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PREFACE

The complex problems involved in managing horticultural

enterprises are receiving increasing attention from advisory

officers and agricultural educationalists. Massey University

introduced a new course in Horticultural Management in 1972 in

the fourth year of the Bachelor of Horticultural Science degree.

In 1973, a new course in Horticultural Economics will be intro-

duced in the third year of that degree.

Dr. A.N. Rae, who is teaching these two courses, has

developed this Discussion Paper from an address he gave at a

Ministry of Agriculture and Fisheries seminar for Horticultural

Advisers held in Christchurch in June 1972. The paper discusses

an approach to decision making which may be particularly useful

to horticultural producers and their advisers. Readers should

be aware that the management methods outlined have not yet been

comprehensively tested in the field in realistic farming
'r

situations. However, as Dr. Rae says:

"Just the exercise of constructing a decision tree can
be of immense value to both grower and adviser alike".

I hope that interested readers will be stimulated to

consider the potential applications of the analysis presented.

Dr. Rae would welcome comment and constructive criticism.

A.R. Frampton,
Professor of Agricultural Economics

and Farm Management.

October 1972
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DECISION TREES FOR HORTICULTURAL

DECISION-MAKING UNDER NON-CERTAINTY

1. .INTRODUCTION

The great majority of decisions facing horticulturists

contain some element of risk, or non-certainty.
1

In deciding

whether to invest in a new glasshouse, whether to plant a further

20 acres of apples, whether to store pumpkins, to which mart

should produce be consigned, how much cash should be allocated to

advertising house plants, and so on, the horticulturist may not

be sure of the outcome of his decision.

Traditionally, many such risky decision problems have

tended to be analysed as if risk did not exist, for example by

using budgeting to compare the profitability of different

production and/or marketing plans. The answers so obtained may

be acceptable if the consequences of risk are not too great; say,

if only small differences exist between the possible payoffs that

might be obtained from a new crop planting. These answers may

not be acceptable where such differences are large; for instance

The term 'risk' is used to refer to any non-certain situation,
rather than in the sense of Knight's classification of risk
versus uncertainty (Knight (1921)). Our approach is that,
even in Knight's 'uncertain' situation, subjective probabili-
ties can always be estimated so that for analytic purposes,
risk and uncertainty become synonymous.
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a combination of floods, heavy disease infestation and low prices

may result in bankruptcy for the manager, and he may then prefer

to choose an action that somehow 'guards against' such effects.

Non-certainty might be recognised in traditional

budgeting .analyses to the extent of using conservative estimates

in the budgets, say higher-than-expected costs and lower-than-

expected prices and yields. Alternatively, parametric budgeting

might be employed to examine the sensitivity of profit to non-

certain future events. If the grower feels the sensitivity is

'too high' changes to his production schedule might be made.

Such approaches to incorporating risk elements into the analysis

of a farm management problem can only be approximate, though, and

really 'miss the heart' of the decision-making problem. It is

suggested that the approach to be described in this paper has the

potential of coming nearer to the formulation of decisions that

are in accord with the manager's beliefs about the future and his

attitudes towards the taking of risks.

Opportunities for diversification are often included in

budgeted plans, or such plans are constructed with some degree of

flexibility, to act as a hedge against non-certainty. Flexibility

might enable the' operator to take advantage of high prices in

some future season, or to modify his management to avoid large

losses in times of low prices. A desire for a diversified

cropping programme might reflect a situation where crop incomes

are less than perfectly correlated, and low incomes from some

crops might be offset to some degree by high incomes from other

crops. Provided that all such opportunities are specified, the

analysis to be described is capable of providing the manager with

a strategy that will indicate the optimal decision to take at any

point in time, given the sequence of events that has occurred up

to that time. This strategy will be optimal in terms of the
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manager's beliefs, preferences and objectives, and will thus

exhibit the optimal degree of flexibility and diversification.

The remainder of this paper illustrates how budgeting analyses

might be modified to allow such strategies to be derived.

Before discussing how rational decisions can be formu-

lated in the face of non-certainty, it is necessary that we

understand the difference between 'good' decisions and 'right'

decisions. The evidence upon which decisions are based relates

to the past, whereas the consequences of our present decisions

lie in the future, and we cannot be sure what the future will

bring. A 'good' decision is one that is consistent with the

assembled evidence and the beliefs and preferences of the

decision maker at the time he must make the decision. Whether or

not the decision is 'right' will not be known until its

consequences have been observed some time in the future. If a

poor outcome results from a 'good' decision, we say the outcome,

not the decision, was bad.

