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THE DYNAMIC LUENBERGER-HICKS-MOORSTEEN

PRODUCTIVITY INDICATOR WITH AN APPLICATION TO

DAIRY FARMS IN SOUTH WEST ENGLAND

FREDERIC ANG AND PIETER JAN KERSTENS

Abstract. This paper introduces a dynamic Luenberger-Hicks-Moorsteen (LHM)
productivity indicator that takes into account the adjustment costs of changing
the level of quasi-fixed capital inputs. Being additively complete in the dynamic
sense, the LHM indicator is decomposed into contributions of outputs, variable
inputs and investments in dynamic factors. Moreover, we decompose the LHM
indicator into technical change, technical inefficiency change and scale ineffi-
ciency change using an investment-, output- and input-direction. Employing a
nonparametric framework, the empirical application focuses on the dairy sector
in South West England over the period 2001− 2014.
Keywords Luenberger-Hicks-Moorsteen indicator, productivity growth, adjust-
ment cost, additive completeness
JEL codes C43, D24, D92, Q10
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1. Introduction

Productivity analysis is an important monitoring tool of economic performance.
An area having only received scant attention is the appropriate modeling of in-
tertemporal linkages of production decisions. The vast majority of studies use a
static approach, in which firms are assumed to instantaneously change the levels of
all types of inputs to their long-run equilibrium. Yet, this misrepresents the slug-
gish adjustment of quasi-fixed inputs. Investment in quasi-fixed inputs is needed
for improving productivity in the long run, but its associated adjustment costs
may lead to an misestimation of productivity.

Only few studies develop dynamic productivity measures that appropriately rep-
resent the adjustment costs associated with investment. Starting from a dynamic
profit-maximization problem, Luh and Stefanou (1991) assess dynamic produc-
tivity growth as the Solow residual growth in outputs not explained by growth in
variable and quasi-fixed inputs and changing shadow values of the input stock. The
framework also allows assessment of the contribution of technical change and scale
change. Rungsuriyawiboon and Stefanou (2008) extend this framework by ac-
counting for technical efficiency change starting from a dynamic cost-minimization
problem. Oude Lansink, Stefanou, and Serra (2015) develop a dynamic Luen-
berger productivity indicator that is based on dynamic directional distance func-
tions. This measure adapts the static Luenberger productivity indicator of Chambers
(2002) to a dynamic context.

The dynamic Solow-residual-based productivity measures of Luh and Stefanou
(1991) and Rungsuriyawiboon and Stefanou (2008) can only be estimated para-
metrically. They also depend on some behavioral economic assumption. However,
the parametric approach inherently relies on the functional specification underlying
the production technology. In addition, the behavioral economic assumption can
be unclear in various instances. Oude Lansink, Stefanou, and Serra (2015)’s dy-
namic Luenberger productivity indicators can be estimated both parametrically (as
in their study) and nonparametrically (as in Kapelko, Oude Lansink, and Stefanou
(2015)). Moreover, since it is possible to compute primal as well as dual dynamic
productivity measures, one could solely focus on the primal representation, with-
holding the dual behavioral assumption. However, the dynamic Luenberger indi-
cator is not ”additively complete” (O’Donnell, 2012) in the dynamic sense in that
it cannot be decomposed into components of output growth, input decline and
investment expansion. This prevents us to give concrete recommendations about
how to improve dynamic productivity.

The current paper develops a dynamic Luenberger-Hicks-Moorsteen (LHM) pro-
ductivity indicator. The static LHM indicator developed by Briec and Kerstens
(2004) is additively complete in the static sense and can thus be expressed as the
difference between an output aggregator and an input aggregator. Ang and Kerstens
(2017a) show that the static LHM indicator can be decomposed into contributions
of technical change, technical inefficiency change and scale inefficiency change. Our
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newly developed dynamic LHM indicator is additively complete in the dynamic
sense and can thus be decomposed into contributions of outputs, variable inputs
and investments. Furthermore, in line with Ang and Kerstens (2017a), it can also
be decomposed into technical change, technical inefficiency change and scale inef-
ficiency change. The proposed measure can be estimated parametrically as well as
non-parametrically.

Using Data Envelopment Analysis (DEA), the empirical application focuses on
the dairy sector in South West England covering the years 2001 − 2014. South
West England is the most dairy-intensive region in England. The considered period
represents the late phase of the recently expired milk quota system, which held for
all members of the European Union from 1984 to 2015. In 2003, it was announced
that the milk quota system would be abolished, leading to investment expansion
of proactive farmers. In the subsequent period, the milk quotum was progressively
increased at several instances, which made it effectively non-binding for English
dairy farms. We expect that the changing policy circumstances have an impact
on the contributions of outputs, inputs and dynamic factors, on the one hand,
and technical change, technical inefficiency change and scale inefficiency change,
on the other hand. This makes our newly developed dynamic LHM indicator and
its various decompositions useful for this application.

