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Abstract

We propose an Endogenous Regime Switching model specifically designed for modelling acreage choices with corner
solutions featuring regime fixed costs. Contrary to models based on censored regression systems, this model is fully
coherent from an economic point of view, by construction. To illustrate its empirical tractability, we estimate a random
parameter version of this model for a panel dataset of French arable crop producers. Our results show that the model
fits well the data, the regime fixed cost matter, and that the decision to produce a crop or not play a major role in the
acreage responses to economic incentives.

Keywords: corner solutions, endogenous regime switching models, agricultural production choices

1. Introduction

Corner solution problems are pervasive in micro-econometric acreage choice models because
farmers rarely produce the same crop set in a considered sample, even in samples considering
specialized farms. Agricultural economists usually use two approaches for coping with null crop
acreages. First, crops can be aggregated for eliminating or, at least, attenuating the occurrence of
null crop acreages. Of course, this approach can lead to substantial information loss. Second, corner
solutions can be dealt with by specifying acreage choices as a system of censored regressions (see,
e.g., Platoni et al., 2012). However, if censored regression systems explicitly account for null crop
acreages from a statistical viewpoint, they cannot consistently represent acreage choices with corner
solutions. This point was made, for consumer demand systems, by Arndt et al (1999). More
generally, acreage choice models suitably accounting for corner solutions need to be specified as
endogenous regime switching (ERS) models, in which production regimes are defined as the subsets

of crops with non-null acreages — i.e. by the subsets of actually produced crops.

Regime and acreage choice decisions are closely linked since these decisions are taken
simultaneously and depend on common drivers. For instance, the choice of the set of crops to be
produced depends on the optimal acreages of these crops. Importantly, responses to crop price
changes of crop acreage decisions depend on the regime in which these crops are produced. For
instance, winter wheat crop acreages cannot respond to corn price changes in regimes where winter
wheat is produced whereas corn is not produced. Censored regression systems cannot account for
such effects since in these modelling framework farmers’ acreage choices are described by a model
that is common to all production regimes. In our ERS modelling framework farmers’ acreage

choices are described by models that are specific to each production regime.



According to our knowledge, micro-econometric ERS models involving multiple corner solutions
were defined only for modeling consumer demand systems (see, e.g., Kao et al. 2001) or firm input
demand systems (see, e.g., Chakir et al. 2004), following the pioneering works of Wales and
Woodland (1980) and of Lee and Pitt (1986). However, these models have rarely been used in
practice, probably because their estimation is challenging, and d,espite the development of

estimation procedures with simulation methods (see, e.g., Kao et al. 2001).

The main aim of our paper is to propose an ERS model specifically designed for empirically
modeling acreage choices with corner solutions. This model is fully coherent from an economic
point of view and includes regime fixed costs, which is to our knowledge a unique feature compared
to other ERS models with multiple corner solutions found in the economic literature. These regime
fixed costs allow accounting for unobserved costs, such as marketing or management costs, which

depend on the set of crops grown simultaneously.

The ERS model we propose defines a Nested MultiNomial Logit (NMNL) acreage choice model
(Carpentier and Letort, 2014; Koutchadé et al., 2015) for each potential production regime. The
regime choice is based on a discrete choice model in which farmers choose the subset of crops they
produce by comparing the profit levels associated to each regime. The econometric model derived
from this framework is theoretically consistent — in its deterministic and in its random parts — and
can be combined with yield supply and variable input demand functions. Furthermore, following
Koutchadé et al. (2015), this model accounts for the unobserved heterogeneity in farmers’ behaviors
through the specification of random parameters. l.e. we assume that most model parameters are
farmer specific and estimate their distribution across the farmers’ population described by our
sample. Given that our model is fully parametric, it can be efficiently estimated within a Maximum
Likelihood (ML) estimation framework. The structure of the model and the functional form of its
likelihood function actually make the version of the Simulated Expectation-Maximisation (SEM)
algorithm developed by Delyon et al. (1999) especially suitable for maximizing the sample
likelihood function. Importantly, once their probability distribution has been estimated, each farmer

specific parameter can be ‘statistically calibrated’ for simulation purpose.

We illustrate the empirical tractability of our approach by estimating a seven crops — and ten
production regimes — production choice model for a sample of French arable crop producers. The
estimated model is then used to simulate the impacts of a crop price change on acreages and illustrate
how accounting for endogenous production regime choices and production regime fixed costs can

affect the simulation results.



Our results tend to show that our ERS multi-crop model with regime fixed costs perform well
according to the standard fit criteria. They also tend to show that the regime fixed costs significantly
matter for explaining the production regime choices and that the decision to produce a crop or not
plays a major role in the acreage choice responses to economic incentives. In particular, our
simulation results show that the acreage choice responses to price changes exhibit threshold effects

due to the regime fixed costs.

The rest of the paper is organized as follows. The approach proposed to account for endogenous
regime switching and regime fixed costs in the modelling of acreage decisions is presented in the
first section. The structure of the econometric model of acreage and production choices is described
in the second section. Identification and estimation issues are discussed in the third section. The

illustrative estimation results are provided in the fourth section. Finally, we conclude.

2. Endogeneous regime switching acreage choices with regime fixed costs

This section presents the theoretical modelling framework we propose for dealing with corner
solutions in micro-econometric acreage choice models. We adopt an ERS approach for the resulting
models to be fully consistent from a micro-economic viewpoint. We also allow for regime fixed
costs for improving the ability of the resulting models to capture the effects of potentially important

drivers of farmers’ acreage choices.

