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Abstract 

We propose an Endogenous Regime Switching model specifically designed for modelling acreage choices with corner 

solutions featuring regime fixed costs. Contrary to models based on censored regression systems, this model is fully 

coherent from an economic point of view, by construction. To illustrate its empirical tractability, we estimate a random 

parameter version of this model for a panel dataset of French arable crop producers. Our results show that the model 

fits well the data, the regime fixed cost matter, and that the decision to produce a crop or not play a major role in the 

acreage responses to economic incentives. 

Keywords: corner solutions, endogenous regime switching models, agricultural production choices 

1. Introduction 

Corner solution problems are pervasive in micro-econometric acreage choice models because 

farmers rarely produce the same crop set in a considered sample, even in samples considering 

specialized farms. Agricultural economists usually use two approaches for coping with null crop 

acreages. First, crops can be aggregated for eliminating or, at least, attenuating the occurrence of 

null crop acreages. Of course, this approach can lead to substantial information loss. Second, corner 

solutions can be dealt with by specifying acreage choices as a system of censored regressions (see, 

e.g., Platoni et al., 2012). However, if censored regression systems explicitly account for null crop 

acreages from a statistical viewpoint, they cannot consistently represent acreage choices with corner 

solutions. This point was made, for consumer demand systems, by Arndt et al (1999). More 

generally, acreage choice models suitably accounting for corner solutions need to be specified as 

endogenous regime switching (ERS) models, in which production regimes are defined as the subsets 

of crops with non-null acreages – i.e. by the subsets of actually produced crops. 

Regime and acreage choice decisions are closely linked since these decisions are taken 

simultaneously and depend on common drivers. For instance, the choice of the set of crops to be 

produced depends on the optimal acreages of these crops. Importantly, responses to crop price 

changes of crop acreage decisions depend on the regime in which these crops are produced. For 

instance, winter wheat crop acreages cannot respond to corn price changes in regimes where winter 

wheat is produced whereas corn is not produced. Censored regression systems cannot account for 

such effects since in these modelling framework farmers’ acreage choices are described by a model 

that is common to all production regimes. In our ERS modelling framework farmers’ acreage 

choices are described by models that are specific to each production regime. 



According to our knowledge, micro-econometric ERS models involving multiple corner solutions 

were defined only for modeling consumer demand systems (see, e.g., Kao et al. 2001) or firm input 

demand systems (see, e.g., Chakir et al. 2004), following the pioneering works of Wales and 

Woodland (1980) and of Lee and Pitt (1986). However, these models have rarely been used in 

practice, probably because their estimation is challenging, and d,espite the development of 

estimation procedures with simulation methods (see, e.g., Kao et al. 2001). 

The main aim of our paper is to propose an ERS model specifically designed for empirically 

modeling acreage choices with corner solutions.  This model is fully coherent from an economic 

point of view and includes regime fixed costs, which is to our knowledge a unique feature compared 

to other ERS models with multiple corner solutions found in the economic literature. These regime 

fixed costs allow accounting for unobserved costs, such as marketing or management costs, which 

depend on the set of crops grown simultaneously.  

The ERS model we propose defines a Nested MultiNomial Logit (NMNL) acreage choice model 

(Carpentier and Letort, 2014; Koutchadé et al., 2015) for each potential production regime. The 

regime choice is based on a discrete choice model in which farmers choose the subset of crops they 

produce by comparing the profit levels associated to each regime. The econometric model derived 

from this framework is theoretically consistent – in its deterministic and in its random parts – and 

can be combined with yield supply and variable input demand functions. Furthermore, following 

Koutchadé et al. (2015), this model accounts for the unobserved heterogeneity in farmers’ behaviors 

through the specification of random parameters. I.e. we assume that most model parameters are 

farmer specific and estimate their distribution across the farmers’ population described by our 

sample. Given that our model is fully parametric, it can be efficiently estimated within a Maximum 

Likelihood (ML) estimation framework. The structure of the model and the functional form of its 

likelihood function actually make the version of the Simulated Expectation-Maximisation (SEM) 

algorithm developed by Delyon et al. (1999) especially suitable for maximizing the sample 

likelihood function. Importantly, once their probability distribution has been estimated, each farmer 

specific parameter can be ‘statistically calibrated’ for simulation purpose. 

We illustrate the empirical tractability of our approach by estimating a seven crops – and ten 

production regimes – production choice model for a sample of French arable crop producers. The 

estimated model is then used to simulate the impacts of a crop price change on acreages and illustrate 

how accounting for endogenous production regime choices and production regime fixed costs can 

affect the simulation results. 



Our results tend to show that our ERS multi-crop model with regime fixed costs perform well 

according to the standard fit criteria. They also tend to show that the regime fixed costs significantly 

matter for explaining the production regime choices and that the decision to produce a crop or not 

plays a major role in the acreage choice responses to economic incentives. In particular, our 

simulation results show that the acreage choice responses to price changes exhibit threshold effects 

due to the regime fixed costs. 

The rest of the paper is organized as follows. The approach proposed to account for endogenous 

regime switching and regime fixed costs in the modelling of acreage decisions is presented in the 

first section. The structure of the econometric model of acreage and production choices is described 

in the second section. Identification and estimation issues are discussed in the third section. The 

illustrative estimation results are provided in the fourth section. Finally, we conclude.  

 

2. Endogeneous regime switching acreage choices with regime fixed costs 

This section presents the theoretical modelling framework we propose for dealing with corner 

solutions in micro-econometric acreage choice models. We adopt an ERS approach for the resulting 

models to be fully consistent from a micro-economic viewpoint. We also allow for regime fixed 

costs for improving the ability of the resulting models to capture the effects of potentially important 

drivers of farmers’ acreage choices. 

Let consider a risk neutral farmer i , who can allocate his fixed cropland to K  crops. Let

{1,..., }KK  denote the set of crops available to this farmer and let {1,..., }RR  denote the set of 

production regimes, i.e. the set of crop subsets considered by the farmer when choosing the crops 

he/she will produce.1 The term ( )rK  denotes the subset of crops produced in regime r, with 

(1) K K  by convention, while the term 0 ( )rK  denotes subset of crops not produced in regime r. 

Finally, let the term ( : )ks k s K  denote an acreage share vector, with s 0  and 1 s ι  where ι  

is the unitary column vector with dimension K, and let the function ( ) s  define the regime of the 

acreage share vector s. 

 

                                                           
1 Some combinations of crops are not possible because of agronomic constraints. R   thus does not contain all the 

possible subsets of K  but the subsets that can potentially be chosen by farmers.  



