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We propose an Endogenous Regime Switching model specifically designed for modelling acreage choices with corner 

solutions featuring regime fixed costs. Contrary to models based on censored regression systems, this model is fully 

coherent from an economic point of view, by construction. To illustrate its empirical tractability, we estimate a random 

parameter version of this model for a panel dataset of French arable crop producers. Our results show that the model 

fits well the data, the regime fixed cost matter, and that the decision to produce a crop or not play a major role in the 

acreage responses to economic incentives. 

 corner solutions, endogenous regime switching models, agricultural production choices 

1. Introduction 

 

 



 

 

 

 



 

 

 

2. Endogeneous regime switching acreage choices with regime fixed costs 

This section presents the theoretical modelling framework we propose for dealing with corner 

solutions in micro-econometric acreage choice models. We adopt an ERS approach for the resulting 

models to be fully consistent from a micro-economic viewpoint. We also allow for regime fixed 

costs for improving the ability of the resulting models to capture the effects of potentially important 

 

i  can allocate his fixed cropland to K  crops. Let

{1,..., }KK  denote the set of crops available to this farmer and let {1,..., }RR  denote the set of 

production regimes, i.e. the set of crop subsets considered by the farmer when choosing the crops 

he/she will produce.1 The term ( )rK  denotes the subset of crops produced in regime r, with 

(1)K K  by convention, while the term 0 ( )rK  denotes subset of crops not produced in regime r. 

Finally, let the term ( : )ks ks K  denote an acreage share vector, with s 0  and 1s  where  

is the unitary column vector with dimension K, and let the function ( )s  define the regime of the 

 

 

                                                           
1 Some combinations of crops are not possible because of agronomic constraints. R   thus does not contain all the 

possible subsets of K  but the subsets that can potentially be chosen by farmers.  



 farmer is assumed to solve the following expected profit maximization 

problem: 

(1) max ( ) ( )   s.t.  and 1e

it it itC Fs s  

where 
,( : )e e

it k it
k K  is the vector of crop returns expected when choosing s, ( )itC s  is the 

implicit management cost of acreage s and ( )itF r  is the fixed cost of production regime r. 

The acreage management cost function ( )itC s  accounts for the crop variable costs not included in 

the crop gross margins and for the implicit costs related to the constraints on the acreage choices 

due the limiting quantities of quasi-fixed factors or to agronomic factors. The quasi-fixed factor and 

agronomic constraints providing motives for diversifying crop acreages, the function ( )itC s  is 

assumed to be convex in s. In order to ensure that the solution in s to problem (1) is unique we 

strengthen this assumption by assuming that ( )itC s  is strictly convex in s. Such cost functions are 

used in the Positive Mathematical Programming literature (see, e.g., Howitt, 1995; Heckeleï et al, 

2012) and in the multi-crop econometric literature (see, e.g., Carpentier and Letort, 2012, 2014). 

Ignoring the regime fixed costs, the optimal acreage choice is determined by maximizing the sum 

of the crop expected gross margins 
,

e

k it
 weighted by their acreage shares 

k
s  minus the costs 

associated to the crop acreage s, ( )itC s . In this model the management costs of the crop acreage 

 

( )itF r
 

{ ( ) : }it itF F r r R . These terms account for the hidden fixed costs incurred by the farmer for any 

acreage choice in the regime. They include fixed costs related to the marketing process of the crop 

products or those incurred when purchasing specific variable inputs, when renting specific 

machines, when seeking crop specific advises, etc. These costs do not depend on the chosen acreage 

in a given regime, they only depend on the crop set defining this regime. 

The smooth acreage management cost function ( )itC s  and the discontinuous regime fixed cost 

function ( )
it

F s  

While limiting quantities of quasi-fixed factors impose constraints fostering crop diversification, 

regime fixed costs are expected to foster crop specialization. In particular, the regime fixed costs 

are expected to be non-decreasing in the number of produced crops.2 

                                                           
2 Note however that in specific empirical settings the ( )

it
F r  terms may also capture the effects of exogenous factors 

preventing farmer i to produce specific crops, e.g. due to unsuitable soils or to lacking outlets. In the empirical 



It appears convenient, as well as in

problem into two steps, as commonly done in acreage choice models based on censored regression 

systems (see, e.g., Skockaï and Moro, 2006, 2009; Lacroix and Thomas, 2011; Fezzi and Bateman, 

2011). Namely, we distinguish the production regime choice from the acreage choice while 