This paper is structured as follows. The next section develops the dynamic LHM
indicator and describes the empirical application, respectively. This is followed by
a presentation of the results. The final section concludes.

2. The dynamic Luenberger-Hicks-Moorsteen indicator

Let Xt ∈ R
n
+ be the inputs, Yt ∈ R

m
+ outputs, It ∈ R

o
+ investment and Kt ∈ R

o
+

the associated capital stock. The dynamic technology set is defined as follows
(Ang and Oude Lansink, 2016; Silva, Oude Lansink, and Stefanou, 2015):1

T t(Kt) =
{

(Xt, It,Yt) ∈ R
n+m+o
+ |(Xt, It) produces Yt given Kt

}

In line with Silva, Oude Lansink, and Stefanou (2015) and Ang and Oude Lansink
(2016), we make the following assumptions regarding the dynamic technology:

Axiom 1 (Closedness). T t(Kt) is closed.

Axiom 2 (Free disposability of inputs and outputs). if (X′

t,−Y′

t) ≥ (Xt,−Yt)
then (Xt, It,Yt) ∈ T t(Kt) ⇒ (X′

t, It,Y
′

t) ∈ T t(Kt).

Axiom 3 (Investment inaction is possible). (Xt, 0t,Yt) ∈ T t(Kt).

1Silva, Oude Lansink, and Stefanou (2015) build on the dynamic input directional distance
function framework. Ang and Oude Lansink (2016) generalize this to a dynamic directional
distance function framework, which also considers inefficiencies in the output direction. This
paper follows the latter approach.
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Axiom 4 (Negative monotonicity in investments). if It ≥ I′t then (Xt, It,Yt) ∈
T t(Kt) ⇒ (Xt, I

′

t,Yt) ∈ T t(Kt).

Axiom 5 (Reverse nestedness in capital stock). if K′

t ≥ Kt then T t(Kt) ⊆
T t(K

′

t).

Axiom 6 (Convexity). Technology set T t(Kt) is convex.

Axiom 3 states that production is possible without investment and is consistent
with periodic observed investment spikes found in the empirical literature. Adjust-
ment costs are modeled by Axiom 4 and Axiom 6 as a (temporary) reduction of
output as a consequence of investment. Finally, Axiom 5 models that an addition
in the capital stock widens the production possibilities.

The dynamic technology can equivalently be represented by the dynamic direc-
tional distance function (Ang and Oude Lansink, 2016; Silva, Oude Lansink, and Stefanou,
2015). The time-related dynamic directional distance function for (a, b) ∈ {t, t+ 1}×
{t, t+ 1} is:
(1)
Db(Xa, Ia,Ya; ga|Kb) = sup

{

β ∈ R : (Xa − βgx
a, Ia + βgi

a,Ya + βgy
a) ∈ T b(Kb)

}

,

if (Xa−βgx
a, Ia+βgi

a,Ya+βgy
a) ∈ T b(Kb) for some β and Db(Xa, Ia,Ya; ga|Kb) =

−∞ otherwise. Here, ga = (gx
a, g

i
a, g

y
a) ∈ R

n+m+o
++ represents the directional vector.

O’Donnell (2012) defines additive completeness of Total Factor Productivity
(TFP) in the static sense. We extend this to the dynamic context:

Definition 1 (additive completeness in the dynamic sense). Let TFPIs(Xt, It,Yt,Xs, Is,Ys)
denote an index number that compares TFP in period s with TFP in period t us-
ing s as a base. TFPIs(Xt, It,Yt,Xs, Is,Ys) is additively complete in the dynamic
sense if and only if it can be expressed in the form

TFPIs(Xt, It,Yt,Xs, Is,Ys) = Y(Yt)−Y(Ys) + I(It)− I(Is)−X (Xt) +X (Xs)

≡ LYt,t+1 + LIt,t+1 − LXt,t+1

where Y(·), I(·) and X (·) are non-negative non-decreasing functions satisfying the
translation property Υ(Υ + λΥ) = Υ(Υ) + λ.