In period t the considered farmer is assumed to solve the following expected profit maximization 

problem: 

(1)   max ( ) ( )   s.t.  and 1e

it it itC F     s s π s s s 0 s ι  

where 
,( : )e e

it k it k π K  is the vector of crop returns expected when choosing s, ( )itC s  is the 

implicit management cost of acreage s and ( )itF r  is the fixed cost of production regime r. 

The acreage management cost function ( )itC s  accounts for the crop variable costs not included in 

the crop gross margins and for the implicit costs related to the constraints on the acreage choices 

due the limiting quantities of quasi-fixed factors or to agronomic factors. The quasi-fixed factor and 

agronomic constraints providing motives for diversifying crop acreages, the function ( )itC s  is 

assumed to be convex in s. In order to ensure that the solution in s to problem (1) is unique we 

strengthen this assumption by assuming that ( )itC s  is strictly convex in s. Such cost functions are 

used in the Positive Mathematical Programming literature (see, e.g., Howitt, 1995; Heckeleï et al, 

2012) and in the multi-crop econometric literature (see, e.g., Carpentier and Letort, 2012, 2014). 

Ignoring the regime fixed costs, the optimal acreage choice is determined by maximizing the sum 

of the crop expected gross margins 
,

e

k it  weighted by their acreage shares ks  minus the costs 

associated to the crop acreage s, ( )itC s . In this model the management costs of the crop acreage 

prevent farmers to solely produce the most profitable crop. 

The regime fixed cost terms 
( )itF r

 introduce discrete elements in farmers’ acreage choices with 

{ ( ) : }it itF F r r R . These terms account for the hidden fixed costs incurred by the farmer for any 

acreage choice in the regime. They include fixed costs related to the marketing process of the crop 

products or those incurred when purchasing specific variable inputs, when renting specific 

machines, when seeking crop specific advises, etc. These costs do not depend on the chosen acreage 

in a given regime, they only depend on the crop set defining this regime. 

The smooth acreage management cost function ( )itC s  and the discontinuous regime fixed cost 

function  ( )itF  s  are expected to impact farmers’ crop diversification in opposite directions. 

While limiting quantities of quasi-fixed factors impose constraints fostering crop diversification, 

regime fixed costs are expected to foster crop specialization. In particular, the regime fixed costs 

are expected to be non-decreasing in the number of produced crops.2 

                                                           
2 Note however that in specific empirical settings the ( )itF r  terms may also capture the effects of exogenous factors 

preventing farmer i to produce specific crops, e.g. due to unsuitable soils or to lacking outlets. In the empirical 



It appears convenient, as well as intuitively appealing, to decompose farmers’ acreage choice 

problem into two steps, as commonly done in acreage choice models based on censored regression 

systems (see, e.g., Skockaï and Moro, 2006, 2009; Lacroix and Thomas, 2011; Fezzi and Bateman, 

2011). Namely, we distinguish the production regime choice from the acreage choice while 

assuming that both choices are linked by the effects of common observed or unobserved drivers. 

Our modelling framework is based on a standard backward induction approach according to which 

farmers choose their production regime after examining their expected profit in each possible 

production regime. First, the acreage choice problem is solved for each potential regime: 

(2)  0max ( )  s.t. , 1 and 0 if ( )e

it it kC s k r     s s π s s 0 s ι K , 

yielding regime specific optimal acreage shares: 

(3a)  0( ) arg max ( )  s.t. , 1 and 0 if ( )e

it it it kr C s k r      ss s π s s 0 s ι K  

and regime specific optimal expected profit – regime fixed excluded – levels: 

(3b)  0( ) max ( )  s.t. , 1 and 0 if ( )e

it it it kr C s k r       s s π s s 0 s ι K . 

for rR . Second, the production regime itr  is determined by comparing the regime specific 

expected profit levels while accounting for the production regime fixed costs, i.e. itr  is defined as 

the solution in r to a simple maximization problem with: 

(4)    max ( ) ( )  s.t. it r it it itr r F r r   s R . 

The obtained optimal regime itr  is assumed to be unique as multiple solutions can only occur in 

knife-edge cases. Of course, the optimal acreage choice its  and the expected profit level it  are 

obtained by combining equation (4) and equations (3), with ( )it it itrs s  and ( )it it itr  . 

The regime specific acreage choices ( )it rs  are derived from optimization problems that only differ 

from one regime to the other due to nullity constraints. These constraints are sufficient for these 

acreage choices to respond significantly differently to economic changes. For instance, the regime 

r acreage choice, ( )it rs , doesn’t respond to changes in the expected returns of the crops not 

produced in regime r. Similarly, the wheat acreage is expected to be more responsive to the price of 

wheat in farms producing barley than in farms not producing other straw cereals. Acreage choice 

models based on censored regression systems cannot reproduce such patterns.  

                                                           
application presented in section 4, such features are unlikely to occur. Our sample covers a limited geographical area 

and we only consider crops which can be profitably produced in this area.  

 



Note that the regime fixed cost considered in the maximization problem (4) determining the 

optimal regime itr  is not simply ( )itF r  but   ( )it itF r s . The reason is that the acreage ( )it rs  may 

not belong to regime r, depending on the functional form chosen for the cost function ( )itC s . This 

acreage is only guaranteed to belong to a regime ‘included’ in regime r in the sense that some crops 

of ( )rK  may not be produced in the regime  ( )it r s .  

The Multinomial Logit (MNL) modelling framework proposed by Carpentier and Letort (2014) is 

especially convenient in this context. It is based on functional forms of the acreage management 

cost function ensuring that the regime specific acreage share ( )it rs  and expected profit ( )it r  are 

obtained in analytical closed forms and that are smooth in their parameters. For instance, if we 

assume that the functional form of the acreage management cost function is given by the ‘entropic’ 

function: 

(5a) 
1

,( ) ( )
( ) lns

it k k it i k kk r k r
C s s s  



 
  s

K K
  with  0i   

then the regime specific acreage share vectors ( )it rs  are given by: 

(5b) 
 

 
, ,

,

, ,( )

exp ( )
( ) ( )

exp ( )

e s

i k it k it

k it k e s

i it itr

s r j r
  

  




 K

  with 
0

( ) 1  if  ( )

( ) 0  if  ( )

k

k

j r k r

j r k r

  


 

K

K
 

while the corresponding expected profit levels ( )it r  are given by: 

(5c)  1

, ,( )
( ) ln exp ( )e s

it i i it itr
r    




   K

. 

These specific properties of the MNL modelling framework significantly simplifies the specification 

of the acreage choice models featuring corner solutions.  They basically imply that the production 

regime choice can be defined as a standard discrete choice, i.e. that of the most profitable production 

regime among a predetermined regime set. 

