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The Productivity-environment Nexus At The Farm Level  

The Case of Carbon Footprint of Lombardy FADN farms  

Abstract 

This paper aims to assess whether and to what extent the farm-level productivity performance 

(measured by Total Factor Productivity, TFP) affects the farm-level environmental 

performance. In particular, the attention focuses on GHG emissions expressed by the farm’s 

Carbon Footprint (CF). The relationship occurring between these two performance indicators 

is investigated on a panel of Lombardy farms observed from 2008 to 2013. Once the TFP and 

the CF have been measured using farm-level data, a dynamic panel model is specified and 

estimated (via GMM estimation). The dynamic specification allows to take the time dependence 

of TFP into account while a polynomial form and group-specific effects allow for a specific 

TFP-CF nexus across heterogeneous farms in terms of size and specialization. Results confirm 

that a TFP-CF nexus exists but it may significantly differ and also be conflicting across farm 

typologies. 

JEL codes: O13, Q12, D24  

 

Keywords: Total Factor Productivity, GHG Emissions, Farm-level Data, Dynamic Panel 

Models  

 

1. Introduction  

Climate change and food security are two possibly conflicting challenges for the future 

development of agricultural systems at the global level. The Sustainable Intensification (SI) of 

agriculture has thus become a priority to answer to the need for guarantee supply for a growing 

food demand, efficiently managing natural resources and building resilience to climate change 

at the same time (FAO, 2011; Foresight Report, 2011). At the European level, the SI of 

agriculture has gained much attention over the last years. In 2012 the European Union (EU) 

launched the Innovation Partnership for Agricultural productivity and Sustainability (EIP-

AGRI) (European Commission, 2012). EIP aims at addressing the most fundamental challenge 

faced by European agriculture in the early 21st century: increasing production to deal with the 

expected growth in global food demand, while conserving natural resources and the 

environment. This challenge requires economic and social changes to recognise the multiple 

outputs expected from the agricultural sector and a redirection of research to address a more 

complex set of goals than just increasing yield (Foresight Report 2011; Esposti, 2012).   

At the global level, the concept of SI in agricultural production implies that raising productivity 

requires as much attention as increasing environmental sustainability: the increase of food 

production must be met through higher yields while reducing additional conversion of land to 

agriculture as this can have major environmental costs (Garnett et al. 2013). At the farm level, 

SI is defined by Firbank et al. (2013) as the increasing of agricultural production per unit of 

input ensuring that environmental pressures generated are minimised. Consequently, SI can be 

considered as a farm management strategy that assists the balance between environmental 

sustainability and intensification of production (Gadanakis et al., 2015).  

As stressed by Garnett et al. (2013), however, a suitable SI strategy is context and location-

specific: it is a substantial reframing of food production systems that does not imply “one size 
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fits all” solutions. On a global scale, this means that different countries have different 

productivity and environmental goals and on a local (micro) scale, that different farms have 

different management solutions to reach SI objectives. Mostly for this reason, assessing to 

what extent global and, in particular, EU agriculture is actually moving along this innovative 

path of higher productivity and higher sustainability remains a complex task.  

According to Picazo-Tadeo et al., (2011) sustainability in general, and agricultural 

sustainability in particular, still is an elusive concept. A remarkable amount of research has 

been undertaken to overcome conceptual vagueness and to develope composite indicators 

covering socio-economic and environmental issues (Sabiha et al., 2016; Van der Werf and 

Petit, 2002; Böhringer and Jochem, 2007; Van Cauwenbergh et al., 2007; Bell and Morse, 

2008). Rigby et al. (2000: 5) suggested that developing sustainability indicators ‘pulls the 

discussion of sustainability away from abstract formulations and encourages explicit 

discussion of the operational meaning of the term’. A workable approach to sustainability at 

farm level can consist in evaluating economic and environmental performances with 

appropriate and properly reconstructed indicators. However, assessing agricultural 

sustainability at farm level is particularly challenging, as no consensus exists on the relevant 

environmental variables to be considered (Picazo-Tadeo et al., 2011), while at least some 

standardisation has been achieved for assessments undertaken at the national or macro level 

(OECD, 2001; European Environment Agency, 2005).  

On the one hand, Total Factor Productivity (TFP) growth typically measures productivity gains 

(OECD, 2001; European Commission, 2014). On the other hand, however, TFP measures 

cannot express whether individual farmers are efficiently using natural resources or producing 

non-marketable outputs. Nevertheless, some of the environmental pressures produced by 

agricultural activities can be well captured and measured by appropriate environmental 

indicators that accompany the TFP to provide a multivariate representation of the farm’s 

economic and environmental performance. Among the different environmental pressures 

caused by agriculture, here the focus is on the contribution of the sector to global warming, i.e. 

to its greenhouse gases (GHG) emissions, as the international and European policy agenda 

expect a substantial contribution of the agricultural sector to a low emission economy 

(Foresight Report 2011; Gerber et al., 2013; European Council 2014).     

This paper aims to assess the nexus between GHG emissions and productivity at the farm level. 

As anticipated, whether and how much productivity and environmental performances affect 

each other is largely an empirical issue mostly because this nexus may be highly heterogeneous 

across farm typologies. The use of farm-level instead of aggregate data is novel within the 

literature on this topic and represents the main value added of the methodology adopted. The 

first step of the present analysis elaborates farm-level indicators of both economic (TFP) and 

environmental (Emission Intensity, EI) performance. Then, the nexus between the two is 

estimated. The empirical investigation concerns a balanced panel of FADN (Farm 

Accountancy Data Network) farms of one of the largest Italian regions (Lombardy) observed 

over years from 2008 to 2013.  

