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Modeling of dynamic weather indexes by coupling
spatial phenological and precipitation data – A
practical application in the context of weather

index-based insurances

Abstract
A key challenge for the design of weather index insurances (WII) is the presence of basis risk, i.e. the actual loss
of the insured farm is not fully covered by the insurance payment. Basis risk can occur dependent on the distance
between the point of measurement of a specific weather event and the farm’s location (spatial basis risk). The
present study aimed to derive spatial data sets and use them for the design of test site- and phenological phase-
specific precipitation indexes. We studied for 20 German crop farms the hedging efficiency of WII, i.e. how the
variability of farm specific total gross margins would have changed if farmers had purchased the designed WII. The
hedging efficiency is different from farm to farm and not always a risk reduction (positive HE) results. Although
these might be not the best results, a new methodology to minimize spatial basis risk could be introduced by
designing highly dynamic indexes, which are flexible and precise in terms of time and space. The contribution of
the present study to the WII research is the analysis of the HE of WII based on these indexes.

Keywords: Performance risk, risk management, weather index insurances, spatial basis risk,
raster data

1 Introduction

Due to climate change, the interest on weather index insurances (WII) to reduce income volatility in crop
production caused by certain weather events increased. Contrary to classical indemnity insurances WII
do not cover crop yield losses due to physical damages like storms or hail. Instead, payments of WII
depend on indexes which relate long-term weather conditions (Goodwin and Mahul 2004, Barnett and
Mahul 2007). They are totally independent from actual on farm losses, because the index is externally
measured. Mostly a weather component is aggregated over a hedging period using different approaches.
In case of a put-option, a payment is triggered, if the index falls below a predefined threshold (strike
level). If the underlying contract structure is a call-option, a payment results if the index is above the
strike level (Jewson and Brix 2005).

A key challenge of designing weather index insurances is the presence of basis risk, i.e. the actual loss
may be not fully covered by the insurance payment (Norton et al. 2012). It can be differentiated between
spatial basis risk and basis risk of production. Spatial basis risk can occur if there is a difference between
the weather measured at the point of measurement and the actual weather that occurred on the farm
(Skees 2008). Basis risk of production can be present as crop yields vary also due to other reasons such
as quality of seeds and fertilizer (Woodard and Garcia 2008). If one is interested in the hedging efficiency
of WII, it is important to minimize basis risk.

Previous studies already tried to improve WII and to minimize basis risk (cf., e.g. Odening et al. 2007).
Mostly the focus is on the design of the index, which is a key element of WII (Hellmuth et al. 2009). The
hedging efficiency of WII based on several indexes is analyzed. The indexes aggregate either one weather
parameter such as temperature or precipitation data or more weather parameter (mixed indexes) over a
fixed period of time of major importance for production. Mostly the period of time is based on calender
dates (cf., e.g. Turvey 2001, Pelka and Musshoff 2013).
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Few studies use phenological information instead of calender dates (e.g. Conradt et al. 2015, Dalhaus
and Finger 2016). Conradt et al. (2015), for example, designed an index accumulating the precipitation
measured at the weather station next to a farm over the most critical phenological phases of winter
wheat (tillering, shooting and heading ) and exemplary for Kazakhstan. The underlying assumption is an
higher effect of damaging weather events on the plant growth in critical growing phases. By comparing
the fixed and flexible index type the authors showed that WII based on phenological phases are more
effective in reducing risk. Using the same index design, Dalhaus and Finger (2016) compared the use of
raster and weather station data. An index based on raster data can be – contrary to an index based on
weather station data – modeled for any geographic point and also for a location of a specific farm. Hence,
spatial basis risk can be minimized. As no spatial phenological data are publicly available for Germany,
the authors used information of the nearest phenological reporter to a farm provided by the German
Weather Service (Kaspar et al. 2014). The focus of both studies is on the cultivation of winter wheat
as it is the primarily produced crop by the investigated farms. Further, they assume that the farmers
realize only two activities: winter wheat production and purchase of a WII.