 

 examining their expected profit in each possible 

production regime. First, the acreage choice problem is solved for each potential regime: 

(2) 
0max ( )  s.t. , 1 and 0 if ( )e

it it kC s k rs s K , 

yielding regime specific optimal acreage shares: 

(3a) 
0( ) arg max ( )  s.t. , 1 and 0 if ( )e

it it it kr C s k rss s K  

and regime specific optimal expected profit  regime fixed excluded  levels: 

(3b) 
0( ) max ( )  s.t. , 1 and 0 if ( )e

it it it kr C s k rs s K . 

for r R . Second, the production regime 
it

r  is determined by comparing the regime specific 

expected profit levels while accounting for the production regime fixed costs, i.e. 
it

r  is defined as 

the solution in r to a simple maximization problem with: 

(4) max ( ) ( )  s.t. 
it r it it it

r r F r rs R . 

The obtained optimal regime 
it

r  is assumed to be unique as multiple solutions can only occur in 

knife-edge cases. Of course, the optimal acreage choice it
s  and the expected profit level it  are 

obtained by combining equation (4) and equations (3), with ( )it it itrs s  and ( )
it it it

r . 

The regime specific acreage choices ( )
it

rs  are derived from optimization problems that only differ 

from one regime to the other due to nullity constraints. These constraints are sufficient for these 

acreage choices to respond significantly differently to economic changes. For instance, the regime 

r acreage choice, ( )
it

rs changes in the expected returns of the crops not 

produced in regime r. Similarly, the wheat acreage is expected to be more responsive to the price of 

wheat in farms producing barley than in farms not producing other straw cereals. Acreage choice 

models based on censored regression systems cannot reproduce such patterns.  

                                                           

application presented in section 4, such features are unlikely to occur. Our sample covers a limited geographical area 

and we only consider crops which can be profitably produced in this area.  

 





negativity constraints which would be involved in the case where the cost function ( )itC s  was 

chosen to be quadratic in s. The acreage share non-negativity constraints never bind in the MNL 

framework, they just imply that the optimal acreage shares of the least profitable crops of a given 

crop set are very small. 4 The acreage shares of the least profitable crops only become null at the 

production regime choice stage, when these crops are excluded from the produced crop set 

characterizing the chosen production regime.5 

3. An ERS micro-econometric multi-crop model with regime fixed costs 

This section presents the structure of the ERS micro-econometric multi-crop model considered in 

the empirical application presented in the next section. This model is composed of three equation 

subsystems describing the yield supply functions, variable input demand functions and the acreage 

share choice models of each produced crop on the one hand, and of a probabilistic production regime 

choice model on the other hand. This micro-econometric multi-crop model can be interpreted as an 

extension, to an ERS framework with regime fixed costs, of the model proposed by Carpentier and 

Letort (2014). As in Koutchadé et al. (2015) we adopt a random parameter approach for accounting 

fo  

The considered ERS micro-econometric multi-crop model is presented in three steps. First, we 

present the production choice models defined at the crop level, i.e. the yield supply and variable 

input demand models. Second, we present the acreage share choice models. Finally, we describe the 

production regime choice model. This presentation is organized according to the structure of the 

model: the crop level production choice models are used for defining the acreage share choice 

models which are themselves used for defining the production regime choice model. 

Yield supply and variable input demand models. We assume that farmers produce crop k from a 

variable input aggregate under a quadratic technological constraint. I.e., we assume that the yield of 

                                                           
4 From a technical viewpoint, this property comes from properties of the entropy function: the term ln

k k
s s  tends to 

0 as 
k

s  decreases to 0 (leading to the continuity extension at 0 of these terms and the related convention stating that 

ln 0
k k

s s  if 0
k

s ) while its derivative in 
k

s  tends to  as 
k

s  decreases to 0. 
5 Indeed, if the acreage management cost function ( )

it
C s  were chosen to be quadratic in s  as in the usual PMP 

framework or as in the econometric acreage choice model of Guyomard et al (1996), of  Moore and Negri (1992) or of 

Carpentier and Letort (2012)  

It would then be possible to adapt the approaches developed by Wales and Woodland (1980) or by Lee and Pitt (1986) 

for modelling acreage choices with corner solutions. Following the primal approach of Wales and Woodland (1980), 

one would define empirically tractable estimating equations  for recovering the parameters of the cost function  

based on the first order conditions of quadratic acreage choice problem, including the qualification conditions related 

to the acreage non-negativity constraints. However, the resulting modelling framework would ignore production 

regime fixed costs. To account for regime costs would raise significant difficulties as the per regime optimal expected 

profit functions could only be obtained numerically and would be characterized by salient discontinuities in the 

parameters to be estimated. 