2. A micro level approach to the productivity-environment nexus. 

Conventional TFP indexes measure productivity gains as the ratio of total agricultural output 

(crop and livestock products) on total inputs used in production (i.e.: land, labour, capital, and 

materials). Hence, an increasing TFP implies that more output is produced from a given bundle 

of agricultural resources (Fuglie, 2012). A major drawback of these conventional TFP 

measures, however, is that they only account for those inputs and outputs for which there are 

observable market transactions, while non-marketable resources or outputs, are not accounted 

for. Among these non-marketable goods, agricultural production involves, on the input side, 
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the use or depletion of natural resources and, on the output side, the creation of environmental 

pressures. Thus, ignoring non-marketable goods in agricultural TFP estimation, brings with it 

systematic biases in productivity calculations and incorrect policy conclusions when this 

indicator is used for policy interventions (OECD, 2014). 

When extending the TFP estimation to include these environmental aspects, the scale of 

analysis becomes an issue: many environmental factors are highly scale dependent, therefore if 

and how much productivity measurement is affected, depends on the scale of measure (Fuglie 

et al., 2016). According to Fuglie et al. (2016), the appropriate metric to assess sustainable 

agriculture should have the properties of spatial and temporal variance. If a too large scale is 

considered (e.g. national), in fact, there is the risk of missing significant local variations, thus 

preventing a focus on regions where unsustainable agricultural activities are prevalent. Such 

aggregation bias can conceal specific micro performances in both TFP and environmental 

indexes calculation. Thus, recent literature has focused on farm-level analysis (Kimura and 

Sauer 2015; Sheng et al. 2015). Working with micro data can allow better detecting the nexus 

between productivity and sustainability, highlighting heterogeneity (i.e., variance) of these 

performances across space (Cui et al., 2016). 

Most empirical studies using micro data concern the wider economy and not specific sectors. 

Cui et al., (2016) analyse productivity and environmental performance for US economy and 

find that more productive exporting facilities have significantly lower emission intensity (per 

value of sales) than non-exporting facilities in the same industry. Similar results, of a negative 

relationship between export and environmental performance are found by Batrakova and Daves 

(2012). Forslid et al. (2014) suggest a negative linkage between emission intensity and firm 

productivity. Barrows and Ollivier (2014) analyse firm-level emission intensity in Indian firms 

and find that higher market integration may bring about higher productivity but it is not 

sufficient to promote more sustainable technologies. 

Studies on the nexus between productivity and sustainability in the agricultural sector using 

micro data are very few and focus on small samples of specific farm typologies (Serra et al., 

2014). Sheng et al. (2015) examine cross-farm resource reallocation effects in Australian 

broadacre agriculture by decomposing aggregate TFP growth and find that resource 

reallocation between farms due to reforms targeting structural adjustment, has accounted for 

around half of industry-level productivity growth between 1978 and 2010. Gadanakis et al. 

(2015) analyse the sustainable intensification of 61 UK arable farms and conclude that farms in 

the sample are quite eco-inefficient. Some studies have also investigated the role of the support 

delivered to farms through the Common Agricultural Policy (CAP), particularly via the agri-

environmental schemes, in influencing farm eco-efficiency. Westbury et al. (2011) evaluate the 

environmental performance of English arable and livestock farms, using FADN data and find 

that only arable farms participating to agri-environment schemes had a better environmental 

performance, although responses differed between regions. Picazo-Tadeo et al. (2011) analyse 

farm eco-efficiency at the farm-level for a sample of 171 rain-fed Spanish farms. They find that 

eco-efficiency is higher for farmers benefiting from agri-environmental programs and with 

higher-level education. 

However, none of the studies using farm-level data directly assesses whether and how 

productivity and environmental performance affect each other and, above all, they usually 

disregard the wide heterogeneity that may occur in this respect across different farm 

typologies.     
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3. Measuring farm-level performances  

3.1 The FADN sample 

The first step to conduct the abovementioned analysis is to elaborate a farm-level indicator of 

both TFP level and GHG emissions and then to analyse their relationship. The sample here 

considered to reconstruct the farm-level indicators, is the constant sample of (362) FADN 

farms  of one Italian region, Lombardy, observed over years 2008-2013.  

The choice is here made to limit the analysis to Lombardy not only because it is one of the 

largest Italian region but also because Lombardy’s agriculture presents farms operating in 

mountainous and flat areas, extensive and intensive production processes, very different 

production specializations also in terms of GHG emissions (e.g. rice and dairy farms are 

widely represented within this sample). Therefore, within a limited geographic area it is 

possible to observe large heterogeneity across farm typologies, to assess how this heterogeneity 

affect the TFP-EI nexus and, consequently, to derive its main policy implications. 

3.2 The farm-level TFP index  

Total Factor Productivity is generally interpreted as the status of technology and efficiency in 

production (Fuglie et al., 2016). As indicator of economic performance, TFP is preferred over 

other productivity measures, such as yield or labour productivity, because it accounts for all 

(or, at least, as many as possible) factors of production.  

Relative levels of productivity, for each farm and year considered, are derived as ratios of 

output quantity indexes on input quantity indexes. Aggregation of the outputs produced and 

inputs used by the Lombardy FADN farms is obtained using the index number approach. The 

Fisher formula is used for aggregation.  

One of the main advantages of index numbers is that they provide a theoretically motivated 

aggregation method for inputs and outputs while avoiding the estimation of the shape of 

production frontiers (Van Biesebroeck, 2007). Under certain assumptions, it can be shown that 

the Fisher index is an exact representation of the quadratic production function (Coelli et al., 

2005; Fuglie et al., 2016). In addition, the Fisher index satisfies many important statistical 

properties (Coelli et al., 2005; Fried et al., 2008). However, a major drawback of the use of the 

Fisher index, as well as of any other index numbers formulas, is that it does not satisfy the 

property of transitivity, thus, a binary comparison between two units, might not be the same as 

the comparisons of the two units through a third one1
. The property of transitivity is essential 

when analysing panel data, to ensure internal consistency of the measurements, as without it, 

there could be more than one estimate of each bilateral comparisons (Hill, 2004). Thus, several 

solutions have been proposed by the literature to address the issue of transitivity in panel data. 