Let consider a risk neutral farmer {, who can allocate his fixed cropland to K crops. Let

K ={l,...,K} denote the set of crops available to this farmer and let ® ={1,..., R} denote the set of
production regimes, i.e. the set of crop subsets considered by the farmer when choosing the crops
he/she will produce.! The term % "(r) denotes the subset of crops produced in regime r, with
K *(1) =% by convention, while the term X°(r) denotes subset of crops not produced in regime r.
Finally, let the term s =(s, : k € K) denote an acreage share vector, with s >0 and s'v=1 where 1
is the unitary column vector with dimension K, and let the function p(s) define the regime of the

acreage share vector s.

! Some combinations of crops are not possible because of agronomic constraints. ®, thus does not contain all the
possible subsets of K but the subsets that can potentially be chosen by farmers.



In period t the considered farmer is assumed to solve the following expected profit maximization

problem:
(1) max {s’nft -C,(s)—F, (p(s)) s.t.s>0and s\ = 1}
where w7, = (7, :keXK) is the vector of crop returns expected when choosing s, C,(s) is the

implicit management cost of acreage s and F, (r) is the fixed cost of production regime r.

The acreage management cost function C, (s) accounts for the crop variable costs not included in
the crop gross margins and for the implicit costs related to the constraints on the acreage choices
due the limiting quantities of quasi-fixed factors or to agronomic factors. The quasi-fixed factor and

agronomic constraints providing motives for diversifying crop acreages, the function C,(s) is

assumed to be convex in s. In order to ensure that the solution in s to problem (1) is unique we
strengthen this assumption by assuming that C,(s) is strictly convex in s. Such cost functions are
used in the Positive Mathematical Programming literature (see, e.g., Howitt, 1995; Heckelei et al,
2012) and in the multi-crop econometric literature (see, e.g., Carpentier and Letort, 2012, 2014).
Ignoring the regime fixed costs, the optimal acreage choice is determined by maximizing the sum

of the crop expected gross margins 7, weighted by their acreage shares s, minus the costs

associated to the crop acreage s, C,(s). In this model the management costs of the crop acreage

prevent farmers to solely produce the most profitable crop.

F,(r)

The regime fixed cost terms introduce discrete elements in farmers’ acreage choices with

F, e{F,(r):re®}. These terms account for the hidden fixed costs incurred by the farmer for any
acreage choice in the regime. They include fixed costs related to the marketing process of the crop
products or those incurred when purchasing specific variable inputs, when renting specific
machines, when seeking crop specific advises, efc. These costs do not depend on the chosen acreage
in a given regime, they only depend on the crop set defining this regime.

The smooth acreage management cost function C,(s) and the discontinuous regime fixed cost
function Fi,( p(s)) are expected to impact farmers’ crop diversification in opposite directions.

While limiting quantities of quasi-fixed factors impose constraints fostering crop diversification,
regime fixed costs are expected to foster crop specialization. In particular, the regime fixed costs

are expected to be non-decreasing in the number of produced crops.>

2 Note however that in specific empirical settings the F,(r) terms may also capture the effects of exogenous factors
preventing farmer i to produce specific crops, e.g. due to unsuitable soils or to lacking outlets. In the empirical



It appears convenient, as well as intuitively appealing, to decompose farmers’ acreage choice
problem into two steps, as commonly done in acreage choice models based on censored regression
systems (see, e.g., Skockai and Moro, 2006, 2009; Lacroix and Thomas, 2011; Fezzi and Bateman,
2011). Namely, we distinguish the production regime choice from the acreage choice while

assuming that both choices are linked by the effects of common observed or unobserved drivers.

Our modelling framework is based on a standard backward induction approach according to which
farmers choose their production regime after examining their expected profit in each possible

production regime. First, the acreage choice problem is solved for each potential regime:

@  max, {7 ~C,(s) st.s>0,sv=lands, =0if k e K (r)}.

yielding regime specific optimal acreage shares:

(3a) s, (r)=argmax {s7,—C,(s) st.s20,s1=1ands, =0if k e X(r)}

and regime specific optimal expected profit — regime fixed excluded — levels:

(3b)  TII,(r) = max, {s’nft —C,(s) st.s>0,sv=lands, =0ifke Ko(r)} .

for re® . Second, the production regime r, is determined by comparing the regime specific

expected profit levels while accounting for the production regime fixed costs, i.e. 7, is defined as

the solution in r to a simple maximization problem with:
@ r=max, {[1,(0-F,(p(s,(n)) st.rex}.

The obtained optimal regime r, is assumed to be unique as multiple solutions can only occur in

knife-edge cases. Of course, the optimal acreage choice s, and the expected profit level II. are
obtained by combining equation (4) and equations (3), with s, =s, (,) and I1, =11, (r,).
The regime specific acreage choices s, (r) are derived from optimization problems that only differ

from one regime to the other due to nullity constraints. These constraints are sufficient for these
acreage choices to respond significantly differently to economic changes. For instance, the regime
r acreage choice, s, (r), doesn’t respond to changes in the expected returns of the crops not
produced in regime r. Similarly, the wheat acreage is expected to be more responsive to the price of

wheat in farms producing barley than in farms not producing other straw cereals. Acreage choice

models based on censored regression systems cannot reproduce such patterns.

application presented in section 4, such features are unlikely to occur. Our sample covers a limited geographical area
and we only consider crops which can be profitably produced in this area.



Note that the regime fixed cost considered in the maximization problem (4) determining the
optimal regime r, is not simply F, (r) but F, ( p(sit(r))). The reason is that the acreage s, () may
not belong to regime r, depending on the functional form chosen for the cost function C, (s). This

acreage is only guaranteed to belong to a regime ‘included’ in regime r in the sense that some crops

of K'(r) may not be produced in the regime p(sl_t(r)) .