Intuitively, additive completeness in the dynamic sense means that productivity
can be decomposed in three components: output change LYt,t+1, investment change
LIt,t+1 and input change LXt,t+1. Recently, Oude Lansink, Stefanou, and Serra
(2015) proposed a dynamic Luenberger indicator. The Luenberger indicator is
not additively complete and cannot be decomposed into these three components.
Ang and Kerstens (2017a) show that the static Luenberger-Hicks-Moorsteen (LHM)
indicator of Briec and Kerstens (2004) is additively complete in the static sense.
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This paper develops a dynamic LHM indicator being additively complete in the
dynamic sense. We define the dynamic LHM indicator with base period t as:

LHMt(Xt+1, It+1,Yt+1,Xt, It,Yt; gt, gt+1)(2)

= (Dt(Xt, It,Yt; (0, 0, g
y
t )|Kt)−Dt(Xt, It,Yt+1; (0, 0, g

y
t+1)|Kt))

− (Dt(Xt+1, It,Yt; (g
x
t+1, 0, 0)|Kt)−Dt(Xt, It,Yt; (g

x
t , 0, 0)|Kt))

+ (Dt(Xt, It,Yt; (0, g
i
t, 0)|Kt)−Dt(Xt, It+1,Yt; (0, g

i
t+1, 0)|Kt))

≡ LYt(Xt, It,Yt,Yt+1; g
y
t , g

y
t+1)− LXt(Xt,Xt+1, It,Yt; g

x
t , g

x
t+1)

+ LIt(Xt, It, It+1,Yt; g
i
t, g

i
t+1),

Analogously, a base period t+ 1 dynamic LHM indicator is defined as:

LHMt+1(Xt+1, It+1,Yt+1,Xt, It,Yt; gt, gt+1)

(3)

= (Dt+1(Xt+1, It+1,Yt; (0, 0, g
y
t )|Kt+1)−Dt+1(Xt+1, It+1,Yt+1; (0, 0, g

y
t+1)|Kt+1))

− (Dt+1(Xt+1, It+1,Yt+1; (g
x
t+1, 0, 0)|Kt+1)−Dt+1(Xt, It+1,Yt+1; (g

x
t , 0, 0)|Kt+1))

+ (Dt+1(Xt+1, It,Yt+1; (0, g
i
t, 0)|Kt+1)−Dt+1(Xt+1, It+1,Yt+1; (0, g

i
t+1, 0)|Kt+1))

≡ LYt+1(Xt+1, It+1,Yt+1,Yt; g
y
t , g

y
t+1)− LXt+1(Xt,Xt+1, It+1,Yt+1; g

x
t , g

x
t+1)

+ LIt+1(Xt+1, It, It+1,Yt+1; g
i
t, g

i
t+1),

Finally, one takes an arithmetic mean of LHMt and LHMt+1 to avoid an arbitrary
choice of base periods:

LHMt,t+1(Xt, It,Yt,Xt+1, It+1,Yt+1; gt, gt+1)(4)

=
1

2

[

LHMt(Xt+1, It+1,Yt+1,Xt, It,Yt; gt, gt+1)

+ LHMt+1(Xt+1, It+1,Yt+1,Xt, It,Yt; gt, gt+1)
]

The dynamic LHM indicator takes into account the adjustment costs associated
with investments. It is straightforward to verify that the dynamic LHM is ad-
ditively complete in the dynamic sense. This allows us to analyze the extent to
which input growth, investment growth and output growth contribute to dynamic
productivity growth.

3. Decomposition of the dynamic Luenberger-Hicks-Moorsteen

indicator

This paper decomposes the dynamic LHM indicator into dynamic technical
change, dynamic technical inefficiency change and dynamic scale inefficiency change
using the investment direction. In the remainder of the paper, we omit ”dynamic”
in each component for brevity. In line with the decomposition of the static LHM
indicator in Ang and Kerstens (2017a), the dynamic LHM indicator can be decom-
posed using investment directions, output directions or variable input directions.
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This section only focuses on the decomposition using the investment direction.
Nonetheless, we also decompose the dynamic LHM indicator using the output
direction and input direction as explained in Ang and Kerstens (2017a). Our de-
composition consists of three components:2

(5) LHMt,t+1 = ∆T i
t,t+1 +∆TEI it,t+1 +∆SEC i

t,t+1,

representing technical change, technical inefficiency change and scale inefficiency
change, respectively. The definitions of the components are similar to the compo-
nents of the static LHM indicator in Ang and Kerstens (2017a), except for a subtle
difference in the scale inefficiency change component. In what follows, we therefore
solely focus on ∆SEC i

t,t+1 and refer to the Appendix for the other components’
definitions.