crop k obtained by farmer i in year t  is given by: 

(6a) 
1 2

, , , , ,1/ 2 ( )y x

k it k it k i k it k it
y x   

where 
,k it

x  denotes the variable input use level. The 
,k i

 parameter is required to be (strictly) 

positive for the production function to be (strictly) concave in 
,k it

x . It determines the extent to which 

the yield supply and the input demand of crop k respond to the input and crop prices. The terms ,

y

k it  

and ,

x

k it  have direct interpretations in the considered yield function. The term ,

y

k it  is the yield level 

that can be potentially achieved by farmer i in year t while ,

x

k it  is the input quantity required to 

achieve this potential yield level. These parameters are decomposed as:  

(6b) , , ,0 , ,( )y y y y y

k it k i k k it k it
a z  and , , ,0 , ,( )x x x x x

k it k i k k it k it
a z  

where the terms ,

y

k itz  and ,

x

k itz  are observed variable vector used to control for farm heterogeneity. 

The ,

y

k i  and ,

x

k i  terms are farmer specific parameters aimed at capturing unobserved heterogeneity 

across farms and farmers. These terms, as well as the 
,k i

 random parameter, mainly capture two 

kinds of effects: those of the natural and material factor endowment of farms (e.g. soil quality and 

machinery quality) and those of the skills of farmers. The ,

y

k it  and ,

x

k it  terms are standard error 

terms aimed at capturing the effects on production of stochastic events (e.g. climatic conditions, and 

pest and weed problems). We assume that farmer i is aware of the content of ,

x

k it  when deciding his 

variable input uses. 

Assuming that farmer i maximizes the expected return to variable input uses of each crop, we can 

easily derive the demand of the variable input for crop k: 

(7a) 
2 2

, , ,0 , , , , ,( ) 1/ 2y y y y

k it k i k k it k i k it k it k it
y w pa z   

and the corresponding yield supply: 

(7b) 
1

, , ,0 , , , , ,( )x x x x

k it k i k k it k i k it k it k it
x w pa z  . 

The terms 
,k it

p  and 
,k it

w  respectively denote the expected output and input prices of crop k. 

Assuming that the expectations of the terms ,

y

k it  and ,

x

k it  of farmer i are null at the beginning of the 

cropping season, this farmer expects the following return to the variable input: 

(8) 2 1

, , , ,0 , , , ,0 , , , ,( ) ( ) 1/ 2e y y y x x x

k it k it k i k k it k it k i k k it k i k it k itp w w pa z a z   

for crop k when she/he chooses her/his acreage shares. 

Acreage share choice models. As discussed in Carpentier and Letort (2014), the (Standard MNL) 







The probability of the choice of regime r  conditionally on 
i
, and on the r

i
f and ( )it r  terms 

for r R   is thus given by: 

(12) 
exp ( ( ) )

[ ]
exp ( ( ) )

r

i it i

it q

i it iq

r f
P r r

q f
R

.7 

The farm specific parameter 
i
 is assumed to be positive. This scale parameter allows determining 

the extent to which the regime specific expected profit levels minus the corresponding fixed cost, 

i.e. the ( ) r

it ir f  terms, explain the production regime choice as regards to the effects of the r

it

idiosyncratic terms. The higher 
i
, the more ( ) r

it ir f  impact the 

observed regime choices. 

3. Parametric specification and estimation procedure  

The ERS multi-crop micro-econometric model presented in section 2 is composed of three main 

parts: a subsystem of yield supply and input demand equations (equations 7), subsystems of acreage 

share equations (equation 11a) and a probabilistic production regime choice model (equation 12). 

In this section, we briefly present the econometric procedure used to estimate this model.8 

Distributional assumptions. Most parameters of the model are farmer specific, which allows 

accounting for the heterogeneity in the performance levels as well as in the responses to economic 

incentives of the sampled farmers. Yet, standard data set, even panel data sets, do not permit a direct 

estimation of each individual parameter: the objective of the estimation here is to characterize the 

distribution of these parameters in the population described by our sample. To do so, we rely on a 

random parameter approach, as proposed in Koutchade et al. (2015). 