Indeed, the optimal acreage share of crop k in regime r, i.e. 
, ( )k its r , is ensured to be strictly positive 

if crop k belongs to regime r, i.e. if ( )k rK , as shown by equation (5b) in the case standard MNL 

acreage share choice models (ensuring that ( )it rs  necessarily belong to regime r). Of course, , ( )k its r  

is almost null when crop k is much less profitable than the other crops of the considered regime.3 

This implies that corner solutions are handled in a specific way in the MNL modelling framework: 

their characterization doesn’t rely on the qualification conditions related to the acreage non-

                                                           
3 The term , ( )k its r  decreases in , ,

e s

k it k it   and tends to 0 as the term , ,

e s

k it k it   goes to  . The larger 
i   is, the 

more rapidly , ( )k its r  decreases in , ,

e s

k it k it  . 



negativity constraints which would be involved in the case where the cost function ( )itC s  was 

chosen to be quadratic in s. The acreage share non-negativity constraints never bind in the MNL 

framework, they just imply that the optimal acreage shares of the least profitable crops of a given 

crop set are very small. 4 The acreage shares of the least profitable crops only become null at the 

production regime choice stage, when these crops are excluded from the produced crop set 

characterizing the chosen production regime.5 

3. An ERS micro-econometric multi-crop model with regime fixed costs 

This section presents the structure of the ERS micro-econometric multi-crop model considered in 

the empirical application presented in the next section. This model is composed of three equation 

subsystems describing the yield supply functions, variable input demand functions and the acreage 

share choice models of each produced crop on the one hand, and of a probabilistic production regime 

choice model on the other hand. This micro-econometric multi-crop model can be interpreted as an 

extension, to an ERS framework with regime fixed costs, of the model proposed by Carpentier and 

Letort (2014). As in Koutchadé et al. (2015) we adopt a random parameter approach for accounting 

for farmers’ unobserved heterogeneity. 

The considered ERS micro-econometric multi-crop model is presented in three steps. First, we 

present the production choice models defined at the crop level, i.e. the yield supply and variable 

input demand models. Second, we present the acreage share choice models. Finally, we describe the 

production regime choice model. This presentation is organized according to the structure of the 

model: the crop level production choice models are used for defining the acreage share choice 

models which are themselves used for defining the production regime choice model. 

Yield supply and variable input demand models. We assume that farmers produce crop k from a 

variable input aggregate under a quadratic technological constraint. I.e., we assume that the yield of 

                                                           
4 From a technical viewpoint, this property comes from properties of the entropy function: the term lnk ks s  tends to 

0 as 
ks  decreases to 0 (leading to the continuity extension at 0 of these terms and the related convention stating that 

ln 0k ks s   if 0ks  ) while its derivative in 
ks  tends to   as 

ks  decreases to 0. 
5 Indeed, if the acreage management cost function ( )itC s  were chosen to be quadratic in s – as in the usual PMP 

framework or as in the econometric acreage choice model of Guyomard et al (1996), of  Moore and Negri (1992) or of 

Carpentier and Letort (2012) – farmers’ acreage choice problem would be defined as quadratic programming problem. 

It would then be possible to adapt the approaches developed by Wales and Woodland (1980) or by Lee and Pitt (1986) 

for modelling acreage choices with corner solutions. Following the primal approach of Wales and Woodland (1980), 

one would define empirically tractable estimating equations – for recovering the parameters of the cost function – 

based on the first order conditions of quadratic acreage choice problem, including the qualification conditions related 

to the acreage non-negativity constraints. However, the resulting modelling framework would ignore production 

regime fixed costs. To account for regime costs would raise significant difficulties as the per regime optimal expected 

profit functions could only be obtained numerically and would be characterized by salient discontinuities in the 

parameters to be estimated. 



crop k obtained by farmer i in year t  is given by: 

(6a) 
1 2

, , , , ,1/ 2 ( )y x

k it k it k i k it k ity x        

where 
,k itx  denotes the variable input use level. The 

,k i  parameter is required to be (strictly) 

positive for the production function to be (strictly) concave in 
,k itx . It determines the extent to which 

the yield supply and the input demand of crop k respond to the input and crop prices. The terms ,

y

k it  

and ,

x

k it  have direct interpretations in the considered yield function. The term ,

y

k it  is the yield level 

that can be potentially achieved by farmer i in year t while ,

x

k it  is the input quantity required to 

achieve this potential yield level. These parameters are decomposed as:  

(6b) , , ,0 , ,( )y y y y y

k it k i k k it k it    a z  and , , ,0 , ,( )x x x x x

k it k i k k it k it    a z  

where the terms ,

y

k itz  and ,

x

k itz  are observed variable vector used to control for farm heterogeneity. 

The ,

y

k i  and ,

x

k i  terms are farmer specific parameters aimed at capturing unobserved heterogeneity 

across farms and farmers. These terms, as well as the 
,k i  random parameter, mainly capture two 

kinds of effects: those of the natural and material factor endowment of farms (e.g. soil quality and 

machinery quality) and those of the skills of farmers. The ,

y

k it  and ,

x

k it  terms are standard error 

terms aimed at capturing the effects on production of stochastic events (e.g. climatic conditions, and 

pest and weed problems). We assume that farmer i is aware of the content of ,

x

k it  when deciding his 

variable input uses. 

Assuming that farmer i maximizes the expected return to variable input uses of each crop, we can 

easily derive the demand of the variable input for crop k: 

(7a) 
2 2

, , ,0 , , , , ,( ) 1/ 2y y y y

k it k i k k it k i k it k it k ity w p      a z   

and the corresponding yield supply: 

(7b) 
1

, , ,0 , , , , ,( )x x x x

k it k i k k it k i k it k it k itx w p     a z  . 

The terms 
,k itp  and 

,k itw  respectively denote the expected output and input prices of crop k. 

Assuming that the expectations of the terms ,

y

k it  and ,

x

k it  of farmer i are null at the beginning of the 

cropping season, this farmer expects the following return to the variable input: 

(8)     2 1

, , , ,0 , , , ,0 , , , ,( ) ( ) 1/ 2e y y y x x x

k it k it k i k k it k it k i k k it k i k it k itp w w p          a z a z   

for crop k when she/he chooses her/his acreage shares. 