The scale inefficiency change component is obtained as the residual:

LHMt,t+1−∆T i
t,t+1 −∆TEI it,t+1

(6)

=
1

2

{[

Dt(Xt, It,Yt; (0, 0, g
y
t )|Kt)−Dt(Xt, It,Yt+1; (0, 0, g

y
t+1)|Kt)

]

+
[

Dt+1(Xt+1, It+1,Yt; (0, 0, g
y
t )|Kt+1)−Dt+1(Xt+1, It+1,Yt+1; (0, 0, g

y
t+1)|Kt+1)

]}

−
1

2

{[

Dt(Xt+1, It,Yt; (g
x
t+1, 0, 0)|Kt)−Dt(Xt, It,Yt; (g

x
t , 0, 0)|Kt)

]

+
[

Dt+1(Xt+1, It+1,Yt+1; (g
x
t+1, 0, 0)|Kt+1)−Dt+1(Xt, It+1,Yt+1; (g

x
t , 0, 0)|Kt+1)

]}

+
1

2

{[

Dt(Xt+1, It+1,Yt+1; (0, g
i
t+1, 0)|Kt)−Dt(Xt, It+1,Yt; (0, g

i
t+1, 0)|Kt)

]

+
[

Dt+1(Xt+1, It,Yt+1; (0, g
i
t, 0)|Kt+1)−Dt+1(Xt, It,Yt; (0, g

i
t, 0)|Kt+1)

]}

.

In order to better understand the intuition behind what this exactly measures, we
rewrite it in a more comprehensible form in analogy to Ang and Kerstens (2017a).
First, define the projections of It and It+1 on the production frontier at time t:

I∗t = It +Dt(Xt, It,Yt; (0, g
i
t, 0)|Kt)g

i
t(7a)

I∗∗t+1 = It+1 +Dt(Xt+1, It+1,Yt+1; (0, g
i
t+1, 0)|Kt)g

i
t+1(7b)

Similarly, define the projections of It and It+1 on the production frontier at time
t+ 1:

I∗∗t = It +Dt+1(Xt, It,Yt; (0, g
i
t, 0)|Kt+1)g

i
t(8a)

I∗t+1 = It+1 +Dt+1(Xt+1, It+1,Yt+1; (0, g
i
t+1, 0)|Kt+1)g

i
t+1(8b)

Adding and subtractingDt(Xt, It,Yt; (0, g
i
t, 0)|Kt) andDt+1(Xt+1, It+1,Yt+1; (0, g

i
t+1, 0)|Kt+1)

to and from (6), respectively, and using the translation property of the directional

2Since we use directional distance functions as aggregator functions for outputs, investments
and inputs, there is no mix inefficiency change (O’Donnell, 2012)
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distance function and the definitions of the projections above, we find the scale
inefficiency change component:

∆SEC i
t,t+1 =

1

2

{[

Dt(Xt, It,Yt; (0, 0, g
y
t )|Kt)−Dt(Xt, It,Yt+1; (0, 0, g

y
t+1)|Kt)

]

+
[

Dt+1(Xt+1, It+1,Yt; (0, 0, g
y
t )|Kt+1)−Dt+1(Xt+1, It+1,Yt+1; (0, 0, g

y
t+1)|Kt+1)

]}

(9)

−
1

2

{[

Dt(Xt+1, It,Yt; (g
x
t+1, 0, 0)|Kt)−Dt(Xt, It,Yt; (g

x
t , 0, 0)|Kt)

]

+
[

Dt+1(Xt+1, It+1,Yt+1; (g
x
t+1, 0, 0)|Kt+1)−Dt+1(Xt, It+1,Yt+1; (g

x
t , 0, 0)|Kt+1)

]}

+
1

2

{[

Dt(Xt, I
∗

t ,Yt; (0, g
i
t, 0)|Kt)−Dt(Xt, I

∗∗

t+1,Yt; (0, g
i
t+1, 0)|Kt)

]

+
[

Dt+1(Xt+1, I
∗∗

t ,Yt+1; (0, g
i
t, 0)|Kt+1)−Dt+1(Xt+1, I

∗

t+1,Yt+1; (0, g
i
t+1, 0)|Kt+1)

]}

≡
1

2

{

∆SEC i
t +∆SEC i

t+1

}

,

which has the interpretation of measuring changes in “global” returns to scale
in line with Diewert and Fox (2014, 2017) and Ang and Kerstens (2017a). The
scale inefficiency change component is the arithmetic average of a Laspeyres type
indicator

∆SEC i
t =

1

4

{[

Dt(Xt, It,Yt; (0, 0, g
y
t )|Kt)−Dt(Xt, It,Yt+1; (0, 0, g

y
t+1)|Kt)