However, the effect of specific weather events on winter wheat yields and thus yield-related income
volatility is not only relevant for single farms. This is because Germany is the second largest wheat
producer in the European Union (FAOSTAT 2015).

This article addresses two objectives. First, we show how Germany-wide spatial phenological data sets
can be derived and used to model dynamic and reproducible precipitation indexes, which are specific for
both test sites and phenological phases. Second, the resulting dynamic indexes are used for analyzing the
farm-specific hedging efficiency of WII. In doing so, we apply a whole farm approach to consider portfolio
effects caused by the different production activities which farms usually realize. 20 farms located in North
Rhine-Westphalia and Lower Saxony are analyzed. The hedging efficiency of WII is calculated based on
the volatility of farm specific historic total gross margins in the period between 1994 and 2014. The
natural conditions, which influence crop cultivation to a great extent, can generally be characterized as
"moderate" in these regions. We analyze these farms assuming that not only farms located in regions
with extreme climatic conditions are interested in hedging weather-related income volatility. Farms which
are located in regions with moderate natural conditions might also purchase WII.

We design the WII explicitly for hedging the yield-related volatility of historic total gross margins due
to too low or too much precipitation during the phenological phases shooting (phase 15-18), shooting
and heading (phase 15-21) and heading (phase 18-21) of winter wheat. We focus on winter wheat as
it is the only crop cultivated continuously by all farms under investigation. Hence, we can ensure a
certain degree of comparability of the results. We focus on the phenological phases shooting, shooting and
heading and heading since this is the main growth phase of winter wheat including a high water demand
(Lütke Entrup and Schäfer 2011). Hence, drought or wet during these phases is assumed to be highly
important for the economic success of farming and therefore a high influence on the volatility of total
gross margins is assumed. To our knowledge, the present study is the first that develops indexes totally
based on spatial data and analyzes the hedging efficiency of WII based on these indexes in context of a
whole farm approach.

2 Data

2.1 Phenological and weather data

In Germany, a phenological and meteorological monitoring network is driven by the German Weather
Service (in German: Deutscher Wetterdienst1). The phenological network consists of approximately
1200 volunteer observers of which about 700 observe the beginning of principle growth stages of the most
frequently cultivated crops according to standardized criteria (Kaspar et al. 2014). Each plant is observed
on a different number of stations, depending on the abundance and agrometeorological relevance of the
respective crop type. The positional accuracy of the point data set is about 2× 2 km (Fig. 1a).

1 http://www.dwd.de
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(a) (b)

(c) (d)

Figure 1: Locations of phenological and meteorological stations stations (a), REGNIE pre-
cipitation raster [mm] for May 7th 2007 (DOY = 127) (b), a colored SRTM DEM hill shade
overlayed by test sites (c) as well as exemplary the interpolated start of the phenological
phase shooting (phase 15) of winter wheat in 2007 [DOY ] (d).
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Furthermore, the German Weather Service provides daily precipitation data. The data are calculated
using the specific rationalization method REGNIE (Rauthe et al. 2013). In particular, daily precipitation
data measured at weather stations irregularly distributed over Germany are interpolated on a grid of
1 × 1 km (Fig. 1b). REGNIE data can be directly downloaded from the FTP server of the German
Weather Service2.

2.2 SRTM DEM

The Shuttle Radar Topography Mission (SRTM3) resulted in a almost world-wide and freely available
digital elevation model (DEM) with a geometric resolution of 90 × 90m (Fig. 1c). The horizontal and
vertical accuracy is about 20 and 16m (Rabus et al. 2003). Because of its signal noise, the DEM has
been filtered (Lee 1980) and then aggregated to 1× 1 km pixel size with a total number of 358,320 pixels.
The pixel raster size corresponds to the positional inaccuracy of the phenological observations (Sec. 2.1).

2.3 Farm data

The chambers of agriculture of North Rhine-Westphalia and Lower Saxony provided data of 20 farms over
a period of 21 years (from 1994 to 2014). In particular, information about the realized main production
activities for dominating crops like winter wheat, winter and summer barley, winter rye, oat, sugar beats,
corn and peas are considered. The data set contains information about the single gross margins of the
production activities including prices, yields and variable costs such as costs for seed and fertilizer as well
as variable machinery costs and the area cultivated with each crop in hectares.