Given the rather complex structure and the size of our model, we adopt a fully parametric 

framework. Apart from the modelled variables, i.e. the crop yield levels 
,k it

y , the crop input use 

levels 
,k it

x , the crop acreage shares 
,k it

s  for k K , and the production regimes the production 

regimes it
r  for r R  collected in the vector it

c , and the fixed parameters, i.e. the terms ,0

y

k
a , ,0

y

k
a  

                                                           
7 Note however that the error terms 

,

s

k it
 of the acreage choice model contained in the expected profit levels ( )

it
r  can 

only be directly recovered from the data for the crops produced by farmer i in year t. Indeed, we can recover the vector 
,

, ,( : ( ))s s

r it k it
k rK  while the vector ,0 0

, ,( : ( ))s s

r it k it
k rK  cannot. We used Laplace approximations for 

integrating the expectation of the probability function [ ]
it

P r r  over the probability distribution of ,0

,

s

k it
 conditional on 

,

,

s

k it
 (see, e.g., Harding and Hausman, 2007). This expectation is part of the likelihood function of the model. 

 

8 Specification and estimation details are available from the authors upon request. 



and ,0

s

k
a  for k K  collected in the vector 

0a  , the considered model contains five subsets of random 

elements: 

The farm specific parameter vectors 
i
 collecting the potential yield parameters ,

y

k i , the input 

requirement parameters ,

x

k i , the input use flexibility parameters 
,ln k i

 and the cost function 

linear parameters ,

s

k i  for k K ; the acreage choice flexibility parameters ln
i
,

( ),ln g i
 and 

|( ),ln
m g i

 for 1,..., ( )m M g  and 1,...,g G ; the regime fixed cost parameters r

i
f  for r R  

and the regime choice scale parameter ln
i
. The vectors 

i
 are assumed normally and 

independently distributed across farms. 

The explanatory variable vectors 
it

z  containing the crop prices 
,k it

p  , the variable input prices 

,k it
w  and the control variable vector 

,

y

k itz , 
,

x

k itz  and 
,

s

k itz  for k K .  

The yield supply and input demand error term vectors yx

it
 containing the error terms  

,

y

k it
 and 

,

x

k it
 for k K  and that are assumed normally and independently distributed across farms. 

The acreage share error term vectors s

it
 containing the error terms  

,

s

k it
 for k K and that are 

assumed normally and independently distributed across farms. 

The production regime error term vectors 
it

 containing the error terms r

it
 for r R . These 

terms r

it
 are assumed independent across regimes and farms, well as distributed according to a 

type I extreme value distribution. 

We further assume that the error term vectors yx

it
, s

it
 and 

it
 are mutually independent, and that the 

explanatory variables 
it

z  are (i) strictly exogenous with respect to these error term vectors and (ii) 

independent of the random parameters 
i
. The vector 

it
z  contains prices, climatic variables and 

 We finally assume that that the error term 

vectors yx

it
, s

it
 and 

it
 are independent across years. 

As the explanatory variable vector it
z  

considered model can be interpreted either as an essentially static model or as a reduced form model 

as regards the dynamic features of the modelled choices. It is notably difficult to empirically 

dynamic features of the modelled processes (see, e.g., Angrist and Pischke, 2009 or Arellano and 

Bonhomme, 2012). For instance, the random parameters i  are likely to capture the effects on 

on schemes that these 







the specific parameter 
i
 of farm i is calibrated as the mode  

criterion  of its simulated probability distribution conditional on ( , )
i i

c z , i.e. on what is known 

about farm i in the data. Also, this procedure and its counterpart in the SEM 

algorithm allow for calibrating the random parameters corresponding to crops that have not been 

grown by the considered farmer or corresponding to regime fixed costs for regimes that have not 

been chosen by the considered farmer. 

3. Empirical application 

Data. The model is estimated on an unbalanced panel data set containing 2871 observations of 778 

French grain crop producers in the North and North-East of France, over the years 2006 to 2011. 

This sample has been extracted from data provided by an accounting agency located in the French 

territorial division La Marne. It contains detailed information about crop production for each farm 

(acreages, yields, input uses and crop prices at the farm gate). We consider seven crops (or crop 

aggregates): sugar beet, alfalfa, peas, rapeseed, winter crops (wheat and barley), corn and spring 

barley, which represent more than 80% of the total acreage in the considered area.12 

The variable input aggregate account for the use of fertilizers, pesticides and seeds. The 

corresponding price index is computed as a standard Tornqvist index. 

produce a crop the corresponding output and input prices are unobserved. These missing prices were 

estimated by the yearly average of the corresponding observed prices. All prices are deflated by the 

hired production services price index (base 1 in 2006) obtained from the French department of 

Agriculture. This aggregated price index mainly depends on the price indices of machinery, fuel and 

hired labor, the main inputs involved in the implicit acreage management cost function. 