]

(10)

−
[

Dt(Xt+1, It,Yt; (g
x
t+1, 0, 0)|Kt)−Dt(Xt, It,Yt; (g

x
t , 0, 0)|Kt)

]}

+
1

4

{[

Dt(Xt, It,Yt; (0, 0, g
y
t )|Kt)−Dt(Xt, It,Yt+1; (0, 0, g

y
t+1)|Kt)

]

+
[

Dt(Xt, I
∗

t ,Yt; (0, g
i
t, 0)|Kt)−Dt(Xt, I

∗∗

t+1,Yt; (0, g
i
t+1, 0)|Kt)

]}

+
1

4

{[

Dt(Xt, I
∗

t ,Yt; (0, g
i
t, 0)|Kt)−Dt(Xt, I

∗∗

t+1,Yt; (0, g
i
t+1, 0)|Kt)

]

−
[

Dt(Xt+1, It,Yt; (g
x
t+1, 0, 0)|Kt)−Dt(Xt, It,Yt; (g

x
t , 0, 0)|Kt)

]}

=
1

4
{SY Ct − SXCt}+

1

4
{SY Ct + SICt}+

1

4
{SICt − SXCt}

≡ ∆SEC
y,x
t +∆SEC

y,i
t +∆SEC

i,x
t ,
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and a Paasche type indicator

∆SEC i
t+1 =

1

4

{[

Dt+1(Xt+1, It+1,Yt; (0, 0, g
y
t )|Kt+1)−Dt+1(Xt+1, It+1,Yt+1; (0, 0, g

y
t+1)|Kt+1)

]

(11)

−
[

Dt+1(Xt+1, It+1,Yt+1; (g
x
t+1, 0, 0)|Kt+1)−Dt+1(Xt, It+1,Yt+1; (g

x
t , 0, 0)|Kt+1)

]}

+
1

4

{[

Dt+1(Xt+1, It+1,Yt; (0, 0, g
y
t )|Kt+1)−Dt+1(Xt+1, It+1,Yt+1; (0, 0, g

y
t+1)|Kt+1)

]

+
[

Dt+1(Xt+1, I
∗∗

t ,Yt+1; (0, g
i
t, 0)|Kt+1)−Dt+1(Xt+1, I

∗

t+1,Yt+1; (0, g
i
t+1, 0)|Kt+1)

]}

+
1

4

{[

Dt+1(Xt+1, I
∗∗

t ,Yt+1; (0, g
i
t, 0)|Kt+1)−Dt+1(Xt+1, I

∗

t+1,Yt+1; (0, g
i
t+1, 0)|Kt+1)

]

−
[

Dt+1(Xt+1, It+1,Yt+1; (g
x
t+1, 0, 0)|Kt+1)−Dt+1(Xt, It+1,Yt+1; (g

x
t , 0, 0)|Kt+1)

]}

=
1

4
{SY Ct+1 − SXCt+1}+

1

4
{SY Ct+1 + SICt+1}+

1

4
{SICt+1 − SXCt+1}

≡ ∆SEC
y,x
t+1 +∆SEC

y,i
t+1 +∆SEC

i,x
t+1.

Measuring changes in outputs, investments and variable inputs, ∆SEC i
t and

∆SEC i
t+1 each consist of three subcomponents. Figure 1 illustrates these different

components of ∆SEC i
t . These subcomponents can be interpreted as a finite differ-

ence approximation of the frontier’s gradient measuring changes in (i) outputs vs
variable inputs (ii) outputs vs investments and (iii) investments vs variable inputs.
In practice, one simply computes (6) instead of (9).

Figure 1. Graphical illustration of ∆SEC i
t
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4. Empirical application