Acreage share choice models. As discussed in Carpentier and Letort (2014), the (Standard MNL) 



acreage share choice model given in equation (5b) appears to be rather rigid because it treats the 

different crops symmetrically. Indeed, arable crops can often be grouped according to their 

competing for the use of quasi-fixed factors or according to their agronomic characteristics. The 

ERS micro-econometric multi-crop model considered here contains a ‘3 level-Nested Multinomial 

Logit” (NMNL) acreage share choice model, which derives from an entropic acreage management 

cost function as proposed by Carpentier and Letort (2014). In our setting, the crop set K  is 

partitioned into G  mutually exclusive groups of crops, each group {1,..., }g G  being itself 

partitioned into ( )M g  subgroups of crops. The mth subgroup of the gth group is defined as the crop 

subset ( , )m gK . Crops (resp. subgroups) belonging to a same subgroup (resp. group) are assumed 

to have similar agronomic characteristics and to compete more for farmers’ limiting quantities of 

quasi-fixed factors than they compete with crops (resp. subgroups) of other subgroups (resp. of other 

groups). The three level nested structure of the crop set used in the empirical application is depicted 

in Figure 1. The corresponding acreage management cost function is given by: 

(9) 

( )1 1

, ( ) ( ) ( ) ( ), |( ) |( )1 1 1

( ) 1

( ) |( ) |( ), |( , ) |( , )1 1 ( , )

( ) ln ln

                                    ln

G G M gs

it k k it i g g g g i m g m gk g g m

G M g

g m g m g i m g m gg m m g

C s s s s s s

s s s s

  



 

   



  

  



   

  

s
K

K

   

where 
( )gs  denotes the acreage share of group g, 

,( )m gs  that of subgroup m in group g, and 
|( , )k m gs  

that of crop k in the subgroup m of group g. The i , 
( ),g i  and 

|( ),m g i  are farm specific parameters 

determining the flexibility of farmers’ acreage choices.6 The larger they are, the more the acreage 

share choice respond to economic incentives (because the less management costs matter). The 

condition 
|( ), ( ), 0m g i g i i      is sufficient for the cost function ( )itC s  to be strictly convex in s. 

The linear terms of the cost function ( )itC s  are decomposed as: 

(10) , , ,0 , ,( )s s s s s

k it k i k k it k it    a z  

where ,

s

k itz  are explanatory variable used to control for observed heterogeneous factors. The ,

s

k i  

farm specific factors account for heterogeneity effects unobserved in the data. The error terms ,

s

k it  

capture the effects of stochastic variation of the cost due to random events such as climatic events 

impacting the soil state at planting. The content of these terms are assumed to be known to farmers 

when they choose their acreages. 

These error terms are assumed to be independent from the error terms of the yield and input 

                                                           
6 We have , , ,g m i g i   if subgroup m contains a single crop. Similarly, we have ,g i i   if group g contains a single 

subgroup. 



demand functions, ,

y

k it  and ,

x

k it . I.e., we assume that the potential links between the error terms of 

the acreage choice model on the one hand and those of the yield supply and input demand functions 

on the other hand are negligible. To relax this assumption is possible but significantly increases the 

estimation burden. In a similar context, Koutchadé et al (2015) found that the ,

s

k it  error terms were 

not significantly correlated with the error terms ,

y

it  and ,

x

it .  

The optimal acreage share choices of farmers as given by equation (2a) can be derived for any 

production regime. It suffices to solve the maximization problem given in equations (3). For 

instance, ten acreage share subsystems are considered in our empirical application, one for each 

production regime represented in the data. Of course, the functional form of the derived acreage 

choice function depends on the subset of crops included in the considered regime. Assuming that 

crop k belongs to the mth subgroup of the gth group, we obtain: 

 (11a) 

    
  

1
,1 1

, , , ( ), |( ),

1
,1

( ), |( ),

1
1 ( )

, , , ( , ), ( , ),1

,

( )

( , ),1 1

exp( ) ( ) ( )

( ) ( )

( )

i g i
g i g m i g i n g i

i h i
h i n h i

M g

g m i k it m g it n g itn

k it k

G M h

n h ith n

r r

s r j r

r

 
   

 
 

   




 









 




 

 

and: 

(11b)   
1

( ),1
( ), |( ),( )1

( , ),1 1
( ) ln ( )

i h i
h i n h iG M h

it i n h ith n
r r

 
 

 






 
     

where: 

(11b) 
0

( ) 1  if  ( )

( ) 0  if  ( )

k

k

j r k r

j r k r

  


 

K

K
  and   ( , ), |( ), , ,( , )

( ) ( )exp ( )s

n h it n h i it itn h
r j r   


  K

.  

Production regime choice model. Observing that the regime r optimal acreage choice ( )it rs  

necessarily belongs to regime r in the MNL case considered here, the regime specific expected profit 

levels can easily be used for defining a regime choice model according to the choice problem 

described in equation (4). Let define the regime fixed costs as 1( ) r r

it i i itF r f    . The farm specific 

parameters r

if  aim at capturing the effects of unobserved factors affecting the regime fixed costs. 

The error terms r

it  aim at capturing the effects of stochastic factors. They are assumed to be 

independent from the other elements of the model and to be independently distributed according to 

a type I extreme value distribution. This implies that the production regime choice is specified as a 

standard Multinomial Logit discrete choice model. 



The probability of the choice of regime r – conditionally on i , and on the r

if and ( )it r  terms 

for rR  – is thus given by: 

(12) 
 

 

exp ( ( ) )
[ ]

exp ( ( ) )

r

i it i

it q

i it iq

r f
P r r

q f






 
 

  R

.7 

The farm specific parameter i  is assumed to be positive. This scale parameter allows determining 

the extent to which the regime specific expected profit levels minus the corresponding fixed cost, 

i.e. the ( ) r

it ir f   terms, explain the production regime choice as regards to the effects of the r

it

idiosyncratic terms. The higher 
i , the more the ‘deterministic’ terms ( ) r

it ir f   impact the 

observed regime choices. 

3. Parametric specification and estimation procedure  

The ERS multi-crop micro-econometric model presented in section 2 is composed of three main 

parts: a subsystem of yield supply and input demand equations (equations 7), subsystems of acreage 

share equations (equation 11a) and a probabilistic production regime choice model (equation 12). 

In this section, we briefly present the econometric procedure used to estimate this model.8 

Distributional assumptions. Most parameters of the model are farmer specific, which allows 

accounting for the heterogeneity in the performance levels as well as in the responses to economic 

incentives of the sampled farmers. Yet, standard data set, even panel data sets, do not permit a direct 

estimation of each individual parameter: the objective of the estimation here is to characterize the 

distribution of these parameters in the population described by our sample. To do so, we rely on a 

random parameter approach, as proposed in Koutchade et al. (2015). 