The farms are situated in the south of North Rhine-Westphalia (12 farms) and in the south east of Lower
Saxony (8 farms) (Fig. 1c). The test sites (TS) are equal to the municipalities where the farms are
located as we do not know the exact location of the farm. In case of test site 2 and 12 more than one
farm belong to a municipality. Hence, the number of test sites (N=16) is not equal to the number of farms
(N=20). The climatic conditions in North Rhine-Westphalia and Lower Saxony can be characterized as
moderate compared to regions, where extreme climatic conditions predominate such as in Brandenburg
or in some parts of Bavaria (Tab. 1). The soils on the farms are predominately loamy. In 2014 the farm
size was 243 hectares on average and the average total gross margin was e 312,072. The minimum farm
size was 86 ha and the maximum 521 ha. The minimum total gross margin accounted for e 74,812 and
the maximum e 641,166. This shows the heterogeneity of the farms regarding the farm size and their
economic success.

Table 1: Climatic conditions of selected regions in Germany (Source: DWD 2015).

Regions Average annual precipitation
[mm]

Average annual temperature
[◦C]

North Rhine-Westphalia 875 8.9

Lower Saxony 746 8.6

Brandenburg1 557 8.7

Bavaria2 940 7.5
1Federal state with the lowest average annual precipitation.
2Federal state with the second highest average annual precipitation.

2 ftp:// ftp-cdc.dwd.de/ pub/CDC/grids_germany/ daily/ regnie
3 https:// earthexplorer.usgs.gov
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3 Methodological approach

3.1 General insurance design

Various WII are designed for hedging the yield-related volatility of historic total gross margins due to
too low or too much precipitation during specific phenological phases of winter wheat. The WII differ in
the general contract structure. The design of the insurance is fairly simple as the focus is on modeling
of a dynamic test site and phase-specific index in the present study. Due to the moderate temperate
and humid conditions the farms are exposed to, we aim to compare the hedging efficiency of a put-
option and a call-option. The put-option is intended to compensate drought-related volatility of farms
total gross margins because droughts are assumed to gain more importance for farmers. As the farms
under investigation are not faced with extreme natural conditions, we assume that not only drought-
related volatility of farm specific total gross margins need to be hedged but also performance risk due to
(strongly) wet conditions. Hence, we also analyzed the risk reducing capacity of call-options. The general
pay-off structure of a put-option per contract in year t is defined according to equation (1).

P p
t = V ·max(K − IPt ; 0) (1)

In case of a put-option, a payoff P p
t is only triggered if a specific weather index IPt falls below a certain

strike level K. In contrast, call-options hedge deviations of the index only above the strike level. The
respective payoff structure per contract in year t is calculated according to equation (2).

P c
t = V ·max(IPt −K; 0) (2)

V is a tick size monetizing the difference between the index and the strike level. The tick size is defined as
1eper mm throughout the following analysis as already used in previous studies (Musshoff et al. 2008).
IPt is a cumulative dynamic precipitation index. Here, we assume that precipitation is a crucial factor for
plant growth. The technical implementation of the index is described in the following section 3.2. The
strike level K equals the long-term average of the chosen index (period 1994-2014) and is the same for
the put- and call-option (Jewson and Brix 2005). The strike level is calculated separately for each test
site.

The price of the insurance equals the actuarially fair premium. We used this option because we are
interested in the risk reducing potential of the insurance and not in the change of income level caused by
the insurance purchase or the costs a farmer would accept or not. Following Woodard and Garcia (2008),
burn analysis is used for determining the fair premium, i.e. it is calculated as the arithmetic mean of the
payoffs of the WII and equals the expected value of the payoffs of the WII. No loading is added. Hence,
the WII used in this article is income-neutral. Furthermore, we assume that the farmer is able to buy
one contract per hectare.