4.1. Data description. The empirical application focuses on specialized dairy
farms in South West England from 2001 − 2014. We use data from the Farm
Business Survey (FBS) to this end. The FBS dataset rotates circa 15% of the
sample on an annual basis and is unbalanced, but statistically representative. We
only select specialized dairy farms that obtained an average 80% of their total
revenues from milk production to ensure homogeneity of the sample. We consider
seven outputs, 10 variable inputs, four quasi-fixed inputs with corresponding in-
vestments and two fixed factors. The outputs are milk, cattle meat, sheep meat,
wool, pig meat, poultry and crops. The variable inputs are feed, fodder, veteri-
nary costs, seeds, fertilizers, crop protection, electric costs, fuel, hired labor and
other variable inputs. The quasi-fixed inputs and corresponding investments are
breeding, buildings, machinery and improvements. In line with the literature (e.g.,
Silva and Stefanou (2003) and Serra, Oude Lansink, and Stefanou (2011)), we set
the depreciation rate as 20%, 3%, 10% and 10%, respectively. The fixed factors
are land and family labor. Outputs, variable inputs, quasi-fixed inputs and cor-
responding investments are measured in constant 2001 £. We calculate implicit
quantities per category by computing the ratio of the aggregated monetary value to
the respective Törnqvist price index, which aggregates the separate price indexes.
The separate price indexes are obtained from the Eurostat (2016) database. They
vary thus only per year, but not per farm. Following Cox and Wohlgenant (1986),
this means that differences in composition of quality are assumed to be revealed by
differences in implicit quantity. This aggregation reduces dimensionality problems
associated with the nonparametric approach. Land and family labor are expressed
in hectares and annual working hours, respectively. Our nonparametric approach
is sensitive to outliers and measurement errors. We remove influential outliers em-
ploying the approach of Banker and Chang (2006). We only keep the observations
with a super efficiency score between the 5th and 95th percentile.3 The eventual
dataset contains 754 observations for a period of 14 years. We balance the sample
for every subsequent pair of years to compute the LHM TFP growth, resulting in
499 LHM scores.

Table 1 shows the descriptive statistics of the variables used in the analysis.

4.2. Practical implementation. The smallest convex dynamic technology set
T̂ t for J farms under a variable-returns-to-scale assumption can be approximated

3For a concrete application of this approach to agricultural data, we refer to Ang and Kerstens
(2016). To compute the super efficiency scores, we set (gy

,gx
,gi) = (1,−1, 1) and divide the

values of the observations by the respective sample means.
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Variables Dimensions Average Std. Dev.
Outputs Constant 2001 £ 304,837 220,037
Variable inputs Constant 2001 £ 163,139 133,516
Quasi-fixed inputs Constant 2001 £ 230,207 201,757
Investments Constant 2001 £ 38,974 47,276
Agricultural land Hectares 110 67
Family labor Annual working hours 4,937 1,911

Table 1. Descriptive statistics of variables

using DEA:

T̂ t =

{

J
∑

j=1

λjXj,t ≤ X0,t,(12a)

J
∑

j=1

λjYj,t ≥ Y0,t,(12b)

J
∑

j=1

λj(Ij,t − δKj,t) ≥ I0,t − δK0,t,(12c)

J
∑

j=1

λjLj,t ≤ L0,t,(12d)

J
∑

j=1

λj = 1.

}

(12e)

,
We compute the time-related dynamic directional distance functions for (a, b) ∈

{t, t+ 1} × {t, t+ 1} by applying (1) to (12):

(13)

Db(Xa, Ia,Ya,La; ga|Kb) = sup
{

β ∈ R : (Xa − βgx
a, Ia + βgi

a,Ya + βgy
a) ∈ T̂ b

}

,

In line with the literature (e.g., Färe, Grosskopf, Noh, and Weber (2005)), we
choose gy = 1, gx = −1 and gi = 1 and divide all variables by their respective sam-
ple mean. We compute the dynamic LHM indicator by calculating all components
in (3) and (4).

4.3. Results. Before we compute the dynamic LHM indicator, we have tested by
means of a Li test whether the distributions of the static and dynamic technologies
are significantly different. We reject the null-hypothesis at p = 0 that the distri-
butions are the same (see Table 2). This highlights the importance of employing
dynamic rather than static directional distance functions.
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H0 hypothesis Li statistic p-value
Fβstatic

(·) = Fβdynamic
(·) with (gy, gx, gi) = (1,−1, 0) 14.73 0

Fβstatic
(·) = Fβdynamic

(·) with (gy, gx, gi) = (1,−1, 1) 20.22 0

Table 2. Model specification test based on 50 sample splits: dy-
namic vs static production technology.

Table 3 shows the general results of the average dynamic LHM indicator LHM

and the decompositions into output growth, investment growth and input growth
(in %). Dynamic LHM productivity has decreased by on average 2.90% per an-
num (p.a.) over the whole period. Output decline (−0.93% p.a.) and investment
decline (−2.22% p.a.) have partly been offset by input decline (−0.25% p.a.).
LIt,t+1 is consistently the most important contributor to dynamic LHM productiv-
ity change, while LXt,t+1 only plays a minor role. Both aggregators show negative
and positive values throughout the considered period. LYt,t+1 is consistently neg-
ative, which may be caused by the milk quota system. Notice also the importance
of the additive completeness in the dynamic sense of our introduced indicator. In
2007−2010, substantial investment growth (+4.26% p.a.) cancels the effect of out-
put decline (−0.27% p.a.), resulting in considerable dynamic LHM productivity
growth.