Given the rather complex structure and the size of our model, we adopt a fully parametric 

framework. Apart from the modelled variables, i.e. the crop yield levels 
,k ity , the crop input use 

levels 
,k itx , the crop acreage shares 

,k its  for kK , and the production regimes the production 

regimes itr  for rR  collected in the vector itc , and the fixed parameters, i.e. the terms ,0

y

ka , ,0

y

ka  

                                                           
7 Note however that the error terms 

,

s

k it  of the acreage choice model contained in the expected profit levels ( )it r  can 

only be directly recovered from the data for the crops produced by farmer i in year t. Indeed, we can recover the vector 
,

, ,( : ( ))s s

r it k it k r  ε K  while the vector ,0 0

, ,( : ( ))s s

r it k it k r ε K  cannot. We used Laplace approximations for 

integrating the expectation of the probability function [ ]itP r r  over the probability distribution of ,0

,

s

k itε  conditional on 
,

,

s

k it


ε  (see, e.g., Harding and Hausman, 2007). This expectation is part of the likelihood function of the model. 

 

8 Specification and estimation details are available from the authors upon request. 



and ,0

s

ka  for kK  collected in the vector 0a  , the considered model contains five subsets of random 

elements: 

The farm specific parameter vectors iδ  collecting the potential yield parameters ,

y

k i , the input 

requirement parameters ,

x

k i , the input use flexibility parameters 
,ln k i  and the cost function 

linear parameters ,

s

k i  for kK ; the acreage choice flexibility parameters ln i ,
( ),ln g i  and 

|( ),ln m g i  for 1,..., ( )m M g  and 1,...,g G ; the regime fixed cost parameters r

if  for rR  

and the regime choice scale parameter ln i . The vectors iδ  are assumed normally and 

independently distributed across farms. 

The explanatory variable vectors itz  containing the crop prices 
,k itp  , the variable input prices 

,k itw  and the control variable vector 
,

y

k itz , 
,

x

k itz  and 
,

s

k itz  for kK .  

The yield supply and input demand error term vectors yx

itε  containing the error terms  
,

y

k it  and 

,

x

k it  for kK  and that are assumed normally and independently distributed across farms. 

The acreage share error term vectors s

itε  containing the error terms  
,

s

k it  for kK and that are 

assumed normally and independently distributed across farms. 

The production regime error term vectors 
it


ε  containing the error terms r

it  for rR . These 

terms r

it  are assumed independent across regimes and farms, well as distributed according to a 

type I extreme value distribution. 

We further assume that the error term vectors yx

itε , s

itε  and 
it


ε  are mutually independent, and that the 

explanatory variables itz  are (i) strictly exogenous with respect to these error term vectors and (ii) 

independent of the random parameters iδ . The vector itz  contains prices, climatic variables and 

characteristics of the farms’ fixed factor endowments. We finally assume that that the error term 

vectors yx

itε , s

itε  and 
it


ε  are independent across years. 

As the explanatory variable vector itz  doesn’t contain any lagged endogenous variable, the 

considered model can be interpreted either as an essentially static model or as a reduced form model 

as regards the dynamic features of the modelled choices. It is notably difficult to empirically 

disentangle the effects of farmers’ unobserved heterogeneity from those of unobserved persistent 

dynamic features of the modelled processes (see, e.g., Angrist and Pischke, 2009 or Arellano and 

Bonhomme, 2012). For instance, the random parameters iδ  are likely to capture the effects on 

farmers’ production choices and performances of the stable crop rotation schemes that these 



farmers’ seem to rely on.9 Our assuming that the error term vectors yx

itε , s

itε  and 
it


ε  are serially 

independent across years is mostly based on this hypothesis. We do not assume that farmers’ choices 

and performances are not significantly impacted by unobserved dynamic features. But we assume 

that these dynamic features are sufficiently persistent for being mostly captured by the random 

parameters of our model. Of course, dynamic features of crop production and of farmers’ choice are 

important topics. But these are also difficult ones. Their empirical investigation with models 

involving corner solutions in acreage choices and regime fixed costs is left for further research. 

Estimation. The aim of the estimation procedure is to obtain statistical estimates of two parameter 

sets: the fixed parameters and the elements of variance matrices of the error term vectors of the 

model – collected in the vector 0θ  – on the one hand, and the parameters of the probability 

distribution of its random parameter vector – collected in the vector 0η . We use a Maximum 

Likelihood (ML) estimator computed via an Expectation Maximization (EM) algorithm (Dempster 

et al. (1977) for estimating 0 0( , )θ η . 

Let the function ( | ; )g u v λ  generically define the probability distribution function of the random 

vector u conditional on the random vector v parameterized by λ . The likelihood function at ( , )θ η  

of ic  conditional on iz  is given by ( ) ( | , ; ) ( ; )i i i i i ig g d θ c z δ θ δ η δ .10 This likelihood function can 

be obtained neither analytically nor numerically. But it can be estimated via simulation simulated 

methods for computing Simulated ML estimators of 0 0( , )θ η . Albeit possible, the empirical 

implementation of this approach is difficult due to the dimension of our parameter of interest and to 

the rather complex functional form of the likelihood function ( )i θ .11 

We choose to compute our ML estimator via an EM algorithm because EM algorithms are 

particularly well suited for estimating models with missing variables such as random parameters. 

The aim of these algorithms replace a large ML maximization problem by a sequence of simpler 

                                                           
9 See, e.g., Koutchadé et al (2015) for an empirical analysis providing arguments confirming this hypothesis. 
10 The assumed serial independence of the model error terms imply that ( )( | , ; ) ( | , ; )i i i t i it it ig gc z δ θ c z δ θH  where 

( )iH  is the observation history of farm i. 
11 In particular, the probability distribution functions ( | , ; )it it ig c z δ θ  cannot be obtained in analytical closed form. 

These functions contain the probability functions at θ , denoted by, of the regime choice of farmer i in year t (
itr ), 

conditional on the random parameters (
iδ ), explanatory variables (

itz ) and on the acreage shares of the produced 

crops ( it


s ), i.e. the terms ( | , , ; )it it i itg r 

z δ s θ . These probability functions are computed as expectations over the joint 

probability distributions function of the terms 
,

s

k it  for 
0 ( )itk rK . These error terms are arguments of the regime 

expected profit levels ( )it r  that are themselves arguments of the production regime choice. But they must be 

integrated out in the model likelihood function because they cannot be recovered from the data. We use Laplace 

approximations for computing the expectations yielding the terms ( | , , ; )it it i itg r 
z δ s θ  (see, e.g., Harding and 

Hausman, 2007, for an application of this integration approach in a related context). 



problems. EM algorithms iterate an Expectation (E) step and a Maximization (M) step until 

numerical convergence. In our case, the E step consisting of computing the expectation of the 

probability distribution functions ( | , ; )i i ig c z δ θ  and ( ; )ig δ η  conditional on the observed choices 

ic  and explanatory variables iz  according to the probability distribution functions obtained from 

the preceding iteration. Denoting the last available estimates of 0 0( , )θ η  by ˆ ˆ( , )θ η , this step aims at 

obtaining the ‘modified’ log-likelihood functions given by ˆ ˆ ˆ( ) ( | , ; ) ( | , ; , )i i i i ig g d θ c z δ θ δ c z θ η δ  

and ˆ ˆ ˆ( ) ( | ) ( | , ; , )i i ig g d η δ η δ c z θ η δ . The M step then consists of maximizing in the interest 

parameters θ  and η  the sample modified log-likelihood functions obtained from the E step. I.e. it 

consists of solving the problems 
1

1

ˆmax ln ( )
N

ii
N 

θ
θ  and 

1

1

ˆmax ln ( )
N

ii
N 

η
η . This is where 

EM algorithms take advantage of the likelihood functions of random parameter models in general. 