2. ANATOMY OF A DECISION TREE

The principal components of a risky decision problem
are possible courses of action, possible events that might occur
in the future over which we have no control, and the payoff

received given any combination of action and event. A decision
tree (Raiffa (1968), Schlaifer (1969)) is a convenient way of

providing a diagrammatic representation of the problem. The

tree is made up of act forks, event forks, and branches, and
Figure 1 presents a simple decision tree. Here, a grower may
contract to grow beetroot at a price of $40 per ton, or he may
grow the crop for the market, where price may be either $30 or



Acts Events

Figure 1. A simple decision tree

Payoffs

$3,000

$1,500

E $4,500

$60 per ton12 depending on demand/supply conditions. Yield is

fairly certain to be 10 tons per acre, production costs are known

to be $100 per acre, and a marketing cost of $5 per ton must be

met if the crop is sold on the fresh market.

2 Alternatively, imagine (i) that all possible price per ton
outcomes have been partitioned into two sets, say $45.00 and
over ('high') and $44.99 and under ('low') and (ii) that $60
was chosen to represent the 'high' price event and $30 to
represent the 'low' price event.
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Let us assume he has already decided to grow 10 acres

of the crop, so that the only two alternative courses of action

in this problem are to grow under contract or to grow for the

market. These are represented by the two branches emanating

from point A in the figure, namely AB and AC, and point A

represents the node of an act fork. The branches labelled CD and

CE represent the source of uncertainty in this problem, and point

C is the node of an event fork. The terminal payoffs $3,000,

$1,500 and $4,500 are the possible outcomes of the problem. A

little budgeting will show that the crop will net $3,000 if grown

under contract, $1,500 if grown for the market and a price of $30

per ton is received, and $4,500 if grown for the market and a

price of $60 is received. The actual flow of cash is represented

by the figures entered underneath the branches.

An important point to note is that act forks and event

forks represent two quite distinct things, and the node of an act

fork is often surrounded by a square, and that of an event fork

by a circle, to avoid confusing the two. It is also important

that act forks and event forks appear in the decision tree in the

actual order in which they will occur. In the example, market

prices will not be known until some time after the crop has been

sown, and possibly not until the crop has been sold.

The decision tree, correctly drawn, gives a clear

picture of the situation and may be worth constructing just for

the purpose of clarifying the problem and indicating possible

actions and outcomes. However, we will use the decision tree in

order to find the best solution to the problem. To achieve this,

we must first of all consider people's preferences among gambles

and the notion of certainty equivalents.
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3. PREFERENCES AMONG RISKY PROSPECTS

A course of action whose outcome is uncertain at the

time of choosing that action can be called a risky prospect.

Here, we want to show how people's preferences among risky

prospects can be measured and that what is best for one person

need not be best for another. To illustrate the principle

involved, we will consider a person who has the opportunity to

participate in one of two coin-toss gambles. The first will

return him $10 if heads comes up, but he will

coin turns up tails. In the second, he will

comes up, but will lose $1,000 if the outcome

which gamble would he rather participate in?

first gamble this means the satisfaction, or

lose his $10 if the

win $1,000 if heads

is tails. Now

If he chooses the

'utility', to be

expected from this, gamble exceeds that of the second gamble. An

interesting fact, though, is that the expected payoff3 from each

gamble is $0:

Expected payoff, gamble 1 =(.5 x $10) +

. $0.

(.5 x -$10)

Expected payoff, gamble 2 = (.5 x $1,000) + (.5 x -$1,000)

= $0.

This means, then, that we cannot necessarily calculate the

expected monetary values of alternative risky prospects and choose

that whose expected value is highest.

3 The expected payoff is simply the weighted average of all
possible payoffs, where the weights are the relevant probabil-
ities. In this example (provided the coin is 'fair') the
probability of 'heads' is 0.5, as is the probability of
'tails'.
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To get over this problem, we work with certainty

equivalents
4 
(Schlaifer (1969)), where the certainty equivalent

of a risky prospect is that sum of money which, if received by

the decision maker for certain, would make him just as happy as

having to face the risky prospect. That is, if he were offered

that sum with no risk he would be indifferent between accepting

it, or rejecting it and participating in the gamble. In the

coin toss problem, then, he would have to decide on ,a sum of

money that would make him just as happy as participating in the

+$10/410 gamble - say $3. Likewise for the 441,000/-$1,000

gamble, we will say the certainty equivalent is -$100, which means

that just before the coin is tossed, he is indifferent between

calling "toss" and paying out $100 to be released from the bet

(and getting his $1,000 stake back). Since the certainty

equivalent of the first gamble exceeds that of the second, then

the first gamble is to be preferred. The important points to

note are that since different people have different attitudes to

risk-taking so different people may choose differently among risky

prospects, and that the act for which expected money payoff is

greatest need not be the best act.