Table 4 shows the investment-oriented decomposition into technical change ∆T i
t,t+1,

technical inefficiency change ∆TEI it,t+1 and scale inefficiency change ∆SEC i
t,t+1

(in %). The dynamic LHM indicator and components of output growth, invest-
ment growth and input growth are always well-defined (Briec and Kerstens, 2011).
However, infeasibilities may arise in the components of technical change and scale
inefficiency change (Ang and Kerstens, 2017b). No straightforward solutions ex-
ist to solve this problem. Following the recommendation of Briec and Kerstens
(2009), we therefore simply report the proportion of infeasibilities. 36% of the
scores are infeasible. This is moderately high, but in line with the number of in-
feasibilities for the Luenberger productivity indicator in Ang and Kerstens (2016)
using the same data source. The technological frontier has on average shifted
down in the investment direction (−12.36% p.a.), although lagging farms have on
average managed to catch up in terms of technical inefficiency change (+14.74%
p.a.). Average scale inefficiency change is slightly negative (−0.25% p.a.). All
components fluctuate heavily throughout time. In all periods but 2010 − 2014,
∆T i

t,t+1 and ∆TEI it,t+1 have opposite signs.
Table 5 shows the output-oriented decomposition into technical change ∆T

y
t,t+1,

technical inefficiency change ∆TEI
y
t,t+1 and scale inefficiency change ∆SEC

y
t,t+1 (in

%). 27% of the scores are infeasible. The technological frontier has shifted down in
the output direction (−0.53% p.a.), although lagging farms have managed to catch
up in terms of technical inefficiency change (+0.46% p.a.). Scale inefficiency change
is modestly positive (+2.35% p.a.). ∆T

y
t,t+1 and ∆TEI

y
t,t+1 have opposite signs in
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Table 3. Average dynamic LHM indicator LHMt,t+1 and decom-
position into output growth LYt,t+1, investment growth LIt,t+1 and
input growth LXt,t+1 (in %)

Period LHMt,t+1 LYt,t+1 LIt,t+1 LXt,t+1

Overall −2.90 −0.93 −2.22 −0.25

2001− 2004 −0.21 −1.60 +1.91 +0.53
2004− 2007 −8.80 −2.45 −5.93 +0.43
2007− 2010 +4.46 −0.27 +4.26 −0.46
2010− 2014 −6.25 −0.44 −6.35 −0.55

Table 4. Investment-oriented decomposition into technical change
∆T i

t,t+1, technical inefficiency change ∆TEI it,t+1 and scale ineffi-

ciency change ∆SEC i
t,t+1 (in %).

Period ∆T i
t,t+1 ∆TEI it,t+1 ∆SEC i

t,t+1

Overall −12.36 +14.74 −0.15

2001− 2004 −55.37 +57.81 +13.80
2004− 2007 +39.81 −37.90 +10.17
2007− 2010 −21.25 +31.93 −7.95
2010− 2014 −1.89 −2.68 −6.80

all considered periods. These components fluctuate less than in the investment-
oriented decomposition. On the other hand, ∆SEC

y
t,t+1 fluctuates heavily over

time and is consistently the most important contributor to the dynamic LHM
indicator.

Table 6 shows the input-oriented decomposition into technical change ∆T x
t,t+1,

technical inefficiency change ∆TEIxt,t+1 and scale inefficiency change ∆SECx
t,t+1

(in %). 32% of the scores are infeasible. Average technical change is negative
(−1.09% p.a.), while technical inefficiency change (+1.37% p.a.) and scale ineffi-
ciency change (+4.15% p.a.) are on average positive. As for the output-oriented
decomposition, ∆T x

t,t+1 and ∆TEIxt,t+1 have opposite signs in all considered peri-
ods, and fluctuate less than in the investment-oriented decomposition. Also in line
with the output-oriented decomposition, ∆SEC

y
t,t+1 fluctuates heavily over time

and consistently the most important contributor to the dynamic LHM indicator.
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Table 5. Output-oriented decomposition into technical change
∆T

y
t,t+1, technical inefficiency change ∆TEI

y
t,t+1 and scale ineffi-

ciency change ∆SEC
y
t,t+1 (in %).