The Multinomial Logit (MNL) modelling framework proposed by Carpentier and Letort (2014) is
especially convenient in this context. It is based on functional forms of the acreage management
cost function ensuring that the regime specific acreage share s, (r) and expected profit IT, (r) are
obtained in analytical closed forms and that are smooth in their parameters. For instance, if we

assume that the functional form of the acreage management cost function is given by the ‘entropic’

function:
_ s -1 .
50)  Cu®=D o S B D ey IS, with ;>0

then the regime specific acreage share vectors s, (r) are given by:

exp(%(ﬂén —ﬁlf,,-,)) it { Jr=1if kek*(r)

(5b) s, (r) =i (r)
- ‘ Z(Em)eXp(%(ﬂZh —B) j (=0 if ke (r)

while the corresponding expected profit levels I1,(r) are given by:

(5¢) IL(rN=q'In z(ew(r)exp(ai (7, —ﬁfﬁ)) .

These specific properties of the MNL modelling framework significantly simplifies the specification
of the acreage choice models featuring corner solutions. They basically imply that the production
regime choice can be defined as a standard discrete choice, i.e. that of the most profitable production

regime among a predetermined regime set.

Indeed, the optimal acreage share of crop k in regime r, i.e. s, ,(r), is ensured to be strictly positive

if crop k belongs to regime r, i.e. if k € X' (r), as shown by equation (5b) in the case standard MNL

acreage share choice models (ensuring that s, () necessarily belong to regime r). Of course, s, , (r)

is almost null when crop k is much less profitable than the other crops of the considered regime.?

This implies that corner solutions are handled in a specific way in the MNL modelling framework:

their characterization doesn’t rely on the qualification conditions related to the acreage non-

? The term s, , (r) decreases in 7}, — 3, and tends to O as the term 7, , — f;, goesto —oo. The larger ¢, is, the
more rapidly s, , (v) decreases in 7z, — ;.



negativity constraints which would be involved in the case where the cost function C,(s) was

chosen to be quadratic in s. The acreage share non-negativity constraints never bind in the MNL
framework, they just imply that the optimal acreage shares of the least profitable crops of a given
crop set are very small. * The acreage shares of the least profitable crops only become null at the
production regime choice stage, when these crops are excluded from the produced crop set

characterizing the chosen production regime.’

3. An ERS micro-econometric multi-crop model with regime fixed costs

This section presents the structure of the ERS micro-econometric multi-crop model considered in
the empirical application presented in the next section. This model is composed of three equation
subsystems describing the yield supply functions, variable input demand functions and the acreage
share choice models of each produced crop on the one hand, and of a probabilistic production regime
choice model on the other hand. This micro-econometric multi-crop model can be interpreted as an
extension, to an ERS framework with regime fixed costs, of the model proposed by Carpentier and
Letort (2014). As in Koutchadé et al. (2015) we adopt a random parameter approach for accounting

for farmers’ unobserved heterogeneity.

The considered ERS micro-econometric multi-crop model is presented in three steps. First, we
present the production choice models defined at the crop level, i.e. the yield supply and variable
input demand models. Second, we present the acreage share choice models. Finally, we describe the
production regime choice model. This presentation is organized according to the structure of the
model: the crop level production choice models are used for defining the acreage share choice

models which are themselves used for defining the production regime choice model.

Yield supply and variable input demand models. We assume that farmers produce crop k from a

variable input aggregate under a quadratic technological constraint. L.e., we assume that the yield of

* From a technical viewpoint, this property comes from properties of the entropy function: the term —s, Ins, tends to
0 as s, decreases to O (leading to the continuity extension at O of these terms and the related convention stating that

s, Ins, =0 if s, =0) while its derivative in s, tends to +00 as s, decreases to 0.

3 Indeed, if the acreage management cost function C,(s) were chosen to be quadratic in s — as in the usual PMP
framework or as in the econometric acreage choice model of Guyomard et al (1996), of Moore and Negri (1992) or of
Carpentier and Letort (2012) — farmers’ acreage choice problem would be defined as quadratic programming problem.
It would then be possible to adapt the approaches developed by Wales and Woodland (1980) or by Lee and Pitt (1986)
for modelling acreage choices with corner solutions. Following the primal approach of Wales and Woodland (1980),
one would define empirically tractable estimating equations — for recovering the parameters of the cost function —
based on the first order conditions of quadratic acreage choice problem, including the qualification conditions related
to the acreage non-negativity constraints. However, the resulting modelling framework would ignore production
regime fixed costs. To account for regime costs would raise significant difficulties as the per regime optimal expected
profit functions could only be obtained numerically and would be characterized by salient discontinuities in the
parameters to be estimated.



crop k obtained by farmer i in year ¢ is given by:
6a) Y =By —1/2x 7/k_]l (B _'xk,it)z
where x, , denotes the variable input use level. The y, . parameter is required to be (strictly)

positive for the production function to be (strictly) concave in x, , . It determines the extent to which
the yield supply and the input demand of crop k respond to the input and crop prices. The terms /3,
and S, have direct interpretations in the considered yield function. The term /3, is the yield level

that can be potentially achieved by farmer i in year ¢ while S, is the input quantity required to
achieve this potential yield level. These parameters are decomposed as:

(6b) ﬂky,it = :Hky,i + (a):,o)rzlf,iz + gliir and :B/:C,n = ﬂlfz + (ai,O),Zi,it + glf,it

where the terms z; , and Zz, , are observed variable vector used to control for farm heterogeneity.