Our model being composed of four equation sub-systems, the structure of the terms ˆ ( )i θ  allows 

for further splitting the maximization problem 
1

1

ˆmax ln ( )
N

ii
N 

θ
θ  into a few simpler 

maximization problems. 

However, the ‘modified’ likelihood functions ˆ ( )i θ  and ˆ ( )i η  can be integrated neither analytically 

nor numerically. Stochastic versions of the EM algorithm – i.e. the so-called SEM or Monte Carlo 

EM (MCEM) algorithms – have been proposed in the computational statistics literature for 

combining the advantages of the EM algorithm and simulation methods (see, e.g., McLachlan and 

Krishnan, 2008). In this study, we rely on the SEM algorithm proposed by Delyon et al. (1999) 

combined with Importance Sampling simulation methods proposed in this context by (Caffo et al., 

2005) for estimating the ‘modified’ likelihood functions ˆ ( )i θ  and ˆ ( )i η . 

Calibration of the simulation model. The estimated ERS multi-crop micro-econometric model can 

be used for “statistically calibrating” its random parameters for each farm of our sample and thus 

for obtaining a simulation model consisting of a sample of farm specific “calibrated” models (see, 

e.g., Koutchade et al., 2015). The underlying idea of this procedure is to use the estimated 

distribution of the random parameters and farmers’ observed choices compute estimates of the farm 

specific parameters according to a “Tell me what you did, I will tell you who you are” logic. 

Interestingly, the Expectation step of the SEM algorithm we use relies on computations closely 

related to this calibration procedure since both rely on the probability distributions of the random 

parameters iδ  conditional on the observed choices ic  and explanatory variables iz . In this study, 



the specific parameter 
iδ  of farm i is calibrated as the mode – i.e. according to a ML ‘calibration’ 

criterion – of its simulated probability distribution conditional on ( , )i ic z , i.e. on what is known 

about farm i in the data. Also, this ‘statistical calibration’ procedure and its counterpart in the SEM 

algorithm allow for calibrating the random parameters corresponding to crops that have not been 

grown by the considered farmer or corresponding to regime fixed costs for regimes that have not 

been chosen by the considered farmer. 

3. Empirical application 

Data. The model is estimated on an unbalanced panel data set containing 2871 observations of 778 

French grain crop producers in the North and North-East of France, over the years 2006 to 2011. 

This sample has been extracted from data provided by an accounting agency located in the French 

territorial division La Marne. It contains detailed information about crop production for each farm 

(acreages, yields, input uses and crop prices at the farm gate). We consider seven crops (or crop 

aggregates): sugar beet, alfalfa, peas, rapeseed, winter crops (wheat and barley), corn and spring 

barley, which represent more than 80% of the total acreage in the considered area.12 

The variable input aggregate account for the use of fertilizers, pesticides and seeds. The 

corresponding price index is computed as a standard Tornqvist index. When a farmer doesn’t 

produce a crop the corresponding output and input prices are unobserved. These missing prices were 

estimated by the yearly average of the corresponding observed prices. All prices are deflated by the 

hired production services price index (base 1 in 2006) obtained from the French department of 

Agriculture. This aggregated price index mainly depends on the price indices of machinery, fuel and 

hired labor, the main inputs involved in the implicit acreage management cost function. 

Figure 1 depicts the three levels nesting structure that we adopt for the seven crops. In a first level 

we distinguish a cereal group composed of winter crops, corn and spring barley, and a group of 

crops that are generally planted at the head of rotation: corn, alfalfa, peas and rapeseed. This 

structure is intended to reflect the basic rotation scheme of grain producers in France. In a second 

level, the cereal group is split into two subgroups: winter cereals on the one hand and other cereals 

on the other hand, in order to account for the differences in planting seasons between those cereals.  

The ‘head of rotation’ group is split into an ‘oilseeds and protein crops’ subgroup and a subgroup 

                                                           
12 The EU sugar beet subsidy scheme requires limited adjustments in our application. This scheme scheme is based on 

sugar beet production quotas – held by farmers on a historical basis – with subsidized prices. Yet, the actual sugar beet 

production largely exceeds the subsidized quota for all sugar beet producers of our sample. This suggests that these 

farmers choose their sugar beet acreages, yield levels and input use levels according to the off-quota sugar beet prices. 



including only sugar beet (the only root crop considered here). 

Table 1 provides descriptive statistics concerning the production regimes observed in the data. 

Based on these seven crops, 127 regimes, could theoretically be grown by farmers. Only 10 of them 

are actually observed in our sample. All farmers grow winter crops and at least two additional crops. 

The most frequent regimes in the sample (regimes 2, 3 and 4) actually include five or six crops. It 

is interesting to note that most farmers adopt different production regimes over the 5 years of our 

sample: only 11 out of 778 farmers have not changed their production regime during the period. The 

average gross margins associated to each regime are reported in the last column of Table 1. An 

interesting feature appears here: the most frequently chosen regimes are not the ones that lead on 

average to the highest gross margin. For instance, regime 8 – which excludes peas, rapeseed and 

corn – is characterized by the highest observed gross margin, but has been adopted in only 2.8% of 

the observations. This comes to illustrate the fact that farmers’ choices of production regime are 

driven by other factors than gross returns, such as the acreage management and regime fixed costs 

represented in our model. 

Estimation results. The parameter estimates of our model are not reported here due to space 

limitation: we only provide some insights of these results.13 The expectations of all the random 

parameters are precisely estimated, their values lie in reasonable ranges and they have expected 

signs for all crops and crop groups, with notably expected ranges of the acreage flexibility 

parameters (
, , , 0g m i g i i     ). The variance parameters of the random parameter distributions 

are all statistically different from zero. This indicates that the technical and behavioral parameters 

of our model significantly vary across farms, despite the fact that we control for observed factors 

characterizing farm heterogeneity (land and capital endowments and climate). Finally, the mean 

estimated value of the scale parameter i  in the regime choice model (13) being relatively large 

(3.40), the profit and regime fixed costs in the regime choice appear to be significant drivers of the 

regime choices.  