3.2 Dynamic weather index calculation

Figure 2 summarizes the technical workflow for the dynamic calculation of weather indexes IPt on
the example of the phenological phase shooting of winter wheat. IPt is defined according to Eq. (3)
where min(DOY (WW15)) equals the beginning of phase shooting of winter wheat (WW15) and
min(DOY (WW18)) the beginning of phase heading of winter wheat. The procedure is implemented
within the statistical software environment R (R Core Team 2015) and combines (1.) interpolated
phenological observations (DOY ) as well as (2.) Germany-wide spatial data sets of daily precipitation
means (x(PDOY )) to (3.) the precipitation sums ΣP :

IPt = Σ
min(DOY (WW18))

min(DOY (WW15))
x(PDOY ) (3)

1. Germany-wide phenological raster data have been derived by using the phenological model PHASE
(Gerstmann et al. 2016). The model is based on the growing degree days concept which relates plant
phenological development to phase-specific accumulated heat sums. During the modeling procedure,
an indicator temperature sum is determined by analyzing the distribution of the temperature sums
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PHASE

DOY

DWD

PDOY

TS

IPt

Figure 2: Technical workflow for the derivation of test site- and phase-specific precipitation
sums exemplary for the phenological phase shooting of winter wheat. DOY – day of year
expressing the beginning of a specific phenological phase | PDOY – daily precipitation | IPt –
weather index.

accumulated between sowing and the date of phase observation. Germany-wide temperatures result
from the interpolation of daily mean temperatures which are provided by DWD-weather stations.
For each location, the day on which the accumulated temperatures exceed the indicator sum is
modeled and spatially interpolated using regression kriging. The model was applied for modeling
of the phases beginning of shooting, beginning of heading and beginning of yellow ripeness of winter
wheat for all years from 1994 to 2014.

2. REGNIE precipitation values are available in plain text format. Each DOY is stored as single file.
The REGNIE data were read by using the R function read_regnie4 which is part of the package
esmisc (Szoecs 2016). The function creates Germany-wide 1 × 1 km raster data sets and assigns
each precipitation value to a specific raster cell.

3. The actual calculation of precipitation sums ΣP , e.g. during the phase shooting, requires the
definition of its start and end. In this study, shooting is considered as the temporal window between
the phenological event beginning of shooting (WW15) and the following event beginning of heading
(WW18) (Möller et al. 2017). The same procedure is applied for the other hedging periods heading
and as well the combined phases shooting and heading.

3.3 Historical simulation

Based on information about the realized production programs and the single gross margins for each of
the farm’s activities of the 20 crop farms from 1994 to 2014, we calculated the farm’s historic total gross
margins (TGM) without WII (status quo) for each year of the observed period following equation (4).

TGMwithoutWII
t = (ΣI

i=1GM i
t · xi

t) (4)

TGMwithoutWII
t is the farm specific total gross margin without weather index insurance in year t. The

total gross margin is calculated based on the farm’s whole production program in year t, which consists
of I different crops. GM i

t relates to the yearly gross margin of each cultivated crops and xit is equal to
the area of each cultivated crop i in hectares in a year.

To be independent from farm size, we normalized the total gross margins per hectare by dividing the
yearly TGM through the yearly farm acreage in ha. The TGMs per hectare are adjusted for inflation
and a linear trend assuming that a farmer may get better or worse on doing their business over time.

Using historic simulation, the hedging efficiency of the designed weather index insurance is analyzed
ex-post and defined as the relative change of the standard deviation of normalized potential total gross

4 https:// github.com/EDiLD/ esmisc/ blob/master/R/ read_regnie.R
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(b) Year-specific Σ(P ) boxplots for all test sites

Figure 3: Year- and test site-specific distributions of phase-specific precipitation sums
(Σ(P )) [in mm] illustrated on the example for the phase shooting.

margins with WII compared to the standard deviation of the normalized total gross margins without WII
(Golden et al. 2007). The standard deviation is a risk measure used to quantify the volatility of farm’s
TGM over the whole observation period. The procedure of historic simulation is calculated as follows:

1. For each farm the historic volatility of the normalized TGM without WII from 1994 to 2014 is
determined by calculating the standard deviation.