In this analysis, transitivity is achieved using the minimum-spanning-tree method proposed by 

Hill (1999 and 2004). With this approach, transitive indexes can be obtained by chaining a 

sequence of bilateral comparisons as long as the underlying graphs are spanning trees. 

Chaining is typically applied in time-series contexts where the ordering of observations is 

given by the natural evolution of time. However, in a panel data context such a natural ordering 

does not exist and needs to be identified given the large number of possible spanning tree 

arising from a set of nodes. The criterion adopted here is based on the idea that bilateral outputs 

and inputs comparisons should be made between similar farms. To achieve the objective of 

creating a chain where adjacent units are also the ones who are most similar - in terms of 

outputs and inputs - the sum of all the Paasche-Laspeyres Spreads (PLSs) between the nodes is 

taken as distance function. The PLS is a distance function that equals zero when the prices of 

                                                           
1 Transitivity can be achieved without the need for special derivation of indexes in cases where the weights used 

in the creation of the indexes are the same for all farms (Hill, 2004). 
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quantities vectors of any two farms are proportional (Hill, 2004). The spanning tree associated 

with the minimum sum of the PLSs is selected among all the possible ones, to create the index.  

Besides measurement methodology, also data quality heavily influence productivity measures. 

Two of the main data-related issues especially important when measuring TFP are: i) the 

adjustment of input and output quantity measures for quality differences and ii) the evaluation 

of the flow of services from measures of stocks (Fuglie et al., 2016). 

For what regards the first issue, output and input quantity indexes are derived using the 

detailed data provided by the Italian FADN. The output index is created from the information 

on 137 crop and livestock products. No re-classification of products is performed to make 

prices reflect their specific characteristics. The input index includes labour, fertilizers, 

pesticides, external services, water, energy, seeds, feeding stuff, capital, land, reuses and other 

general costs. Labour is divided into four categories: seasonal workers, fixed-term contract 

workers, permanent-contract worker, and family workers. Annual salary for the first three 

categories is provided in the FADN tables. However, annual salary for family workers is not 

provided and needs to be imputed. Here, the annual salary for any family worker is derived by 

dividing the net operating income of the farm by the number of family workers. For what 

regards the measure of capital, a unique measure of capital services is used in the creation of 

the input index. However, capital services are obtained by aggregating information on the 

productive stock of each of the depreciable assets used by the farms by means of their user 

costs as weights. Land is another input that is included in the relative index in highly 

disaggregated form. In fact, to reflect its quality, land input takes into account difference in 

steepness and final use of the plots.  

The second critical issue related to data used to calculate TFP, is the derivation of measures of 

flows from measures of stocks in the absence of financial transactions. This is the case for 

those factors of production, such as capital assets and land, that are generally bought once, but 

contribute to the production process of multiple accounting years. For what regards land, it is 

treated as non-depreciable asset and its price is obtained by multiplying the sales price per 

hectare by the nominal rate of return of the average yield of 10-year Italian government bonds 

over the period 2002-2013. In this analysis, this rate of return is assumed to be the exogenous 

rate of return on capital. The flow of capital service is obtained by aggregating productive 

stocks by the corresponding user costs. The productive stock is obtained, for each year, by 

using the perpetual inventory method while assuming a specific efficiency-loss function. For 

every type of asset, a hyperbolic loss function is hypothesized. The shape parameter however, 

varies with the type of assets considered (Pierani and Rizzi, 2006).         

Table 1 presents the summary statistics of TFP measures: in the upper panel, averages, 

medians and standard deviations of TFP indexes are presented by types of farming; in the 

lower panel, summary statistics are shown by classes of economic size.2 Some stylised facts 

clearly emerge on how productivity distributes across the sample. First of all, the high standard 

deviation suggests that TFP levels are markedly dispersed around their mean and this occurs in 

the whole sample and in all sub-samples. Strong heterogeneity is accompanied by a remarkable 

asymmetry as indicated by the fact that the mean is substantially higher than the median value. 

This implies that there are few farms exhibiting a much higher productivity than the rest of the 

sample. Farm-level TFP index shows a higher mean and median value for farms specialized in 

rice production followed by livestock farming (both grazing livestock and mixed farms). In 

terms of economic size, there seems to be a positive relation between size and productivity 

performance. Larger farms are those with a higher mean and median value of TFP levels 

followed by medium-sized and small-sized ones.  

                                                           
2 The economic size is defined according to the standard output (SO) of the farm: small are the one who have a 

SO equal or less than 25.000 euros; medium farms have a SO between 25.000 and 100.000 euros and large ones 

have a SO higher than 100.000 euros.  
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3.3 The farm-level CF index  

The environmental indicator analysed in this study are the farm-level GHG emissions, as a by-

product of some agricultural production processes. The choice of this environmental externality 

is made both for the relevance of the climate change mitigation objectives in the international 

(Gerber et al., 2013) and in EU political agenda (European Council, 2014), and for the 

methodological challenges implied by its farm-level measurement. 

GHG emissions from the agricultural sector constitute a substantial fraction of all emissions, 

24% in 2010 according to the Intergovernmental Panel on Climate Change (IPCC 2014), 21% 

according to Tubiello et al. (2015) estimations. Thus, agriculture is a key sector for the climate 

change mitigation efforts. In particular, at the global level agricultural GHG emissions are a 

relevant issue for they are largely determined by developing countries and the role these 

countries play in their mitigation has important implications in terms of development 

opportunities. Recent studies (Tubiello et al., 2015) have estimated agricultural GHG 

emissions at the global level also to understand how targets on these emissions could affect 

different countries. Food security is in fact a prerequisite for committed action to tackle climate 

change and no democratic government would mitigate agricultural GHG emissions if this 

would imply significant effects on access to food (Foresight Report 2011). Both at European 

and global level, thus, the main concern is how to curb agricultural GHG emissions without 

affecting productivity, i.e. without increasing production costs or decreasing output. Studying 

the linkage between productivity and GHG performances can hence be highly informative on 

this aspect. 