The f;; and B;, terms are farmer specific parameters aimed at capturing unobserved heterogeneity
across farms and farmers. These terms, as well as the y,, random parameter, mainly capture two
kinds of effects: those of the natural and material factor endowment of farms (e.g. soil quality and
machinery quality) and those of the skills of farmers. The &, and &, terms are standard error
terms aimed at capturing the effects on production of stochastic events (e.g. climatic conditions, and
pest and weed problems). We assume that farmer i is aware of the content of &, when deciding his

variable input uses.

Assuming that farmer i maximizes the expected return to variable input uses of each crop, we can

easily derive the demand of the variable input for crop &:

(Ta) Yo, =B+ @), 112Xy, Wi, P + 60,

and the corresponding yield supply:

(M) x, =B +@ )z, - yk,iwk,itpl;,lit +E -

The terms p,, and w,, respectively denote the expected output and input prices of crop k.
Assuming that the expectations of the terms &;, and &, of farmer i are null at the beginning of the
cropping season, this farmer expects the following return to the variable input:

®) 7= P (Bl + @02 )= (Bl + @B )+ 1 2%y W Py

for crop k when she/he chooses her/his acreage shares.

Acreage share choice models. As discussed in Carpentier and Letort (2014), the (Standard MNL)



acreage share choice model given in equation (5b) appears to be rather rigid because it treats the
different crops symmetrically. Indeed, arable crops can often be grouped according to their
competing for the use of quasi-fixed factors or according to their agronomic characteristics. The
ERS micro-econometric multi-crop model considered here contains a ‘3 level-Nested Multinomial
Logit” (NMNL) acreage share choice model, which derives from an entropic acreage management
cost function as proposed by Carpentier and Letort (2014). In our setting, the crop set K 1is
partitioned into G mutually exclusive groups of crops, each group g €({l,...,G} being itself
partitioned into M (g) subgroups of crops. The m™ subgroup of the g group is defined as the crop
subset K (m, g). Crops (resp. subgroups) belonging to a same subgroup (resp. group) are assumed
to have similar agronomic characteristics and to compete more for farmers’ limiting quantities of
quasi-fixed factors than they compete with crops (resp. subgroups) of other subgroups (resp. of other
groups). The three level nested structure of the crop set used in the empirical application is depicted

in Figure 1. The corresponding acreage management cost function is given by:

M(g)
C.(s)= Zk Kskﬂkn Z o S yIns, +Z 215 <g)12m:1 Sty I8 e

+ 2 S Do S 2 1
g=1 (g) m=1 ml(g) ml(g)l /EK(m’g)S(I(m,g) nS(I(m,g)

where s, denotes the acreage share of group g,

€))

S,.(p that of subgroup m in group g, and s, ,,

that of crop & in the subgroup m of group g. The ¢;, «,,; and «

micg)i ArC farm specific parameters

determining the flexibility of farmers’ acreage choices.® The larger they are, the more the acreage
share choice respond to economic incentives (because the less management costs matter). The

condition «

i 2 i 2 0 >0 1s sufficient for the cost function C,(s) to be strictly convex in s.

The linear terms of the cost function C,(s) are decomposed as:
(10) ﬂks,n = ﬂl:l + (a;,o)lzlsc,n + Szf,n
where z, , are explanatory variable used to control for observed heterogeneous factors. The S,

farm specific factors account for heterogeneity effects unobserved in the data. The error terms &,

capture the effects of stochastic variation of the cost due to random events such as climatic events
impacting the soil state at planting. The content of these terms are assumed to be known to farmers
when they choose their acreages.

These error terms are assumed to be independent from the error terms of the yield and input

® We have A, . =, ; if subgroup m contains a single crop. Similarly, we have «,, = ¢; if group g contains a single
subgroup.



demand functions, &/, and &;,, . Le., we assume that the potential links between the error terms of

the acreage choice model on the one hand and those of the yield supply and input demand functions

on the other hand are negligible. To relax this assumption is possible but significantly increases the

estimation burden. In a similar context, Koutchadé er al (2015) found that the &;,, error terms were

not significantly correlated with the error terms ¢/, and &, .

The optimal acreage share choices of farmers as given by equation (2a) can be derived for any
production regime. It suffices to solve the maximization problem given in equations (3). For
instance, ten acreage share subsystems are considered in our empirical application, one for each
production regime represented in the data. Of course, the functional form of the derived acreage
choice function depends on the subset of crops included in the considered regime. Assuming that

crop k belongs to the m'™ subgroup of the g™ group, we obtain:

-1
a;a, 1

Uy it i1 M(g) g 5
exp(ag,m,iﬂ-k,it ) (e(m,g),it (r)) {Zn=1 (e(n,g),i; (r)) :

G M(h) ol Y
! ()i %nl( )i
zh=1 {zn=1 (e(n,h),iz (r)) }

(11a) s, (r)=j,(r)
and:

n=l1

(1 lb) Hit (r) — a;l In Z:_l{zM(h)(e(n’h)’”(r))“(h),i%(lh),i }“i“(h),i

where:

(1) {jk(r)zl if kek*(r)

and G, (r)=2_, jmexpla,,.. (7., —B.)).
J.(r)=0 if kekK (r) (), Z,d((n,h) ( ( i), \ 7%, ‘. )

Production regime choice model. Observing that the regime r optimal acreage choice s, (r)

necessarily belongs to regime r in the MNL case considered here, the regime specific expected profit
levels can easily be used for defining a regime choice model according to the choice problem

described in equation (4). Let define the regime fixed costs as F,(r) = f; —o; ¢, . The farm specific

parameters f;” aim at capturing the effects of unobserved factors affecting the regime fixed costs.