Estimated criteria tend to show that the proposed model offers a satisfactory fit to our data, with a 

better fit to the major crops than to the ones less frequently produced or with smaller acreages (peas, 

corn and, to a lesser extent, alfalfa). Importantly, our investigations on this issue tend to demonstrate 

that our results are robust to various distributional assumptions related to the model random 

parameters. Random parameter variations account for a significant part of the observed variations 

in farmers’ choices. But, variations in the model error terms account for a comparable part. Even if 

                                                           
13 Detailed estimation results are available from the authors upon request. 



crop production is known to be significantly affect by numerous random events, this indicates that 

there is still room for further improving the explanatory power of our model. We pursue our current 

research in that direction, by looking for additional control variables in particular. 

Simulation results. The structure of the proposed ERS multi-crop micro-econometric model allows 

for investigating the relative importance of the main drivers of the production regime choices. For 

that purpose we consider the simulation model obtained from the estimated one by calibrating the 

farm specific parameters for each farm of our sample. Then we use this simulation model for 

investigating the prediction power of three elements of the regime choice models: the weighted sum 

of the expected crop gross returns ( ) e

it itr s π , the acreage management costs  ( )it itC rs  and the 

regime fixed costs r

if  for rR . We simulate the regime choices according to each of these 

elements as well as to combinations of these elements, and then confront them, on average, with the 

observed regime choices. Taken together these simulation results confirm that the regime fixed costs 

matter, but mainly in combination with the other drivers of the regime choice model. Maximization 

of the gross margins, of the acreage management costs or of the regime fixed cost alone leads to 

very poor predictions of regime choices. Considering pairs of these choice criteria only slightly 

improve the predictions, while considering together these three criteria unsurprisingly provides 

predicted choices very close, on average, to the observed ones. 

The estimated regime costs tend to slightly decrease as the crop number decrease from 7 to 5 crops. 

They don’t follow any clear pattern below 5 crops. Moreover, the fact that these costs appear to 

significantly vary across farms complicates their analysis and interpretation. This point clearly 

deserves further research. To be completed: these fixed costs are highlighted in the article. 

To illustrate the relevance of the approach we propose to deal with corner in acreage choices, we 

simulate the impacts of changes in expected crop prices on acreage choices. Acreage price 

elasticities play a crucial role in this type of exercise. Yet these elasticities account both for the 

impact of crop prices on acreages within any given regime and for the switch in production regimes 

induced by crop price changes. These two effects can be distinguished by generalizing to multiple 

regimes the decomposition originally proposed by McDonald and Moffit (1980) in the case of a 

Tobit model. The average acreage own price elasticities of our farm sample are reported in Table 2. 

They have expected signs and, because of the crop disaggregation level of our data, are larger than 

those commonly found in the literature. The decomposition of these elasticities shows that a large 

part of the price effects on acreages can be due to the inclusion or not of these crops in the production 

regimes chosen by farmers. For crops like corn or peas with small overall acreage shares, changes 



in the production regimes account for about one third of the estimated price elasticities. However, 

changes in the production regimes can also be substantial for frequently produced crops. For 

instance, they account for a quarter of the sugar beet acreage own price elasticities. 

The impact of the production regime choice is further highlighted by simulating the effects of 

increases in the price of peas on the acreages of the crop. Owing to their fixing atmospheric nitrogen 

for themselves as well as for their following crops in the rotation this crop is often considered as 

‘diversification crop’ of significant interest. Yet, protein peas acreages have declined over the last 

decade in the considered area mostly because of lacking profitability, as regards to that of the other 

rotation heads in particular.14 The simulated impacts of increases in the price of peas on acreages 

are reported on Figure 2. According to our results, a 50% increase in the price of peas would increase 

the average peas acreage share by 1.7%, from 1.1% to 2.8%. These additional peas acreages would 

mainly replace those of other rotation heads: the average combined acreage share of rapeseed, alfalfa 

and sugar beet would decrease by around 1.2% while that of cereals would only decrease by around 

0.5%. This illustrates the interests in considering the crop – agronomic and management –  

characteristics when specifying the acreage management cost function. This also suggests that the 

increase in the rapeseed price due to the EU support to bio-fuels has played significant role in the 

decrease in the peas acreages in the considered area. 

Interestingly, about two thirds of the increase in the peas acreage would be due to new producers. 

This also explains another feature of our simulation results. The simulated increases in the peas 

acreage in not linear in the price of peas: in particular, the increase in the peas acreages is more 

pronounced above the 20% price increase than below. Figure 3 shows that the adoption rates of the 

production regimes including protein peas, regime 2 in particular, have similar patterns. This is 

partly explained by the threshold effects generated by the production regime fixed costs. 

4. Concluding remarks 

The main aims of this article are twofold. First, it presents an original modelling framework for 

dealing with corner solutions in multi-crop micro-econometric models. This framework is based on 

the ERS approach, implying that it is fully consistent from an economic viewpoint. It also explicitly 

considers regime fixed costs. These features make the proposed ERS multi-crop micro-econometric 

models suitable for analysing, and to some extent for disentangling, the effects of the main drivers 

of farmers’ acreage choices at disaggregation levels at which the corner solution issue is pervasive. 

                                                           
14 In other parts of France the extension of a soil infection (aphanomyces) severely impacts peas yields and explains 

the decrease peas acreages. The diversified cropping systems used in La Marne seems to limit this extension. 



For instance, our estimation and simulation results and the structure of the considered model tend 

to demonstrate the expected crop returns are not the sole significant drivers of farmers’ acreage 

choices, at least in the short run. 

Second, the application presented in this article illustrates the empirical tractability of ERS models, 

of random parameter ERS models in particular, for investigating farmers’ production choices. Of 

course, to estimate such models raises challenging issues. But, this is also necessary for estimating 

structured micro-econometric models suitably accounting for important features characterizing 

micro-economic agricultural production data, among which significant unobserved heterogeneity. 

In particular, to estimate such models enables analysts to calibrate simulation models consisting of 

samples of farm specific models. According to our experience, ML estimators computed with SEM 

or MCEM algorithms combining simulation methods appear to be interesting alternatives to 

Simulated ML estimators for relatively large systems of interrelated equations such as the random 

parameter ERS models considered in our empirical application. 

Of course, significant specification and estimation issues remain to be addressed for ERS multi-crop 

micro-econometric models such as ours to meet the needs of the agricultural production economist 

community. However, as fostering crop diversification tend to become an important agri-

environmental objective in many countries, including those of the European Union, the modelling 

framework proposed in this article can be seen as a first step in the right direction. 