Nonetheless, there are substantial challenges in collecting the basic data needed to reconstruct a 

GHG farm balance. Here, we adapt the IPCC methodology (IPCC, 2006) at the farm level, 

using activity data connected to agricultural production.3 IPCC standards represent well-

established international criteria and protocols, which can be used also to achieve a proper-

farm level indicator of GHG emissions (Dick et al., 2008). The contribution of agricultural 

GHG emission to global warming critically depends on where the boundaries of the system are 

drawn (Dick et al, 2008; Foresight Report 2011). For the purposes of this study we decided to 

set the system boundaries at the farm-gate to allow accounting of emissions on which the 

farmer has a direct control.  

Methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions are estimated from 

different emission sources and then summarized in the following source categories: livestock 

production, crops, land use, energy and fertilizers. The approach here adopted accounts for 

GHG emissions from all sources listed in table 2 with a crosscutting method that combines 

what IPCC estimates in separate sectors of accounting. These different farm-level GHG 

emissions compose a unique indicator, that we call here the farm Carbon Footprint (CF). To 

express all these emissions in a unique unit of measure, i.e., total CO2 equivalent (CO2e), any 

different GHG is multiplied by its Global Warming Potential (GWP).4  

The IPCC methodology is a based on a linear relationship between activity data and emission 

factors. The methodology here used basically follows Baldoni et al. (2017), that have updated 

the methodology described in Coderoni et al. (2013) following the more recent IPCC 

guidelines (2006) and exploiting the availability of more detailed information included in the 

                                                           
3 For a more detailed description of this methodological adaptation see Coderoni et al. (2013) and Coderoni and 

Bonati (2013). 
4 The conversion factors updated over time by the IPCC are used. Currently, Italy uses GWPs in accordance with 

IPCC Fourth Assessment Report, i.e. 25 for CH4 and 298 for N2O (ISPRA, 2015). 
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recent FADN surveys.5 Activity data are derived from the Lombardy FADN survey (Table 2), 

emission factor are alternatively default (IPCC 2006), country specific (ISPRA 2015) or “farm 

specific”. This latter case represents one of the major novelties of the approach here adopted 

and occurs only in the case of enteric fermentation for cattle and sheep, because of specific 

parameter availability. This emission category represents the most relevant emission source at 

national level (emission from enteric fermentation account for 45.3% of national emissions in 

2014 according to ISPRA, 2016). This “farm-specific” emission factor, i.e. an emission factor 

that varies according to farm characteristics or management practices, should be able to reflect 

in a proper manner different farm management techniques, particularly livestock breeding, by 

using data on farm specific features such average weight of animals, quantities of milk 

produced and presence of grazing animals. Minimum and maximum values of EF calculated 

with the farm-specific methodology show a large difference if compared to default values 

because of the factors introduced, the most influential of which is the different size of animals.  

The CF of land use has been estimated adopting ISPRA (2015) Implied Emission Factors (IEF) 

and the Utilized Agricultural Area (UAA) of the respective land use. Land use changes have 

been considered only as a consequence of reduced (or increased) UAA. Following ISPRA 

(2015) the change in biomass has been estimated only for perennial crops. Since the IEF 

obtained with this approach for perennial wood crops would have been negative (thus, 

represent a source of emissions), for the value of this carbon stocks at maturity, a different IEF 

has been used, to consider that perennial crops give a higher contribution than annual crops in 

carbon sequestration. This approach gives a positive value of carbon sink for perennial wood 

crops using, due to the lack of country specific values, an average value of 10 t C ha-1 (for 

carbon stock at maturity), deduced by the values adopted in Spain, considering a cycle of 20 

years (ISPRA 2015 and 2016). 

Table 3 reports in the first column, the percentage of a single CF category on the total value of 

the CF of the whole sample and, in the other columns, the evolution of per farm average CF 

categories (in tonnes of CO2e). Some regularities clearly emerge. The CF associated with 

livestock represents by large the most important absolute source of emission for the whole 

sample and at the farm level. Soils, energy and fertilizers follow at distance. However, the 

value of CF of energy deserves some attention because, despite its relative relevance, this 

aspect is often disregarded in the empirical studies on the agricultural contribution to the GHG 

(Coderoni and Esposti, 2014), as it is attributed by IPCC to the energy sector rather than to 

agriculture. The CF associated with land use is almost irrelevant compared to all other 

categories, at least in the way it is measured here, i.e. including only the agricultural land use.  

The evolution over the period indicates a quite stable level with some sources showing increase 

(livestock, fertilizers and energy) and others showing a better performance (soils and land use). 

Though limited to one region, these dynamics would suggest that the reduction of GHG 

emission observed within the Italian agriculture in the same period (-5.04%; ISPRA 2016), has 

been largely related to the decline of (mostly livestock) farms, rather than to major changes in 

                                                           
5 Both direct and indirect emission from fertilizers are accounted for, starting from data on Nitrogen (N) content in 

the fertilizers applied. As quantities of purchased N are not a compulsory information to be provided to FADN 

survey, an indirect methodology has been used to compute N applied by farms that do not report this data. In this 

case, as suggested by Coderoni and Esposti (2015), data on fertilizers expenditures have been used. The CF from 

fertilizers contains also nitrogen input to soils from manure application, and emissions from urea application. The 

first have been obtained using farm data on manure reuse and the last have been estimated applying a default EF 

(IPCC 2006) to the quantities of urea distributed, provide by FADN survey. The CF of energy consumption has 

been estimated using alternatively the quantities of fuel purchased and total fuel expenditure at farm level as also 

data on quantities of fuel purchased that are not compulsory information to be collected by FADN survey. 