Period ∆T
y
t,t+1 ∆TEI

y
t,t+1 ∆SEC

y
t,t+1

Overall −0.53 +0.46 +2.35

2001− 2004 −4.17 +1.99 +27.34
2004− 2007 +3.62 −5.70 −29.90
2007− 2010 −0.66 +3.35 +10.49
2010− 2014 +0.05 −0.18 −5.54

Table 6. Input-oriented decomposition into technical change
∆T x

t,t+1, technical inefficiency change ∆TEIxt,t+1 and scale ineffi-
ciency change ∆SECx

t,t+1 (in %).

Period ∆T x
t,t+1 ∆TEIxt,t+1 ∆SECx

t,t+1

Overall −1.09 +1.37 +4.15

2001− 2004 −2.56 +2.20 +29.59
2004− 2007 +2.45 −4.04 −5.12
2007− 2010 −2.60 +5.95 +6.05
2010− 2014 −0.74 +0.06 −8.02

5. Conclusions

This paper introduces a dynamic Luenberger-Hicks-Moorsteen (LHM) produc-
tivity indicator that takes into account the adjustment costs of changing the level
of quasi-fixed capital inputs. Being additively complete in the dynamic sense,
the LHM indicator is decomposed into contributions of outputs, variable inputs
and investments in dynamic factors. Moreover, we decompose the LHM indicator
into technical change, technical inefficiency change and scale inefficiency change
using an investment-, output- and input-direction. Employing DEA, the empirical
application focuses on the dairy sector in South West England over the period
2001− 2014.

Dynamic LHM productivity has decreased by on average 2.90% p.a. over the
whole period. Investment decline (−2.22% p.a.) and output decline (−0.93%) have
partly been offset by input decline (−0.25% p.a.). The investment component con-
sistently plays a more important role than do the input and output components
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for the eventual dynamic LHM score. This underlines the importance of our dy-
namic specification. The output component is consistently negative, which may
be caused by the milk quota system.

According to the investment-, output- as well as the input-oriented decomposi-
tions, the technological frontier has generally shifted down, while inefficient farms
have generally managed to catch up. The scale inefficiency change component de-
pends on the orientation. While the investment-oriented decomposition suggests
slightly negative scale inefficiency change, the output- and input-oriented decom-
positions suggest positive scale inefficiency change. The absolute values of tech-
nical change and technical inefficiency change are much larger for the investment-
oriented decomposition than for the output- and input-oriented decompositions,
especially when one zooms in on the subperiods. One possible reason is that the
distribution of investment is inherently skewed, with either large values or zero
values.
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Appendix A. Dynamic LHM decomposition

The technical change component is4

∆T i
t,t+1 =

1

2

{[

Dt+1(Xt, It,Yt; (0, g
i
t, 0)|Kt+1)−Dt(Xt, It,Yt; (0, g

i
t, 0)|Kt)

]

(14)

+
[

Dt+1(Xt+1, It+1,Yt+1; (0, g
i
t+1, 0)|Kt+1)−Dt(Xt+1, It+1,Yt+1; (0, g

i
t+1, 0)|Kt)

]}

≡
1

2

{

∆T i
t +∆T i

t+1

}

.

Technical change ∆T i
t,t+1 is an arithmetic average of ∆T i

t and ∆T i
t+1. The arith-

metic average is used to avoid an arbitrary choice of the observation under evalu-
ation. Here, ∆T i

t measures the difference in efficiency for observation (Xt, It,Yt)
evaluated against production frontier t+ 1 and t. An upward (downward) shift of
the production frontier between t and t+1, indicating technical progress (regress),
results in a positive (negative) difference. ∆T i

t+1 is similar to ∆T i
t but evaluated

for observation (Xt+1, It+1,Yt+1). Thus, technical change measures (local) shifts
of the production frontier itself.

The technical inefficiency change component is

∆TEI it,t+1 = Dt(Xt, It,Yt; (0, g
i
t, 0)|Kt)−Dt+1(Xt+1, It+1,Yt+1; (0, g

i
t+1, 0)|Kt+1),

(15)

and measures the change between t and t+1 in the relative position to the produc-
tion frontier. Positive (negative) values of ∆TEI it,t+1 indicate efficiency improve-
ment (deterioration) over time: (Xt+1, It+1,Yt+1) is located closer (farther) to the
t+1 frontier than (Xt, It,Yt) was to the t frontier. Note that ∆TEI it,t+1 only mea-
sures the evolution in technical efficiency of the observation under consideration
without taking into account changes of the production frontier over time.

Observe that both ∆T o and ∆SECo are Fisher type indicators as they are
the arithmetic average of a Laspeyres (using base period t) and a Paasche type
indicator (using base period t + 1).

4This section draws heavily on the respective section in Ang and Kerstens (2017a).
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