5. References 

Angrist, J. D., & Pischke, J. S. (2009). Instrumental variables in action: sometimes you get what 

you need. Mostly harmless econometrics: an empiricist’s companion, 113-220. 

Arellano, M., & Bonhomme, S. (2012). Identifying distributional characteristics in random 

coefficients panel data models. The Review of Economic Studies, 79(3), 987-1020. 

Arndt, C., Liu, S. and Preckel P.V. (1999). On Dual Approaches to Demand Systems Estimation in 

the Presence of Binding Quantity Constraints. Applied Economics, 31(8): 999-1008. 

Carpentier, A. and Letort, E. (2014). Multicrop models with MultiNomial Logit acreage shares. 

Environmental and Resource Economics, 59(4): 537-559. 

Chakir, R., Bousquet, A. and Ladoux, N. (2004). Modeling Corner Solutions with Panel Data: 

Application to the Industrial Energy Demand in France. Empirical Economics, 29(1): 193-208. 

Delyon, B., Lavielle, M. and Moulines, E. (1999). Convergence of a stochastic approximation 

version of the EM algorithm. Annals of Statistics, 27(1): 94-128. 

Dempster, A. P., Laird, N. M. and Rubin, D. B.  (1977). Maximum likelihood from incomplete data 



via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1): 1-38. 

Fezzi, C. and Bateman, I.J. (2011). Structural agricultural land use modelling for spatial agro-

environmental policy analysis. American Journal of Agricultural Economics, 93(4): 1168-1188. 

Guyomard, H., Baudry, M., & Carpentier, A. (1996). Estimating crop supply response in the 

presence of farm programmes: application to the CAP. European Review of Agricultural 

Economics, 23(4), 401-420. 

Harding, M.C. and Hausman, J. (2007). Using Laplace approximation to estimate the random 

coefficients Logit model by nonlinear least squares. International Economic Review, 48(4): 

1311-1328. 

Kao, C., Lee, L.-F. and Pitt, M.M. (2001). SML Estimation of the Linear Expenditure System with 

Binding Non-negativity Constraints. Annals of Economics and Finance, 2: 203-223. 

Koutchadé, P., Carpentier, A. and Femenia, F. (2015). Empirical modeling of production decisions 

of heterogeneous farmers with random parameter models. SMART-LERECO Working Paper 

WP15-10 

Lacroix, A. and Thomas, A. (2011). Estimating the Environmental Impact of Land and Production 

Decisions with Multivariate Selection Rules. American Journal of Agricultural Economics, 

93(3): 780-798. 

Lee, L.-F. and Pitt, M.M. (1986). Microeconometric demand systems with binding nonnegativity 

constraints: the dual approach. Econometrica, 54(5): 1237-1242. 

McLachlan G. and T. Krishnan, 2008. The EM algorithm and extensions. 2nd Ed. Wiley Ed 

Moore, M. R., & Negri, D. H. (1992). A multicrop production model of irrigated agriculture, applied 

to water allocation policy of the Bureau of Reclamation. Journal of Agricultural and Resource 

Economics, 29-43. 

Platoni, S., Sckokai P. and Moro, D. 2012. Panel Data Estimation Techniques and Farm-level Data 

Models. American Journal of Agricultural Economics, 94(4): 1202-1217. 

Sckokai, P. and Moro, D. (2009).  Modelling the impact of the CAP Single Farm Payment on farm 

investment and output European Review of Agricultural Economics, 36(3): 395-423. 

Sckokaï, P. and Moro, D. (2006). Modelling the Reforms of the Common Agricultural Policy for 

Arable Crops under Uncertainty. American Journal of Agricultural Economics, 88(1): 43-56. 

Wales, T.J. and Woodland, A.D. (1983). Estimation of Consumer Demand Systems with Binding 

Non-Negativity Constraints. Journal of Econometrics, 21: 263-285. 

Wooldridge, J.M. (2009). Econometric analysis of cross section and panel data. Second edition. 

Cambridge, MA: The MIT Press.  

 

http://ideas.repec.org/a/oup/ajagec/v93y2011i3p780-798.html
http://ideas.repec.org/a/oup/ajagec/v93y2011i3p780-798.html
http://ideas.repec.org/a/oup/ajagec/v94y2012i5p1202-1217.html
http://ideas.repec.org/a/oup/ajagec/v94y2012i5p1202-1217.html
http://erae.oxfordjournals.org/search?author1=Paolo+Sckokai&sortspec=date&submit=Submit
http://erae.oxfordjournals.org/search?author1=Daniele+Moro&sortspec=date&submit=Submit


6. Tables and Figures 

 

Table 1: Descriptive statistics of the production regimes represented in the data 

Regime 

number 

Crops produced in the regime 

Regime 

frequency 

Average 

gross 

margin 

(€/ha)d 

Winter 

crops 
Corn 

Spring 

Barley 

Sugar 

beet 
Alfalfa Peas 

Rape-

seed 

1        5.3% 767 

2        16.6% 797 

3        10.9% 851 

4        43.8% 884 

5        4.4% 868 

6        4.3% 719 

7        6.6% 870 

8        2.8% 997 

9        2.8% 765 

10        2.5% 648 

Average 

acreage sharea 
38.6% 2.6% 18.7% 14.7% 8.9% 1.1% 15.4%  

 

Production 

frequency 
100% 29% 97% 90% 79% 22% 98%  

 

          

a Standard deviation in parentheses. b Winter wheat. c. Off-quota price. d. Sugar beet subsidies excluded. 

 

Table 2: Own price elasticities of acreages computed at sample average  

 Winter 

cereals 

Corn Spring 

Barley 

Sugar 

beet 

Alfalfa Protein 

peas 

Rapeseed 

Overall elasticitiy 0.51 3.84 0.82 2.72 0.95 1.50 1.06 

Part of the elasticity due to:        

Acreage changes within regime 0.50 2.94 0.75 2.19 0.78 0.91 1.00 

Change in production regime 0.00 0.90 0.07 0.53 0.17 0.59 0.06 

 

 

 

 

 

 

 



Figure 1: Nesting structure of the acreage choice model 

 

Groups Cereals Rotation heads 

Subgroups Winter cereals Spring cereals Oil and protein crops Root crops 

Crops 
Winter 

cereals* 

Spring 

barley 
Corn Rapeseed 

Protein 

peas 
Alfalfa Sugar beet 

* Winter wheat (mostly) and winter barley 

 

 

 

 

 

Figure 2: Simulated impacts of changes in the price of peas on acreage shares 

 

 

 

Figure 3: Simulated impacts of changes in the price of peas on regime adoption rates 
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