The error terms g, aim at capturing the effects of stochastic factors. They are assumed to be

independent from the other elements of the model and to be independently distributed according to
a type I extreme value distribution. This implies that the production regime choice is specified as a

standard Multinomial Logit discrete choice model.



The probability of the choice of regime r — conditionally on o, , and on the f;"and I, (r) terms

for r e R —is thus given by:

exp(ai (IL, (r) - f;r))
> cexp(oL @)~ 1)

(12)  Plr,=r]= g

The farm specific parameter o, is assumed to be positive. This scale parameter allows determining
the extent to which the regime specific expected profit levels minus the corresponding fixed cost,

i.e. the I1, (r)— f; terms, explain the production regime choice as regards to the effects of the &

idiosyncratic terms. The higher o,, the more the ‘deterministic’ terms IT, (r)— f impact the

observed regime choices.
3. Parametric specification and estimation procedure

The ERS multi-crop micro-econometric model presented in section 2 is composed of three main
parts: a subsystem of yield supply and input demand equations (equations 7), subsystems of acreage
share equations (equation 11a) and a probabilistic production regime choice model (equation 12).

In this section, we briefly present the econometric procedure used to estimate this model.?

Distributional assumptions. Most parameters of the model are farmer specific, which allows
accounting for the heterogeneity in the performance levels as well as in the responses to economic
incentives of the sampled farmers. Yet, standard data set, even panel data sets, do not permit a direct
estimation of each individual parameter: the objective of the estimation here is to characterize the
distribution of these parameters in the population described by our sample. To do so, we rely on a
random parameter approach, as proposed in Koutchade et al. (2015).

Given the rather complex structure and the size of our model, we adopt a fully parametric

framework. Apart from the modelled variables, i.e. the crop yield levels y, , , the crop input use
levels x,, , the crop acreage shares s, , for k€%, and the production regimes the production

regimes r, for r € R, collected in the vector ¢, , and the fixed parameters, i.e. the terms a; ,, a;

7 Note however that the error terms ¢, , of the acreage choice model contained in the expected profit levels IT, (r) can
only be directly recovered from the data for the crops produced by farmer i in year ¢. Indeed, we can recover the vector
e =(&, keK'(r) while the vector & =(s;, :keX"(r)) cannot. We used Laplace approximations for
integrating the expectation of the probability function P[r, = r] over the probability distribution of s',i’f,.’t conditional on
g, (see, e.g., Harding and Hausman, 2007). This expectation is part of the likelihood function of the model.

8 Specification and estimation details are available from the authors upon request.



and a; , for k e K collected in the vector a, , the considered model contains five subsets of random

elements:

The farm specific parameter vectors 8, collecting the potential yield parameters /., the input
requirement parameters /., the input use flexibility parameters Iny, , and the cost function

linear parameters f;, for k €K ; the acreage choice flexibility parameters In¢,,In¢,,; and

()i

Inax for m=1,..,M(g) and g =1,...,G; the regime fixed cost parameters f," for re®

ml(g),i

and the regime choice scale parameter Ino,. The vectors 6, are assumed normally and
independently distributed across farms.

The explanatory variable vectors z,, containing the crop prices p, , , the variable input prices
w,;, and the control variable vector z; ,, z,, and z,, for ke K .

The yield supply and input demand error term vectors €;’ containing the error terms ¢, and

&, for k € K and that are assumed normally and independently distributed across farms.

The acreage share error term vectors €;, containing the error terms &, , for k € K and that are
assumed normally and independently distributed across farms.

The production regime error term vectors g€, containing the error terms ¢; for r € ® . These
terms &, are assumed independent across regimes and farms, well as distributed according to a

type I extreme value distribution.

We further assume that the error term vectors g*

it

g, and g, are mutually independent, and that the
explanatory variables z, are (i) strictly exogenous with respect to these error term vectors and (i7)
independent of the random parameters 8,. The vector z, contains prices, climatic variables and

characteristics of the farms’ fixed factor endowments. We finally assume that that the error term

vectors &, €, and €, are independent across years.

As the explanatory variable vector z, doesn’t contain any lagged endogenous variable, the
considered model can be interpreted either as an essentially static model or as a reduced form model
as regards the dynamic features of the modelled choices. It is notably difficult to empirically
disentangle the effects of farmers’ unobserved heterogeneity from those of unobserved persistent
dynamic features of the modelled processes (see, e.g., Angrist and Pischke, 2009 or Arellano and

Bonhomme, 2012). For instance, the random parameters 9, are likely to capture the effects on

farmers’ production choices and performances of the stable crop rotation schemes that these



farmers’ seem to rely on.” Our assuming that the error term vectors €, €, and €/ are serially

P
independent across years is mostly based on this hypothesis. We do not assume that farmers’ choices
and performances are not significantly impacted by unobserved dynamic features. But we assume
that these dynamic features are sufficiently persistent for being mostly captured by the random
parameters of our model. Of course, dynamic features of crop production and of farmers’ choice are
important topics. But these are also difficult ones. Their empirical investigation with models

involving corner solutions in acreage choices and regime fixed costs is left for further research.

Estimation. The aim of the estimation procedure is to obtain statistical estimates of two parameter
sets: the fixed parameters and the elements of variance matrices of the error term vectors of the
model — collected in the vector 0, — on the one hand, and the parameters of the probability
distribution of its random parameter vector — collected in the vector m,. We use a Maximum
Likelihood (ML) estimator computed via an Expectation Maximization (EM) algorithm (Dempster
et al. (1977) for estimating (0,,m,) .