4. SOLUTION OF THE BEETROOT CONTRACT PROBLEM

Now that we have seen that a person's preference among
risky prospects can be indicated through estimation of certainty
equivalents, we are in a position to solve the beetroot contract
problem of Figure 1. The method involves starting at the final

tf Raiffa (1968) uses the term 'certainty money equivalent',
rather than 'certainty equivalent'. Both concepts are
identical, however.
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stage of the decision tree (or the right-hand edge) and then

moving to the left, or backwards through the tree, calculating

certainty equivalents as we go. There is only one event fork

in Figure 1, reflecting the two possible beetroot prices. If

beetroot is grown for the mart, the terminal payoff will be either

$1,500 or 14,500. Now we say to the grower "If the price turns

out to be $30 per ton you will receive a payoff of $1,500, but if

$60 per ton, you will receive $4,500. Would you rather take a

chance on the market price being high, or take a certain payment

of, say $4,000?" The odds are that he will prefer the certain

$4,000, so we know our first attempt at specifying the certainty

equivalent ($4,000) was too high. We then repeat the question

until he is indifferent between receiving the certain payment or

participating in the market price gamble. Let us say that the

certainty equivalent turned out to be $2,500. The decision tree

can now be redrawn in a simpler but equivalent form, as in

Figure 2.

It can be seen that the certainty equivalent takes the

place of the risky prospect over which it was estimated. This is

because the certain $2,500 gives the same satisfaction to the

grower as does participating in the gamble. Thus, payoffs from

other acts may be compared directly with the certainty equivalent.

In this case, the payoff from growing for contract of $3,000

exceeds the 'equivalent' payoff from growing for the fresh mart,

of $2,500, so growing for contract is the optimal or 'best-bet'

decision. Of course, another grower may have a different

attitude to risk, and may have come up with a certainty equivalent

of, say, $3,500. Then, his optimal decision would be to grow

for the mart.
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Acts
Certainty
equivalent
payoff

$3,000

$2,500

Figure 2. Simplified decision tree - beetroot contract
problem

It should be realised that when certainty equivalents

are estimated, the decision-maker does two things:

a) he 'weighs up the odds' involved in the gamble; and

b) he considers his preference for the terminal payoffs

associated with the risky prospects.

In assessing the 'odds', the grower would make some
estimate of the likelihood of each price arising. Put another
way, he makes an estimate of the .probabilities involved. These
probabilities are simply weights representing degrees of rational
belief that the decision-maker holds in the various events
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occurring, and should be made with recognition of whatever

objective evidence happens to be available. Thus if a series of

prices received over some past time period is available,

probabilities may be estimated by applying a smoothing procedure

to the relative frequencies as described, for example, by

Schlaifer (1969). However, if the marketing system had recently

undergone some change so that prices may not be expected to

behave in the same way as in the past, then the historical data

becomes less important, and the subjective beliefs of the decision-

maker more important, in determining the probability distribution

of future prices. In the latter case, then, the probabilities

may be estimated subjectively, rather than objectively.
5

The decision-maker's preference for terminal payoffs

refers to the satisfaction or dissatisfaction he would experience

if a given outcome occurred. We have already seen that this

satisfaction need not be in direct proportion to the value of

the money sum, and of course a given money sum will give more

satisfaction to some people than to others.

The solution procedure requires that we work only with

the terminal payoffs, and the cash flow is important only in

deriving the terminal payoffs.
6

To summarise the method, we

commence computations at the right-hand edge of the decision

tree and move ';backwards' through the tree, replacing event forks

'-with their certainty equivalents. When we come to an act fork,

we select the act branch with the highest certainty equivalent

payoff, until the complete strategy has been enumerated.

Raiffa (1968, Ch. 10) reviews the historical development of
the concept of probability.

6 Depending on the length of the planning period, it might be
- necessary to express terminal payoffs as discounted present
values.



5. A SOLUTION PROCEDURE FOR MORE
COMPLEX PROBLEMS

For many problems, we can expect the number of branches

in some event forks to be much greater than two. In such cases,

certainty equivalents would have to be estimated over gambles with

a large number of possible payoffs, and we might expect difficulty

simply in comprehending such gambles. Fortunately, these

problems can still be solved provided that we can estimate the

probabilities of the various events, and the decision-maker's

utility function. The estimation procedures themselves are

presented by many authors such as Halter and Dean (1971),

Schlaifer (1969) and Makeham et al. (1968) and here we shall be

concerned with solving the beetroot contract problem making use

of probabilities and utilities.

First, suppose the grower believed that the likelihood

of the market price being $30 was 0.4 and that the likelihood of

the price being $60 was 0.6. Second making use of the certainty

equivalent already estimated, we know that the utility (satisfac-

tion) provided by a $2,500 payment equals the utility to be

expected from the gamble involving a $1,500 payoff with probability
0.4 and a $4,500 payoff with probability 0.6. Since $1,500 is

the smallest, and $4,500 the largest payoff in this problem, we
can arbitrarily fix the scale of the utility function by assigning
a utility value of zero to $1,500 and a utility value of 100 to
$4,500. That is:

u($1,500) = 0,

u($4,500) = 100.