Expenditure for fuel has been divided by the price of agricultural gasoline observed over time and across different 

Italian provinces (available online) adjusted for the Eurostat index price of the means of agricultural production 

(motor fuels).  
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their organization and management (European Environment Agency, 2012; Coderoni and 

Esposti, 2014).  

In order to analyse the relationship between TFP and CF, the latter indicator has been divided 

for the farm Standard Output (SO), obtaining the Emission Intensity (EI) (or carbon intensity), 

i.e. the level of GHG emitted to produce an Euro of SO. Table 4 reports the evolution of 

average EI over time across farm typologies and sizes. This makes some major heterogeneity 

in terms of emission performance emerge. Size evidently matters: the larger the physical 

dimension of the farm (UAA), the larger the EI. For economic size (ES), the difference 

between medium and big farms is not so clear. Nonetheless, the correlation between ES and EI 

is always negative and statistically significant over time. Looking at the evolution of the EI, 

smallest farms have the sharper decline. Even the EI for small farms in terms of UAA shows a 

better performance over time. However, in this case, the correlation between EI and UAA is 

positive (and higher than the previous one), meaning that there is a sort “scale effect”, i.e. 

biggest farm have worst environmental performances, even in relative terms.  

Among the agricultural specializations, rice producing farms show the highest EI that also 

increases over time. Rice cultivation is relevant in the Region (32 farms in the sample) and 

farm size is particularly high: they are medium and large farms and have 60 ha of average 

UAA. Activities associated to livestock also show high EI, but they show also a declining 

median variation. Permanent crops denote lowest values also for the positive contribution of 

carbon storage in fruit tree biomasses.  

4. Assessing the relationship between TFP and EI: the empirical model 

The present empirical analysis focuses on the estimation of the nexus between environmental 

and economic performance assuming that the different TFP values express different 

technological levels and this, in turn, influences the EI of the farm. The key question is whether 

this technological level, while positively affecting TFP, has a positive or negative impact on 

the environmental performance expressed by the EI. The use of farm-level data is informative 

about the existence of synergies between productivity and GHG mitigation (the so-called win-

win mitigation strategies) but also admits that this EI and TFP nexus is largely heterogonous 

across farms. In order to correctly identify and estimate this nexus, the proper empirical 

specification should be flexible enough to admit non-linearity, non-monotonicity, 

heterogeneity of this relationship but also to capture the typical time-series features of variables 

under study. Both EI and TFP measures may show an autoregressive or cyclical behaviour, 

especially in agriculture, for the autoregressive nature of some of the input use or output 

production series that enter the EI and TFP calculation (Esposti, 2000). To meet these needs 

and data properties a dynamic panel specification is here adopted and estimated using two 

different functional forms admitting different relationships between TFP and EI. Moreover, in 

order to better capture nonlinear relationships and better fit the data, EI and TFP are entered 

not in the levels but in the respective logarithms.     

The extended estimated model thus takes the following log-linear form: 

(1) 

ln(𝐸𝐼𝑖𝑡) = 𝑖 + 𝜌ln(𝐸𝐼𝑖𝑡−1) + 𝛽ln(𝑇𝐹𝑃𝑖𝑡) + 𝛾ln(𝑇𝐹𝑃𝑖𝑡)2 + 𝜔ln(𝑇𝐹𝑃𝑖𝑡)3 +

∑ 𝜑𝑡𝑑𝑡 +𝑡 ∑ 𝛿𝑚𝑠𝑖𝑡,𝑚 + ∑ [𝜃𝑚𝑠𝑖𝑡,𝑚 ∗ ln(𝑇𝐹𝑃𝑖𝑡)]𝑚   +𝑚  ∑ [𝜋𝑚𝑠𝑖𝑡,𝑚 ∗ ln(𝑇𝐹𝑃𝑖𝑡)2] +𝑚

∑ [𝑚𝑠𝑖𝑡,𝑚 ∗ ln(𝑇𝐹𝑃𝑖𝑡)3]𝑚 + ∑ 𝜖𝑗𝑡𝑓𝑖𝑡,𝑗 + ∑ [ 𝜏𝑗𝑡𝑓𝑖𝑡,𝑗𝑚
∗ ln(𝑇𝐹𝑃𝑖𝑡)]𝑗 + ∑ [𝜗𝑗𝑡𝑓𝑖𝑡,𝑗 ∗𝑗𝑗

ln(𝑇𝐹𝑃𝑖𝑡)2] + ∑ [ 𝜎𝑗𝑡𝑓𝑖𝑡,𝑗𝑚
∗ ln(𝑇𝐹𝑃𝑖𝑡)]𝑗 + 휀𝑖𝑡              
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where: indexes i and t indicates the i-th farm and t-th year respectively; TFP is the farm-level 

TFP and EI the farm-level emission intensity; d are time dummies, s are dummy variables 

indicating the farm size (m = small, medium, large), tf are dummies indicating the farm 

specialization (j = arable crops, granivores, livestock, horticulture, permanent, rice). α, , , , 

𝛿, , , 𝜖, , 𝜗,   are unknown parameters to be estimated while εit is the conventional 

stochastic error term (assumed i.i.d.). 

As it includes the lagged dependent variable to take the abovementioned autocorrelation 

patterns into account and the individual effects, model (1) is a conventional dynamic panel 

specification whose consistent estimation incurs the problem of endogeneity of the lagged 

dependent variable and of the consequent estimation bias. To properly account for this 

potential problem, the Arellano-Bond Generalized Method of Moments (GMM-DIFF) 

estimation of model (1) is here performed (Arellano, 2003).  