Let the function g(ulv;i) generically define the probability distribution function of the random
vector u conditional on the random vector v parameterized by 4. The likelihood function at (0,n)
of ¢, conditional on z, is given by (.(0) = J. g(c,12,,8,;0)2(3,;m)dd, ."° This likelihood function can
be obtained neither analytically nor numerically. But it can be estimated via simulation simulated
methods for computing Simulated ML estimators of (0,,m,). Albeit possible, the empirical

implementation of this approach is difficult due to the dimension of our parameter of interest and to

the rather complex functional form of the likelihood function ¢,(0) .!!

We choose to compute our ML estimator via an EM algorithm because EM algorithms are
particularly well suited for estimating models with missing variables such as random parameters.

The aim of these algorithms replace a large ML maximization problem by a sequence of simpler

° See, e.g., Koutchadé et al (2015) for an empirical analysis providing arguments confirming this hypothesis.

19 The assumed serial independence of the model error terms imply that g(c, | z,,8,;0) = HZEW) g(e, 1z,,9,;0) where
H (i) is the observation history of farm i.

!'In particular, the probability distribution functions g(c, |z,,8,;0) cannot be obtained in analytical closed form.
These functions contain the probability functions at @ , denoted by, of the regime choice of farmer i in year ¢ (7, ),
conditional on the random parameters ( 8, ), explanatory variables ( z, ) and on the acreage shares of the produced
crops (s, ), i.e. the terms g(r, | z,,,9,,s,;0) . These probability functions are computed as expectations over the joint
probability distributions function of the terms &, for k € Ko(rﬁ) . These error terms are arguments of the regime
expected profit levels IT,(r) that are themselves arguments of the production regime choice. But they must be
integrated out in the model likelihood function because they cannot be recovered from the data. We use Laplace
approximations for computing the expectations yielding the terms g(r, | z,,,8,,s;;0) (see, e.g., Harding and

Hausman, 2007, for an application of this integration approach in a related context).



problems. EM algorithms iterate an Expectation (E) step and a Maximization (M) step until
numerical convergence. In our case, the E step consisting of computing the expectation of the

probability distribution functions g(c,1z,,6,;0) and g(6,;m) conditional on the observed choices

¢, and explanatory variables z, according to the probability distribution functions obtained from
the preceding iteration. Denoting the last available estimates of (0,,7m,) by (0, 1)), this step aims at
obtaining the ‘modified’ log-likelihood functions given by %i (0) = J.g(ci lz,,0;0)g(d¢c.,z; 0, n)do
and zi(n) :J-g(ﬁln)g(ﬁlci,zi;é,ﬁ)dﬁ. The M step then consists of maximizing in the interest
parameters 0 and 1 the sample modified log-likelihood functions obtained from the E step. Le. it
consists of solving the problems max, N ’IZZI In Zi(ﬂ) and max, N 712; In Zl () . This is where

EM algorithms take advantage of the likelihood functions of random parameter models in general.

Our model being composed of four equation sub-systems, the structure of the terms Zi(ﬂ) allows

for further splitting the maximization problem max, N Zilln Zi(ﬂ) into a few simpler

maximization problems.

However, the ‘modified’ likelihood functions Zi(ﬂ) and Zi(n) can be integrated neither analytically

nor numerically. Stochastic versions of the EM algorithm —i.e. the so-called SEM or Monte Carlo
EM (MCEM) algorithms — have been proposed in the computational statistics literature for
combining the advantages of the EM algorithm and simulation methods (see, e.g., McLachlan and
Krishnan, 2008). In this study, we rely on the SEM algorithm proposed by Delyon et al. (1999)

combined with Importance Sampling simulation methods proposed in this context by (Caffo et al.,

2005) for estimating the ‘modified’ likelihood functions Zi(ﬂ) and Zi(q).

Calibration of the simulation model. The estimated ERS multi-crop micro-econometric model can
be used for “statistically calibrating” its random parameters for each farm of our sample and thus
for obtaining a simulation model consisting of a sample of farm specific “calibrated” models (see,
e.g., Koutchade et al., 2015). The underlying idea of this procedure is to use the estimated
distribution of the random parameters and farmers’ observed choices compute estimates of the farm
specific parameters according to a “Tell me what you did, I will tell you who you are” logic.
Interestingly, the Expectation step of the SEM algorithm we use relies on computations closely
related to this calibration procedure since both rely on the probability distributions of the random

parameters &, conditional on the observed choices ¢; and explanatory variables z.. In this study,



the specific parameter 8, of farm i is calibrated as the mode — i.e. according to a ML ‘calibration’
criterion — of its simulated probability distribution conditional on (c,,z,), i.e. on what is known

about farm i in the data. Also, this ‘statistical calibration’ procedure and its counterpart in the SEM
algorithm allow for calibrating the random parameters corresponding to crops that have not been
grown by the considered farmer or corresponding to regime fixed costs for regimes that have not

been chosen by the considered farmer.
3. Empirical application

Data. The model is estimated on an unbalanced panel data set containing 2871 observations of 778
French grain crop producers in the North and North-East of France, over the years 2006 to 2011.
This sample has been extracted from data provided by an accounting agency located in the French
territorial division La Marne. It contains detailed information about crop production for each farm
(acreages, yields, input uses and crop prices at the farm gate). We consider seven crops (or crop
aggregates): sugar beet, alfalfa, peas, rapeseed, winter crops (wheat and barley), corn and spring

barley, which represent more than 80% of the total acreage in the considered area.'?