2. It is assumed that the farmer would have purchased the designed WII in every year over the
whole observation period. Hence, we also suppose that the farmer would not have changed his risk
management strategy over a 21 year period. The hypothetical purchase of this WII is considered
as an additional activity, which would have been added to the farm specific production program.

3. The hypothetical time series of gross margins of the WII (yearly payoff subtracted by the actuarially
fair premium) is determined from 1994 to 2014.

4. The hypothetical yearly gross margins of the insurance are added to the total gross margin in each
single year. The result is a hypothetical time series of farm specific total gross margins with WII
per hectare.

On this basis, the standard deviation of total gross margins with WII is calculated. Finally, the hedging
efficiency of WII is determined as described above.

4 Results

4.1 Precipitation sums

Figure 1d shows the interpolated start of the phenological phase shooting of winter wheat in 2007. The
DOY -pattern follows the typical spatial trends in Germany with earlier dates in the favored regions in the
eastern and central parts of Germany and delayed plant development in more mountainous and coastal
regions. Figure 3 displays the year- and test site-specific distributions of phase-specific precipitation
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Table 2: Correlation results of farm specific winter wheat yield and test site and phase
specific indices.

Federal state Testsite ID Farm ID ρ15−18 ρ15−21 ρ18−21

North Rhine-Westphalia

16 1 0.20 0.09 -0.21

12 2 0.15 0.12 -0.03

9 3 -0.21 0.14 0.16

13 4 0.12 0.06 -0.05

12 5 0.19 *0.39 0.16

12 6 0,29 0.02 0.32

10 7 0.06 -0.28 *-0.41

12 8 -0.05 -0.22 -0.30

15 9 0.03 0.27 0.15

14 10 0.10 0.36 0.20

8 11 *0.40 0.20 -0.16

11 12 0.14 0.30 0.13

Lower Saxony

6 13 -0.07 0.18 0.30

2 14 0.00 -0.18 -0.13

7 15 -0.11 -0.06 0.00

3 16 -0.04 -0.25 -0.19

2 17 0.07 -0.29 -0.37

1 18 -0.09 0.23 0.29

5 19 -0.01 0.22 0.28

4 20 0.16 0.15 0.01

Explanatory note: *correlation is statistically significant at the 10% level, **correlation is
statistically significant at the 5% level, ***correlation is statistically significant at the 1%
level. Due to technical progress, the winter wheat yields are detrended.

sums (Σ(P )) [in mm] for the phase shooting. Accordingly, no regional differences are visible. However,
all test sites show a high variation of precipitation sums over the years (Fig. 3a). The figure indicates
that precipitation can be a source of risk for the farms located in these test sites. The year-specific
distribution of phase-specific precipitation sums reveal inter-annual changes of precipitation sums (Fig.
3b). Both figures demonstrate that even regions with moderate natural conditions are characterized by
a high spatio-temporal precipitation variability.

4.2 Yield-index correlations

Table 2 presents for each farm the correlation between the dynamic test-site and phase specific indexes
and the farm-specific winter wheat yield. The correlations show how well the test-site specific indexes fit
to the farm specific winter wheat yields. This can be a first indication about the suitability of the designed
weather index insurances to hedge weather-related performance risk. But, due to portfolio effects and
the influence of other factors than volatile winter wheat yields on the volatility of total gross margins this
does nothing tell about the real capacity of the insurance to reduce the volatility of farm specific total
gross margins.

The correlations vary highly among the farms and depend on the hedging period. When looking only at
the positive correlations (highlighted in bold printing), it can be seen that they are low for most of the
farms. As also other factors such as e.g. temperature influence yields, correlations equal to 1 could not
be expected. But, although we are aware that the study farms are not located in regions with extreme
climatic conditions and cultivate predominately loamy soils, the correlations are lower than expected.
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Table 3: Hedging efficiency of the analyzed put- and call-option for the specific strike level

Federal state TS-ID Farm ID

Phase 15-18 Phase 15-21 Phase 18-21

Strike
Level Put Call Strike

Level Put Call Strike
Level Put Call

(mm) (%) (%) (mm) (%) (%) (mm) (%) (%)