In order to make heterogeneous productivity-emissions nexus more clearly emerge, the 

extended model (1) is estimated in a sequence of two steps. First of all, model (1) is estimated 

by imposing an homogeneous EI-TFP relationship across farm specializations (Specification 

(a)). This specification evidently imposes the same EI-TFP relationship across farms with the 

same size. Then, the interactions terms between farm-level TFP and specialization dummies 

are included to obtain the extended model (1) (Specification (b)). Due to the polynomial form, 

i.e. the presence of the square and cubic TFP variables, this specification admits completely 

different EI-TFP relationship in farms with different specializations.  

5.  Estimation results and discussion 

Estimation results of the two specifications of model (1) are reported in table 5.6 In both 

specifications, the coefficient associated to the lagged dependent variable is significant and 

positive, though largely lower than 1, meaning that the environmental performance shows 

some persistence. What changes between the specifications, is the role of TFP in explaining the 

EI performance. In specification (a), the relationship between EI and TFP seems to be positive 

but rather statistically weak and homogeneous across the three size classes. The only 

statistically significant coefficient is associated with the interaction term between the dummy 

“small size” and the TFP. This latter term would suggest that in this kind of farms the positive 

relationship between EI and TFP across farms is stronger. The conclusion of the first 

specification estimates would be that no linkage among the two performances occur if not a 

positive (and still statistically weak) relationship emerging only for small farms. However, this 

result can be interpreted as an artefact resulting from aggregation. Different significant 

relationships occurring among different farm specializations can be entirely concealed when all 

farms are aggregated and this heterogeneity is disregarded. 

Specification (b) of model (1) thus takes all possible sources of heterogeneity into account. Not 

only the size dummies are included but also the specialization dummies enter the model 

together with the interactions terms allowing for a different non-linear EI-TFP relationship 

across farm typologies. Estimates indicate that substantial improvement in the quality of results 

is obtained when such degree of heterogeneity is admitted. After all, previous sections (and 

section 3.3 in particular), already emphasized how much emission intensity depends on the 

activities run by the farm and, thus, by its production specialization. Therefore, one could 

                                                           
6 Model (1) also includes dummies for the different farm typologies (size and specializations). However, these 

dummy variables are not time-invariant, thus can be identified by the Arellano-Bond GMM difference estimator, 

only from the very limited number of farms that change their size/specialization in the period under observation. 

In any case, as they behave as fixed effects they do not influence the shape of the relationship between EI and 

TFP. For these reasons, they are not included in Table 5 but are available upon request. The LM AR(1) and AR(2) 

tests reported at the bottom of Table 5 indicates that the adopted dynamic specification is appropriate.   
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expect statistically significant estimated coefficients associated with at least some of the main 

farm specializations in this respect (livestock activities and rice, for instance). Results confirm 

this expectation as most interaction terms between specialization dummies and TFP values are 

statistically significant. Interesting enough, the role of size now seems to be entirely absorbed 

by the inclusion of farm specializations thus suggesting that size matters only because different 

farm sizes are associated with different specializations.  

Model (1) estimates suggest that an EI-TFP relationship occurs but this happens not for all 

farm specializations and, above all, it may substantially differ (and even assume different 

directions) across specializations. The complexity of the estimated model in terms of non-

linearity and heterogeneity admitted, however, does not facilitate the interpretation of these 

results. To make this interpretation of estimates reported in Table 5 easier, Figure 1 displays 

the estimated EI as a function of the TFP level and depending and farm size and specialization. 

Only statistically significant patterns are reported, i.e., those for which the estimated 95% 

confidence bounds do not include 0.  

First of all, no significant pattern emerges for small size farms, regardless the specialization. 

This would suggest that either in these farms no technological relationship occurs between 

productivity and emissions due to different managerial solutions or this relationship is actually 

affected by some other source of heterogeneity not considered in the present analysis (farmer’s 

age, education, objectives etc.). Secondly, it emerges that in several specializations, and 

especially for larger farms, the EI-TFP linkage is quite light as the increase of productivity 

level is associated to a very limited change in emission performance. This would suggest that 

in several farming conditions these two performances tend to behave independently.  

In any case, Figure 1 makes very clearly emerge that no univocal EI-TFP relationship exist 

within the farming activity. Win-win situations (the higher the TFP, the lower the EI) may be 

found as in the case of large farms specialized in arable crops. However, this pattern cannot be 

generalized. In fact, there are more cases where the emerging pattern is a win-loss situation: a 

higher TFP level brings about higher EI and the only way to reduce the EI is to reduce 

productivity. This seems to occur not for specializations associated to high-emission activities 

(animal productions and rice) but also for other quite different specializations like horticulture 

and permanent crops. A further interesting evidence is that the positive EI-TFP relationship is 

stronger for medium-size rather than for large-size farms. 

Estimation results reported in Figure 1 also suggests that non-linear EI-TFP relationships can 

be excluded. This kind of patterns has been frequently discussed within the empirical literature 

particularly concerning the alleged inverted U-shape (or Environmental Kuznets Curve, EKC) 

hypothesis (Coderoni and Esposti, 2013 and 2014). Though the cubic specification in model 

(1) definitely admit this sort of non-monotonic patters, it only emerges for the unspecialized 

(mixed) farms where, especially for medium-size units, we can observe increasing EI 

associated to increasing TFP for low-productivity (TFP < 1) units while we observe declining 

emissions associated to higher TFP for high-productivity units. As this result is obtained only 

for mixed farms we cannot exclude that it is, again, an artefact due to aggregation where the 

two opposite patterns observed at different TFP levels are, in fact, the consequence of different 

kind of farms in terms of production orientation.            

6.  Policy implications and concluding remarks  

This work aims to empirically assess the relationship occurring between farm-level GHG 

emissions and productivity (TFP). This relationship is of major political relevance since a 

negative relationship would imply that improving the farm TFP, though introduction of better 

technology as well as better knowledge, skill and organization, could by itself improve the 

farm environmental performance, at least in terms of GHG emissions. Such an evidence would 
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strongly support a policy approach based on the idea of sustainable intensification, that is, the 

actual feasibility of a win-win strategy where fostering better technology and more efficiency 

in use of inputs and resources is the key solution to improve productivity and environmental 

performances at once.   