The variable input aggregate account for the use of fertilizers, pesticides and seeds. The
corresponding price index is computed as a standard Tornqvist index. When a farmer doesn’t
produce a crop the corresponding output and input prices are unobserved. These missing prices were
estimated by the yearly average of the corresponding observed prices. All prices are deflated by the
hired production services price index (base 1 in 2006) obtained from the French department of
Agriculture. This aggregated price index mainly depends on the price indices of machinery, fuel and

hired labor, the main inputs involved in the implicit acreage management cost function.

Figure 1 depicts the three levels nesting structure that we adopt for the seven crops. In a first level
we distinguish a cereal group composed of winter crops, corn and spring barley, and a group of
crops that are generally planted at the head of rotation: corn, alfalfa, peas and rapeseed. This
structure is intended to reflect the basic rotation scheme of grain producers in France. In a second
level, the cereal group is split into two subgroups: winter cereals on the one hand and other cereals
on the other hand, in order to account for the differences in planting seasons between those cereals.

The ‘head of rotation’ group is split into an ‘oilseeds and protein crops’ subgroup and a subgroup

12 The EU sugar beet subsidy scheme requires limited adjustments in our application. This scheme scheme is based on
sugar beet production quotas — held by farmers on a historical basis — with subsidized prices. Yet, the actual sugar beet
production largely exceeds the subsidized quota for all sugar beet producers of our sample. This suggests that these

farmers choose their sugar beet acreages, yield levels and input use levels according to the off-quota sugar beet prices.



including only sugar beet (the only root crop considered here).

Table 1 provides descriptive statistics concerning the production regimes observed in the data.
Based on these seven crops, 127 regimes, could theoretically be grown by farmers. Only 10 of them
are actually observed in our sample. All farmers grow winter crops and at least two additional crops.
The most frequent regimes in the sample (regimes 2, 3 and 4) actually include five or six crops. It
is interesting to note that most farmers adopt different production regimes over the 5 years of our
sample: only 11 out of 778 farmers have not changed their production regime during the period. The
average gross margins associated to each regime are reported in the last column of Table 1. An
interesting feature appears here: the most frequently chosen regimes are not the ones that lead on
average to the highest gross margin. For instance, regime 8 — which excludes peas, rapeseed and
corn — is characterized by the highest observed gross margin, but has been adopted in only 2.8% of
the observations. This comes to illustrate the fact that farmers’ choices of production regime are
driven by other factors than gross returns, such as the acreage management and regime fixed costs

represented in our model.

Estimation results. The parameter estimates of our model are not reported here due to space
limitation: we only provide some insights of these results.!* The expectations of all the random
parameters are precisely estimated, their values lie in reasonable ranges and they have expected
signs for all crops and crop groups, with notably expected ranges of the acreage flexibility

parameters (&, 2 a,, 2, >0). The variance parameters of the random parameter distributions

are all statistically different from zero. This indicates that the technical and behavioral parameters
of our model significantly vary across farms, despite the fact that we control for observed factors
characterizing farm heterogeneity (land and capital endowments and climate). Finally, the mean

estimated value of the scale parameter o, in the regime choice model (13) being relatively large

(3.40), the profit and regime fixed costs in the regime choice appear to be significant drivers of the

regime choices.

Estimated criteria tend to show that the proposed model offers a satisfactory fit to our data, with a
better fit to the major crops than to the ones less frequently produced or with smaller acreages (peas,
corn and, to a lesser extent, alfalfa). Importantly, our investigations on this issue tend to demonstrate
that our results are robust to various distributional assumptions related to the model random
parameters. Random parameter variations account for a significant part of the observed variations

in farmers’ choices. But, variations in the model error terms account for a comparable part. Even if

13 Detailed estimation results are available from the authors upon request.



crop production is known to be significantly affect by numerous random events, this indicates that
there is still room for further improving the explanatory power of our model. We pursue our current

research in that direction, by looking for additional control variables in particular.

Simulation results. The structure of the proposed ERS multi-crop micro-econometric model allows
for investigating the relative importance of the main drivers of the production regime choices. For
that purpose we consider the simulation model obtained from the estimated one by calibrating the
farm specific parameters for each farm of our sample. Then we use this simulation model for

investigating the prediction power of three elements of the regime choice models: the weighted sum

of the expected crop gross returns s, (r)'w;, the acreage management costs C, (sit(r)) and the

regime fixed costs f,” for re® . We simulate the regime choices according to each of these

elements as well as to combinations of these elements, and then confront them, on average, with the
observed regime choices. Taken together these simulation results confirm that the regime fixed costs
matter, but mainly in combination with the other drivers of the regime choice model. Maximization
of the gross margins, of the acreage management costs or of the regime fixed cost alone leads to
very poor predictions of regime choices. Considering pairs of these choice criteria only slightly
improve the predictions, while considering together these three criteria unsurprisingly provides

predicted choices very close, on average, to the observed ones.

The estimated regime costs tend to slightly decrease as the crop number decrease from 7 to 5 crops.
They don’t follow any clear pattern below 5 crops. Moreover, the fact that these costs appear to
significantly vary across farms complicates their analysis and interpretation. This point clearly

deserves further research. To be completed: these fixed costs are highlighted in the article.