North Rhine-
Westphalia

16 1 70.98 -4.44 5.63 185.98 -2.98 1.37 115.50 1.29 -3.14

12 2 66.69 -3.09 2.83 171.98 -5.09 2.37 106.60 -1.81 -0.36

9 3 66.54 -0.92 0.87 172.63 -1.62 1.36 106.18 -0.79 -0.16

13 4 72.38 -1.37 3.38 184.30 -4.20 1.91 111.94 -1.35 0.39

12 5 66.69 -3.68 3.39 171.98 -5.15 1.35 106.60 -0.49 -0.52

12 6 66.69 -0.26 -0.18 171.98 -1.67 -0.08 106.60 -1.06 0.42

10 7 71.83 0.44 -1.32 179.22 -2.08 0.62 109.63 -2.61 0.96

12 8 66.69 0.51 -1.23 171.98 -2.08 -0.80 106.60 -1.61 1.02

15 9 64.21 -0.69 2.51 169.73 -0.89 0.06 105.59 1.84 0.00

14 10 64.00 0.41 0.19 168.65 -1.27 0.56 102.42 -1.23 0.27

8 11 71.62 -2.38 0.22 181.65 -6.44 0.75 112.46 -2.56 2.60

11 12 70.90 -1.03 2.85 183.36 -3.55 1.69 114.00 -0.51 3.69

Lower Saxony

6 13 67.05 0.66 -4.26 157.75 -0.27 -0.21 92.28 -2.29 1.88

2 14 66.31 -0.21 -3.27 161.77 1.94 -0.82 98.33 -0.36 -0.81

7 15 53.08 0.59 -1.40 151.63 1.34 3.66 99.33 -0.52 4.46

3 16 68.39 -1.23 -5.96 168.66 4.57 -0.56 101.75 0.47 -0.74

2 17 66.31 -2.91 -4.57 161.77 0.18 -1.26 98.33 0.16 -1.56

1 18 57.93 -3.03 0.30 151.76 1.57 -2.25 96.32 4.66 -3.37

5 19 74.25 -0.58 -1.18 175.90 1.22 -1.94 103.84 0.43 -2.14

4 20 64.16 -2.15 -2.48 153.57 1.39 -2.46 90.23 1.77 -2.71

Explanatory note: A positive sign of the hedging efficiency indicates that the volatility of farm specific TGM
is reduced after the implementation of the WII (positive hedging efficiency).

This suggests that precipitation is not a decisive factor for the winter wheat yields of the farms under
investigation.

4.3 Hedging efficiency of dynamic weather index insurances

Table 3 shows the resulting hedging efficiencies of the analyzed put- and call- options for the specific
strike levels. The values are farm specific and vary considerably among the farms. Further, the hedging
efficiency depends highly on the analyzed contract type.

Contrary to this, the purchase of the analyzed WII can also increase the volatility of farm specific total
gross margins, which can be clearly seen based on the negative hedging efficiencies. Further, it needs to
be highlighted that the hedging efficiency varies also among the farms located in the same test site (see
farm 2, 5, 6, 8, test site 12). This indicates that the volatility of farm specific total gross margins depends
not only on one specific source of risk such as yield volatility due to too less or too much precipitation,
but also on many other risk sources such as volatile input and output prices as well as uncertain amounts
of inputs.
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5 Discussion

5.1 Modeling dynamic and reproducible precipitation indexes

In this study, we introduced a WII approach which is based on a weather index automatically derived
from and publicly available data sets. Following Conradt et al. (2015) and Dalhaus and Finger (2016),
the index design is based on the assumption that drought or wet conditions during the phenological
phase shooting, shooting and heading and heading of winter wheat may influence yields to a great extent
and therefore contributes to the volatility of farm specific total gross margins. Compared to Dalhaus and
Finger (2016), our study represents a further development as we were able to fully reduce scale distortions
in the index design, which occurred as no spatial phenological data sets were available until now. This
means that the introduced index can be designed for each part of Germany and each phenological phase of
the main crops cultivated in Germany. Hence, spatial basis risk can be reduced considering interpolation
inaccuracies (Gerstmann et al. 2016).