Figure 1 depicts the three levels nesting structure that we adopt for the seven crops. In a first level 

we distinguish a cereal group composed of winter crops, corn and spring barley, and a group of 

crops that are generally planted at the head of rotation: corn, alfalfa, peas and rapeseed. This 

structure is intended to reflect the basic rotation scheme of grain producers in France. In a second 

level, the cereal group is split into two subgroups: winter cereals on the one hand and other cereals 

on the other hand, in order to account for the differences in planting seasons between those cereals.  

The head of rotation  group is split into an oilseeds and protein crops  subgroup and a subgroup 

                                                           
12 The EU sugar beet subsidy scheme requires limited adjustments in our application. This scheme scheme is based on 

sugar beet production quotas  held by farmers on a historical basis  with subsidized prices. Yet, the actual sugar beet 

production largely exceeds the subsidized quota for all sugar beet producers of our sample. This suggests that these 

farmers choose their sugar beet acreages, yield levels and input use levels according to the off-quota sugar beet prices. 



including only sugar beet (the only root crop considered here). 

Table 1 provides descriptive statistics concerning the production regimes observed in the data. 

Based on these seven crops, 127 regimes, could theoretically be grown by farmers. Only 10 of them 

are actually observed in our sample. All farmers grow winter crops and at least two additional crops. 

The most frequent regimes in the sample (regimes 2, 3 and 4) actually include five or six crops. It 

is interesting to note that most farmers adopt different production regimes over the 5 years of our 

sample: only 11 out of 778 farmers have not changed their production regime during the period. The 

average gross margins associated to each regime are reported in the last column of Table 1. An 

interesting feature appears here: the most frequently chosen regimes are not the ones that lead on 

average to the highest gross margin. For instance, regime 8  which excludes peas, rapeseed and 

corn  is characterized by the highest observed gross margin, but has been adopted in only 2.8% of 

the observations. This comes to illustrate the fact that s of production regime are 

driven by other factors than gross returns, such as the acreage management and regime fixed costs 

represented in our model. 

Estimation results. The parameter estimates of our model are not reported here due to space 

limitation: we only provide some insights of these results.13 The expectations of all the random 

parameters are precisely estimated, their values lie in reasonable ranges and they have expected 

signs for all crops and crop groups, with notably expected ranges of the acreage flexibility 

parameters (
, , , 0g m i g i i

). The variance parameters of the random parameter distributions 

are all statistically different from zero. This indicates that the technical and behavioral parameters 

of our model significantly vary across farms, despite the fact that we control for observed factors 

characterizing farm heterogeneity (land and capital endowments and climate). Finally, the mean 

estimated value of the scale parameter i  in the regime choice model (13) being relatively large 

(3.40), the profit and regime fixed costs in the regime choice appear to be significant drivers of the 

regime choices.  

Estimated criteria tend to show that the proposed model offers a satisfactory fit to our data, with a 

better fit to the major crops than to the ones less frequently produced or with smaller acreages (peas, 

corn and, to a lesser extent, alfalfa). Importantly, our investigations on this issue tend to demonstrate 

that our results are robust to various distributional assumptions related to the model random 

parameters. Random parameter variations account for a significant part of the observed variations 

s. But, variations in the model error terms account for a comparable part. Even if 

                                                           
13 Detailed estimation results are available from the authors upon request. 



crop production is known to be significantly affect by numerous random events, this indicates that 

there is still room for further improving the explanatory power of our model. We pursue our current 

research in that direction, by looking for additional control variables in particular. 

Simulation results. The structure of the proposed ERS multi-crop micro-econometric model allows 

for investigating the relative importance of the main drivers of the production regime choices. For 

that purpose we consider the simulation model obtained from the estimated one by calibrating the 

farm specific parameters for each farm of our sample. Then we use this simulation model for 

investigating the prediction power of three elements of the regime choice models: the weighted sum 

of the expected crop gross returns ( ) e

it it
rs , the acreage management costs ( )

it it
C rs  and the 

regime fixed costs r

i
f  for r R . We simulate the regime choices according to each of these 

elements as well as to combinations of these elements, and then confront them, on average, with the 

observed regime choices. Taken together these simulation results confirm that the regime fixed costs 

matter, but mainly in combination with the other drivers of the regime choice model. Maximization 

of the gross margins, of the acreage management costs or of the regime fixed cost alone leads to 

very poor predictions of regime choices. Considering pairs of these choice criteria only slightly 

improve the predictions, while considering together these three criteria unsurprisingly provides 

predicted choices very close, on average, to the observed ones. 

