(xt)
O000(xt) < 0

Hence, as
@2�(xt)

@x2t
=
@�(O(xt))

@O(xt)
�2(�2 � 1) (�2 � �1)Ax

�2�2
t < 0

we can conclude that �(xt) is concave.
The existence of a solution requires that �(c) � 0. It is easy to prove that this condition is

always met as

�(c) = �1



1� 


�
�(c)�

s�m
r � k1
k2

�
> 0

This proves that the solution x�� > c is unique. Note that at xt = x��

@�(xt)

@xt

����
xt=x��

= x��
@2�(x��)

@x��2
� (�1 � 1)

@�(x��)

@x��
< 0

which, in turn, implies that condition (A.3.8) holds as

@NPV (x��)

@x��
>

x��

�1 � 1
@2NPV (x��)

@x��2
!

x��
@2�(x��)

@x��2
� (�1 � 1)

@�(x��)

@x��
< 0 (A.3.8b)

Last, the following necessary and su¢ cient requirement must hold for having x�� � x

�(x) � 0

!
x

r � � �
c

r
�

c
r + k2�2 � �1

�
k2(1� 
) + 


�
s�m
r � k1

��
�2 � 1
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Policy impact on the investment timing - Di¤erentiating Eq. (A.3.11) with respect to s�m
yields

@x��

@ (s�m) =
�1
r�

1

 � 1

�
k2

h
x�� @

2�(x��)
@x��2 � (�1 � 1)

@�(x��)
@x��

i
It is easy to check that, by condition (A.3.8b), the investment threshold responds negatively to
changes in s�m, i.e., @x��

@(s�m) < 0.

A.3.3 Scenario B

For x � c, the farmer would always invest in the highest possible capital intensity, i.e., �(xt) = 1.
The analysis is identical to the one provided for the corresponding case in Scenario A. Note that
as �(c) < 0, then c < x��.

B Appendix B

For the convenience of the reader we provide also the analysis relative to the case where xt � c,
that is, the region where the commodity price is lower than the unit cost of production. We remind
that in this region a farmer would manage her/his plot passively as soon as the investment has
been undertaken.

B.1 Optimal intensity

The optimal intensity level should be given by the solution of the following problem

� = argmax

� eBx�1t +
s�m
r

� I(�)
�

= argmax

�
�




Bx

�1
t +

s�m
r

� (k1 + k2�)
�
. (B.1.1)

The relative �rst-order condition is

�
�1Bx
�1
t � k2 = 0 (B.1.1a)

which yields:

� =

 
Bx

�1
t

k2

! 1
1�


(B.1.2)

It is easy to check that the second-order condition for Problem (B.1.1) always holds.
Note that, for having a sensible �, we need to check the conditions under which � 2 [0; 1]. By the

non-negativity of xt, � is always positive. To secure that � � 1, we must impose that Bx�1t � k2.
By the monotonicity of Bx�1t , the equation Bx

�1
t = k2 admits a unique solution x(> 0).

Note that
� = 1 for any x � xt

Summing up, the function � can be characterized as follows

Scenario C � � 1 , if 	 � 0! x � c
Scenario D � < 1, if 	 > 0! x > c

where 	 = k2 �Bc�1 .
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B.2 Timing of land development

The net present value corresponding to the land development projects identi�ed above can be easily
computed by substituting the optimal intensity level � into the function

NPV (xt;�) = V (xt;�)� I(�) (B.2.1)

This yields
(a) for 	 � 0

NPV p(xt; �(xt)) =

8><>:
�
1

 � 1

��
Bx

�1
t
k2

� 1
1�


k2 +
s�m
r � k1 for xt < x � c

Bx
�1
t

 + s�m

r � (k1 + k2) for x � xt � c
(B.2.2)

(b) for 	 > 0

NPV p(xt; �(xt)) =
�
1

 � 1

��
Bx

�1
t
k2

� 1
1�


k2 +
s�m
r � k1 for xt � c < x (B.2.3)

B.2.1 Scenario C

Let�s start our analysis by considering the interval where �(xt) = 1, i.e., x � xt � c. Denote by ex�
the optimal development threshold. The value of the option to develop is given by

F (xt; ex�) = maxex�
��xtex���1

�
Bex��1



+
s�m
r

� (k1 + k2)
��

(B.2.4)

Taking the �rst-order derivative of the objective with respect to ex� we have:
@
�
xtex� ��1 hBex��1
 + s�m

r � (k1 + k2)
i

@ex� = ��1ex� �xtex���1
�
s�m
r

� (k1 + k2)
�
> 0

This implies that the landowner postpones the development of the land as much as possible and
undertakes the investment at ex� = c. Note that the project is undertaken only if it is worthy
enough, that is, if it would pay a non-negative net present value NPV p(c) � 0.

Let�s now consider the interval xt < x. Denote by ex�� the optimal development threshold. The
value of the option to develop is given by

F (xt; ex��) = maxex��
(� xtex����1

"�
1



� 1
��

Bex���1
k2

� 1
1�


k2 +
s�m
r

� k1

#)
(B.2.5)

Similarly to the case above, we notice that

@
�
xtex�� ��1 NPV p(ex��)

@ex�� = � �1ex�� � xtex����1
�
s�m
r

� (k1 + k2�(ex��))� > 0
Hence, also under this scenario, the landowner postpones the development of the land as much as
possible and undertakes the investment at ex�� = x. Also in this case the initiative is conditional
on having NPV p(x) � 0.

B.2.2 Scenario D

For c < x, the landowner would opt for a capital intensity, �(xt) < 1. The analysis is identical
to the one provided for Scenario C when xt < x. Land development occurs at ex�� = c and it is
conditional on having NPV p(c) � 0.
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