5.2 The importance of precipitation events in the analyzed regions and yield-
index dependency

Applying our dynamic precipitation index on single farm level showed that precipitation can be a source
of risk for the cultivation of winter wheat of the analyzed farms (see sec. 4.1). The resulting yield-index
correlations suggest that precipitation is not the limiting factor for farm specific winter wheat yields, as
the designed indexes fit not very well to the farm specific yield time series.

The fact that the yield-index correlation varies highly from farm to farm shows that correlation results
never can be generalized. Hence, studies focusing on farm level are of major importance. The poor
correlation results can be explained, on the one hand, by the fact that our study farms are not exposed
to extreme farming conditions such as drought and sandy soils. On the other hand, we needed to refer
to the municipalities the farms belonging to as we do not know the exact locations of them. Hence, the
scale does not fully fit in the application of the introduced dynamic precipitation index. Thus, we cannot
assume that spatial basis risk is totally reduced. Due to this, further farm specific risk analysis is needed.

Furthermore, due to portfolio effects and the influence of other factors on winter wheat yields such as
quality of seed or fertilizer, the results do not give any information about the real capacity of the insurance
to reduce the volatility of farm specific total gross margins. This is why we also analyzed the potential
of insurances based on our dynamic precipitation indexes to reduce farm specific income volatility.

5.3 Potential of the analyzed weather index insurance to reduce farm specific
income volatility

Although we used a simple insurance design, we found that the designed call-option outperforms the
put-option. This is especially true for the study farms located in North Rhine-Westphalia. It can be
concluded that these study farms battle with conditions that are rather too wet than too dry.

Further, the resulting low positive hedging efficiencies show that yield-index correlations can not be an
indication for a potential risk reducing effect. An explanation for this result can be the occurrence of a
natural hedge as income not only depends on yields but also on prices. A natural hedge occurs if yields
and prices are negatively correlated. Furthermore, a decisive factor in the insurance design is the strike
level, which determines when a payoff is triggered and thus highly influences a possible risk reducing
effect.

Our results can be not really compared with previous studies also analyzing the hedging efficiency of
weather index insurances applying a whole farm approach (e.g. Kellner and Musshoff 2011) as the authors
apply different indexes and use different analytical methods such as a whole farm risk programming
approach instead of a historical simulation.
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6 Conclusions and outlook

In this paper we introduced the modeling of a dynamic test site and phase specific precipitation index
as a new approach in the weather index insurance research. In addition, we analyzed the capacity of
WII based on these indexes to reduce the volatility of farm specific total gross margins. Using data from
1994 to 2014 of 20 farms in North Rhine-Westphalia and Lower Saxony, which are exposed to moderate
climatic conditions, we studied how the volatility of farm specific total gross margins would have changed
if the farmers had purchased our designed weather index insurance. As we focused on the index design,
we applied a standardized insurance. Hence, the design of the insurance was fairly simple. The resulting
hedging efficiency did not always show a clear risk reduction and varies strongly among the farms.

Due to the small sample size and the specific farming conditions in our study regions, our findings can not
be generalized. Nevertheless, some general conclusions can be drawn. For reasons of comparability, we
decide to apply the same weather index insurance for all study farms. But, there is need for a farm specific
risk analysis. This became obvious as the results for our farms with moderate farming conditions varied
highly. Farmers should make their risk management decision based on the results of the risk analysis.
Further, due to portfolio effects it is necessary to analyze the hedging efficiency of risk management
instruments in context of a whole farm approach.

To further improve this research, a comparison of the hedging efficiency between the proposed method-
ology and the use of the closest weather station to a farm should be done. Based on this comparison
it should be analyzed whether spatial basis risk can be really reduced using the proposed methodology
and whether the risk reducing effect is much better compared to the use of station based data. Further,
we intend to include other weather variables such as temperature grid data in our model. Instead of
applying the same index referring to winter wheat for all farms, a farm specific index design should be
applied. Furthermore, the risk reducing capacity of the designed insurance should be analyzed for farms
in regions with extreme farming conditions such as low precipitation and sandy soils.
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