The estimated regime costs tend to slightly decrease as the crop number decrease from 7 to 5 crops. 

T  pattern below 5 crops. Moreover, the fact that these costs appear to 

significantly vary across farms complicates their analysis and interpretation. This point clearly 

deserves further research. To be completed: these fixed costs are highlighted in the article. 

To illustrate the relevance of the approach we propose to deal with corner in acreage choices, we 

simulate the impacts of changes in expected crop prices on acreage choices. Acreage price 

elasticities play a crucial role in this type of exercise. Yet these



 

protein peas acreages have declined over the last 

decade in the considered area mostly because of lacking profitability, as regards to that of the other 

rotation heads in particular.14 The simulated impacts of increases in the price of peas on acreages 

are reported on Figure 2. According to our results, a 50% increase in the price of peas would increase 

the average peas acreage share by 1.7%, from 1.1% to 2.8%. These additional peas acreages would 

mainly replace those of other rotation heads: the average combined acreage share of rapeseed, alfalfa 

and sugar beet would decrease by around 1.2% while that of cereals would only decrease by around 

0.5%. This illustrates the interests in considering the crop  agronomic and management   

characteristics when specifying the acreage management cost function. This also suggests that the 

increase in the rapeseed price due to the EU support to bio-fuels has played significant role in the 

decrease in the peas acreages in the considered area. 

Interestingly, about two thirds of the increase in the peas acreage would be due to new producers. 

This also explains another feature of our simulation results. The simulated increases in the peas 

acreage in not linear in the price of peas: in particular, the increase in the peas acreages is more 

pronounced above the 20% price increase than below. Figure 3 shows that the adoption rates of the 

production regimes including protein peas, regime 2 in particular, have similar patterns. This is 

partly explained by the threshold effects generated by the production regime fixed costs. 

4. Concluding remarks 

                                                           
14 In other parts of France the extension of a soil infection (aphanomyces) severely impacts peas yields and explains 

the decrease peas acreages. The diversified cropping systems used in La Marne seems to limit this extension. 
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6. Tables and Figures 

 

Table 1: Descriptive statistics of the production regimes represented in the data 

Regime 

number 

Crops produced in the regime 

Regime 

frequency 

Average 

gross 

margin 

d 

Winter 

crops 
Corn 

Spring 

Barley 

Sugar 

beet 
Alfalfa Peas 

Rape-

seed 

1        5.3% 767 

2        16.6% 797 

3        10.9% 851 

4        43.8% 884 

5        4.4% 868 

6        4.3% 719 

7        6.6% 870 

8        2.8% 997 

9        2.8% 765 

10        2.5% 648 

Average 

acreage sharea 
38.6% 2.6% 18.7% 14.7% 8.9% 1.1% 15.4%  

 

Production 

frequency 
100% 29% 97% 90% 79% 22% 98%  

 

          

a Standard deviation in parentheses. b Winter wheat. c. Off-quota price. d. Sugar beet subsidies excluded. 

 

Table 2: Own price elasticities of acreages computed at sample average  

 Winter 

cereals 

Corn Spring 

Barley 

Sugar 

beet 

Alfalfa Protein 

peas 

Rapeseed 

Overall elasticitiy 0.51 3.84 0.82 2.72 0.95 1.50 1.06 

Part of the elasticity due to:        

Acreage changes within regime 0.50 2.94 0.75 2.19 0.78 0.91 1.00 

Change in production regime 0.00 0.90 0.07 0.53 0.17 0.59 0.06 

 

 

 

 

 

 

 



Figure 1: Nesting structure of the acreage choice model 

 

Groups Cereals Rotation heads 

Subgroups Winter cereals Spring cereals Oil and protein crops Root crops 

Crops 
Winter 

cereals* 

Spring 

barley 
Corn Rapeseed 

Protein 

peas 
Alfalfa Sugar beet 

* Winter wheat (mostly) and winter barley 

 

 

 

 

 

Figure 2: Simulated impacts of changes in the price of peas on acreage shares 

 

 

 

Figure 3: Simulated impacts of changes in the price of peas on regime adoption rates 
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