On the contrary, a positive relationship would indicate that, at least for the farming activity, 

such a win-win strategy is just an illusion and the only possible way to improve the 

environmental performance, by limiting farm-level emission, would imply to shift down to less 

productive technologies or production organizations. Moving along a path of continuously 

increasing agricultural productivity, in fact, would necessarily imply an increasing contribution 

of agriculture to global warming and, thus, to climate change. This kind of result would bring 

back to the attention of policy makers and public opinion the classical dilemma between food 

security for a growing world population and the global protection of the environment and 

natural resources.    

In order to answer these research question, the main novelty of the present study is to use farm-

level data in order to reconstruct productivity and emission performances at the level of 

individual production units. Not only this allows assessing the relationship between 

productivity and GHG emissions on the basis of a large balanced panel; it also admits large 

heterogeneity according to the farm size and, above all, production specialization. Aggregate 

data (for instance, regional or country level observations) completely disregard this 

heterogeneity and may provide biased and misleading evidence on the productivity-emission 

nexus by mixing up circumstances where this nexus is positive and others where it is negative. 

Estimation results here presented confirm that the productivity-emission nexus is highly 

heterogeneous within the agricultural sector. For some farm typologies (particularly, for some 

production specializations) the win-win situation seems to be confirmed: lower emission 

intensity can be obtained via an improved productivity level. But these seem to be quite 

peculiar cases. For most farms, this nexus does neither exist or it is monotonically positive: a 

productivity improvement brings about higher emission intensity. The main policy implication 

of this not univocal behaviour is that emission targets, and the consequent policy incentives, 

should not be referred to the agricultural sector as a whole but should be downscaled to farm 

typologies with an homogenous behaviour, mainly farm production specializations. In the EU 

case, this evidence would suggest that a more efficient way to pursue climate policy objectives, 

would be to disaggregate the mitigation targets at sub-sectoral level exploiting the different 

farm specialization potential to reduce, whenever possible, their emissions. 

This work represents just represents a first step in the direction of a joint assessment of the 

economic and environmental performance at the farm level. On the one hand, other 

environmental performances and indicators, instead (or in addition to) GHG emission, could be 

considered. On the other hand, results here obtained for a single Italian regions and a limited 

time period, should be confirmed by other similar investigations concerning other regions, 

datasets and periods in order to distinguish the more robust evidence from those results 

strongly depending on the specific geographical and historical context. Finally, it should be 

always taken in mind that the possible combination of higher productivity and lower emission 

intensity at the farm level might not be enough to reach sustainability at the aggregate global 

level due to scale effects. For instance, larger agricultural production and/or higher number of 

production units (farms) could imply that an improvement of the eco-efficiency of individual 

farms does not necessarily guarantee sustainability. In fact, what really matters when dealing 

with sustainability issues is absolute rather than relative environmental pressure and it has been 

already emphasized that eco-efficiency improvements at micro-level do not guarantee that 

environmental quality goals are achieved at the aggregate level (Huppes and Ishikawa, 2005). 

Future research is expected to provide further insight in the direction indicated in the present 

study but taking its limitation and these further aspects into account. 
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Tables and Figures 

 

Table 1 - Summary statistics of farm-level TFP index within the sample and by farm 

specialization and economic size. 

 

 
Mean Median 

Standard  

Deviation 

Whole Sample 
   

Specialization: 
   

Rice 0.622 0.455 0.580 

Grazing livestock 0.641 0.441 0.668 

Mixed crops and livestock 0.381 0.201 0.547 

Permanent crops 0.256 0.182 0.223 

Arable crops 0.255 0.181 0.252 

Horticulture 0.497 0.136 0.832 

Granivores 0.189 0.095 0.287 

Economic Size:    

Large 0.802 0.562 0.807 

Medium 0.403 0.310 0.361 

Small 0.160 0.124 0.142 

 

 

Table 2 -  Summary of GHG emission sources considered in the study and respective FADN 

activity data used for the measurement. 

Emission sources CF category FADN data 

N2O manure management CF livestock Animal numbers 

CH4 manure management CF livestock Animal numbers 

CH4 enteric fermentation CF livestock 
Animal numbers, milk production, 

pasture, % birth, animal avg. weight  

CH4 rice cultivation CF crops Rice area (UAA) 

N2O agricultural soils: Various CFs 
 

-Use of synthetic fertilisers CF fertilizers N quantities or fertilisers expenditure 

-Animal manure CF crops Manure reuse  

-Histosols CF crops Crop area (UAA) 

-Crop residues CF crops Crop area (UAA) or crop yield 

-Atmospheric deposition CF fertilizers/CF crops 
N quantities or fertilisers expenditure 

and animal numbers 

-Leaching and run-off CF fertilizers/CF crops 
N quantities or fertilisers expenditure 

and animal numbers 

CO2 Urea CF fertilizers Urea quantities  

CO2 Fuel  CF energy Fuel expenditure or quantities 

CO2 Forest land CF land use UAA 

CO2 Cropland CF land use UAA 

CO2 Grasslands CF land use UAA 
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Table 3 - Whole sample farm-level CF distinguished into the five macro categories of 

emissions (ton CO2e per farm avg).  

 
% on total CF 2008 2013 

CF Livestock 37.01 342.83 363.09 

CF Soils  25.59 50.84 46.29 

CF Fertilizers  15.61 30.31 31.07 

CF Energy  21.18 37.73 39.85 

CF Land Usea 0.60 -6.09 -6.28 

CF Total 100.00 269.02 272.18 
a: the negative values indicate that there is a removal of emissions due to carbon sequestration. In the second 

column, the % concerns the absolute value. 