To illustrate the relevance of the approach we propose to deal with corner in acreage choices, we
simulate the impacts of changes in expected crop prices on acreage choices. Acreage price
elasticities play a crucial role in this type of exercise. Yet these elasticities account both for the
impact of crop prices on acreages within any given regime and for the switch in production regimes
induced by crop price changes. These two effects can be distinguished by generalizing to multiple
regimes the decomposition originally proposed by McDonald and Moffit (1980) in the case of a
Tobit model. The average acreage own price elasticities of our farm sample are reported in Table 2.
They have expected signs and, because of the crop disaggregation level of our data, are larger than
those commonly found in the literature. The decomposition of these elasticities shows that a large
part of the price effects on acreages can be due to the inclusion or not of these crops in the production

regimes chosen by farmers. For crops like corn or peas with small overall acreage shares, changes



in the production regimes account for about one third of the estimated price elasticities. However,
changes in the production regimes can also be substantial for frequently produced crops. For

instance, they account for a quarter of the sugar beet acreage own price elasticities.

The impact of the production regime choice is further highlighted by simulating the effects of
increases in the price of peas on the acreages of the crop. Owing to their fixing atmospheric nitrogen
for themselves as well as for their following crops in the rotation this crop is often considered as
‘diversification crop’ of significant interest. Yet, protein peas acreages have declined over the last
decade in the considered area mostly because of lacking profitability, as regards to that of the other
rotation heads in particular.'* The simulated impacts of increases in the price of peas on acreages
are reported on Figure 2. According to our results, a 50% increase in the price of peas would increase
the average peas acreage share by 1.7%, from 1.1% to 2.8%. These additional peas acreages would
mainly replace those of other rotation heads: the average combined acreage share of rapeseed, alfalfa
and sugar beet would decrease by around 1.2% while that of cereals would only decrease by around
0.5%. This illustrates the interests in considering the crop — agronomic and management —
characteristics when specifying the acreage management cost function. This also suggests that the
increase in the rapeseed price due to the EU support to bio-fuels has played significant role in the

decrease in the peas acreages in the considered area.

Interestingly, about two thirds of the increase in the peas acreage would be due to new producers.
This also explains another feature of our simulation results. The simulated increases in the peas
acreage in not linear in the price of peas: in particular, the increase in the peas acreages is more
pronounced above the 20% price increase than below. Figure 3 shows that the adoption rates of the
production regimes including protein peas, regime 2 in particular, have similar patterns. This is

partly explained by the threshold effects generated by the production regime fixed costs.
4. Concluding remarks

The main aims of this article are twofold. First, it presents an original modelling framework for
dealing with corner solutions in multi-crop micro-econometric models. This framework is based on
the ERS approach, implying that it is fully consistent from an economic viewpoint. It also explicitly
considers regime fixed costs. These features make the proposed ERS multi-crop micro-econometric
models suitable for analysing, and to some extent for disentangling, the effects of the main drivers

of farmers’ acreage choices at disaggregation levels at which the corner solution issue is pervasive.

14 In other parts of France the extension of a soil infection (aphanomyces) severely impacts peas yields and explains
the decrease peas acreages. The diversified cropping systems used in La Marne seems to limit this extension.



For instance, our estimation and simulation results and the structure of the considered model tend
to demonstrate the expected crop returns are not the sole significant drivers of farmers’ acreage

choices, at least in the short run.

Second, the application presented in this article illustrates the empirical tractability of ERS models,
of random parameter ERS models in particular, for investigating farmers’ production choices. Of
course, to estimate such models raises challenging issues. But, this is also necessary for estimating
structured micro-econometric models suitably accounting for important features characterizing
micro-economic agricultural production data, among which significant unobserved heterogeneity.
In particular, to estimate such models enables analysts to calibrate simulation models consisting of
samples of farm specific models. According to our experience, ML estimators computed with SEM
or MCEM algorithms combining simulation methods appear to be interesting alternatives to
Simulated ML estimators for relatively large systems of interrelated equations such as the random

parameter ERS models considered in our empirical application.

Of course, significant specification and estimation issues remain to be addressed for ERS multi-crop
micro-econometric models such as ours to meet the needs of the agricultural production economist
community. However, as fostering crop diversification tend to become an important agri-
environmental objective in many countries, including those of the European Union, the modelling

framework proposed in this article can be seen as a first step in the right direction.
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6. Tables and Figures

Table 1: Descriptive statistics of the production regimes represented in the data

Crops - in the regime Average

Regime Regime gross
number Winter Corn Spring - Sugar Alfalfa Peas Rape- frequency margin
crops Barley beet seed (€/ha!

1 5.3% 767

2 16.6% 797

3 10.9% 851

4 43.8% 884

5 4.4% 868

6 4.3% 719

7 6.6% 870

8 2.8% 997

9 2.8% 765

10 2.5% 648

Average

38.6% 2.6% 18.7%  14.7% 8.9% 1.1% 15.4%
acreage share?

Production
100% 29% 97% 90% 79% 22% 98%

frequency

a Standard deviation in parentheses. b Winter wheat. c. Off-quota price. d. Sugar beet subsidies excluded.

Table 2: Own price elasticities of acreages computed at sample average

Winter Corn Spring Sugar Alfalfa  Protein Rapeseed
cereals Barley beet peas

Overall elasticitiy 0.51 3.84 0.82 2.72 0.95 1.50 1.06

Part of the elasticity due to:
Acreage changes within regime 0.50 2.94 0.75 2.19 0.78 0.91 1.00
Change in production regime 0.00 0.90 0.07 0.53 0.17 0.59 0.06




Figure 1: Nesting structure of the acreage choice model

Groups Cereals Rotation heads

Subgroups Winter cereals Spring cereals Oil and protein crops Root crops
Winter Spring Protein

Crops Corn Rapeseed Alfalfa Sugar beet
cereals* barley peas

* Winter wheat (mostly) and winter barley

Figure 2: Simulated impacts of changes in the price of peas on acreage shares
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Figure 3: Simulated impacts of changes in the price of peas on regime adoption rates
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