 

 

Table 4 - Evolution of the farm-level Emission Intensity (EI) across different farm typologies 

(Kg CO2e/€). 

 
2008 2013 

% median year to 

year var. 

Whole sample:     

    

UAA:       

UAA < 10 ha 1.649 0.852 -13.9 

UAA 10-50 ha 2.571 1.430 -4.5 

UAA > 50 ha 3.337 2.397 -2.1 

Correlation coefficient UAA-EI 0.204 0.374   

Economic Size:       

Small 2.070 1.145 -6.6 

Medium  2.434 1.610 -5.1 

Big  2.906 1.446 -5.0 

Correlation coefficient ES-EI -0.082 -0.090   

Specialization:    

Rice  5.555 4.168 -1.4 

Grazing livestocka 3.972 1.826 -4.4 

Mixed crop and livestock 2.379 0.824 -9.3 

Arable cropsb 1.278 1.163 -1.6 

Granivores 0.851 0.319 -6.7 

Horticulture 0.466 0.359 -1.9 

Permanent cropsc 0.255 0.199 -63.9 
a: Grazing livestock category include dairy, bovine, sheep and goats.  
b: Arable crops include cereals. 
c: Permanent crops include fruit and wine.  
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Table 5 - GMM estimates of two specifications of model (1) (estimated standard errors in 

parenthesis).  

Coefficient: Specification (a) Specification (b) 

𝝆 0.365 (0.049) *** 0.373 (0.049)*** 

𝜷 0.042 (0.032) -0.071 (0.048) 

𝜸 0.030 (0.024) -0.129 (0.052)** 

𝝎 0.006 (0.005) -0.036 (0.014)*** 

𝜽𝒔𝒎𝒂𝒍𝒍 0.345 (0.189)* 0.304 (0.289) 

𝜽𝒍𝒂𝒓𝒈𝒆 -0.031 (0.039) -0.038 (0.040) 

𝝅𝒔𝒎𝒂𝒍𝒍 0.111 (0.069) 0.088 (0.141) 

𝝅𝒍𝒂𝒓𝒈𝒆 -0.010 (0.026) -0.011 (0.031) 

𝒔𝒎𝒂𝒍𝒍 0.007 (0.008) 0.003 (0.022) 

𝒍𝒂𝒓𝒈𝒆 -0.004 (0.005) -0.005 (0.007) 

 𝝉𝒂𝒓𝒂𝒃𝒍𝒆 
  

0.060 (0.119) 

𝝑𝒂𝒓𝒂𝒃𝒍𝒆 
  

0.119 (0.102) 

 𝝈𝒂𝒓𝒂𝒃𝒍𝒆 
  

0.032 (0.023) 

 𝝉𝒈𝒓𝒂𝒏𝒊𝒗𝒐𝒓𝒆𝒔 
  

0.295 (0.083)*** 

𝝑𝒈𝒓𝒂𝒏𝒊𝒗𝒐𝒓𝒆𝒔 
  

0.231 (0.065)*** 

 𝝈𝒈𝒓𝒂𝒏𝒊𝒗𝒐𝒓𝒆𝒔 
  

0.052 (0.015)*** 

 𝝉𝒍𝒊𝒗𝒆𝒔𝒕𝒐𝒄𝒌 
  

0.109 (0.035)** 

𝝑𝒍𝒊𝒗𝒆𝒔𝒕𝒐𝒄𝒌 
  

0.15 (0.046)*** 

 𝝈𝒍𝒊𝒗𝒆𝒔𝒕𝒐𝒄𝒌 
  

0.042 (0.013)*** 

 𝝉𝒉𝒐𝒓𝒕𝒊𝒄𝒖𝒍𝒕𝒖𝒓𝒆 
  

0.12 (0.052)** 

𝝑𝒉𝒐𝒓𝒕𝒊𝒄𝒖𝒍𝒕𝒖𝒓𝒆 
  

0.142 (0.063)** 

 𝝈𝒉𝒐𝒓𝒕𝒊𝒄𝒖𝒍𝒕𝒖𝒓𝒆 
  

0.04 (0.017)** 

 𝝉𝒑𝒆𝒓𝒎𝒂𝒏𝒆𝒏𝒕 
  

0.13 (0.142) 

𝝑𝒑𝒆𝒓𝒎𝒂𝒏𝒆𝒏𝒕 
  

0.241 (0.093)*** 

 𝝈𝒑𝒆𝒓𝒎𝒂𝒏𝒆𝒏𝒕 
  

0.063 (0.019)*** 

 𝝉𝒓𝒊𝒄𝒆 
  

0.12 (0.037)*** 

𝝑𝒓𝒊𝒄𝒆 
  

0.162 (0.048)*** 

 𝝈𝒓𝒊𝒄𝒆 
  

0.042 (0.014)*** 

𝝋𝟐𝟎𝟎𝟗 0.143 (0.024)*** 0.147 (0.023)*** 

𝝋𝟐𝟎𝟏𝟎 -0.063 (0.018)*** -0.065 (0.018)*** 

𝝋𝟐𝟎𝟏𝟏 0.014 (0.014) 0.018 (0.014) 

𝝋𝟐𝟎𝟏𝟐 0.143 (0.012)*** 0.047 (0.012)** 

𝑳𝑴 𝑨𝑹(𝟏) 𝒕𝒆𝒔𝒕  -4.951*** 
 

-5.052***   

𝑳𝑴 𝑨𝑹(𝟐) 𝒕𝒆𝒔𝒕  0.854 
 

1.050   

*, **,***: statistically significant at the 0.1, 0.05, 0.01 level, respectively 
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Figure 1 - The estimated EI-TFP-CF for selected farm typologies (dashed lines indicates the 

estimated 95% confidence bounds).  

  

  

  



16 

 

 
 

  

  

Figure 1 - continues 
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Figure 1 - continues 
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