Making use of the certainty equivalent relation, then, we know
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u($2,500) = (0.4 x u($1,500)) (0.6 x u($4,500))

= x o) + (0.6 x 100)

= 60.

Thus the payoff of $2,500 would be given a value of 60 on the

zero-to-100 utility scale. These three utility-payoff points are

plotted in. Figure 3, and a smooth curve may be fitted. Having

established the utility function, each terminal payoff in the

beetroot contract problem can be converted to its utility value.

Thus $1,500 has a utility of zero, $4,500 has a utility of 100,

and the utility of $3,000 may be read off the graphed function as

75. The decision tree can now be redrawn as in Figure 4,

entering probabilities under event branches, and utilities rather

than terminal payoffs.

100

75

25

NIP

0  
$1,500 $2,500 $3,500 $4,500 Payoff

Figure 3. The utility function



Acts
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Events Utility
payoff .

75

100

Figure . Beetroot contract problem with probabilities and
utilities

The solution procedure Hadley (1967)) is rather similar
to that already described except, as we work from right to left
through the tree, expected utility payoffs rather than certainty
equivalents are estimated at each event fork, and at act forks,
we choose the act branch with the highest expected utility.
Thus in Figure 4, the event fork may be replaced by an expected
utility value of 60:



(0.4 x o) + x 100) = 60.

Then, growing for contract is the optimal decision since its

utility value of 75 exceeds the utility to be expected from

growing for the mart, of 60.

6. A COMPUTERISED APPLICATION

In this example, a vegetable grower has the opportunity

of leasing an acre of cropping land in addition to his own area of

land. The lease will cost him $200 and runs for 12 months from

April. His immediate decision, then, is whether or not to lease

the land. The grower realises the return from the land is

highly uncertain, so he sets down the crops that he would consider

growing,and the major sources of risk, and he budgets a number of

possible terminal payoffs. Then he is in a position to sketch

a decision tree similar to ,that of Figure 5.

If he decides not to lease the land, he can invest the

$200 plus the $78 he has available to grow the initial crop at

_43%, giving him around $290 at the end of 12 months, or a net

earning of $12.

He considers only two crops for winter production,

either cauliflower or lettuce, to be planted in April. Should

the winter be excessively wet and cold, the lettuce crop would be

harvested a month later than usual, yield would be reduced, and a

lower price would be realised because of the lower grade produce.

If the winter weather is average or good, the lettuce crop would

be harvested by September in time for a crop of cabbage to be

grown during spring, to be followed by either pumpkin or summer
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cauliflower. If pumpkin is grown, the crop may be sold once it

is harvested, or it may be stored for later sale. In the latter

case, however, storage losses, as well as the price received ex

store, provide a major source of uncertainty. Cabbage prices

are also considered to be "a bit of a gamble" and if too low it

might be better to plough in the crop rather than harvest it.

If winter lettuce is planted and a very wet winter follows, then

there is no time in which to grow a spring cabbage crop before

either the pumpkin or cauliflower crops.

The alternative winter crop is cauliflower. If the

season is favourable to crop growth, the crop will be harvested

during September and may be followed by an October planting of

lettuce, or by pumpkin sown in November. Should the winter be

very wet, cauliflower yield and the price received are likely to

be lower than normal and the crop would not be harvested until

October due to slower growth. Then, crops to follow may be

either pumpkin or a November planting of lettuce. The disadvan-

tage of the November lettuce crop, as compared with that sown in

October, is that it is not ready to harvest until January, thus

missing out on the high prices in the pre-Christmas market that

the October-planted crop would obtain.

The decision tree in Figure 5 shows all act forks,

event forks, and cash payments or receipts at each stage, with all

terminal cash surpluses (one of which will be received at the end

of the year) underlined. The probability estimates for all

event branches are shown in Table 1. Since the cabbage price

chosen to represent the 'low' price event did not allow returns

to cover the harvesting cost, it was apparent that the 'harvest'

option following this event would be the wrong decision. This is

indicated by the 'doubleslash' through the appropriate branch of

the tree.
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Table 1. Probability Estimates - Leasing Problem

Event branch Probability

'Bad' weather

'Good' weather

'High' cabbage price

'Low' cabbage price

20% storage loss

50% storage loss

'Low' price ex store

'High' price ex store

0.3

0.7

0.8

0.2

0.5

0.5

0.5

0.5

In analysing this problem, we shall assume that the

grower's utility for money income derived from cropping the

leased land (or alternatively, banking the available cash) can be
measured as a linear function of that income. Thus the utility
function would appear as a straight line when graphed against
money income the form of the function would be

U = aX, where X is money income and U is utility,

and by setting a = 1 we see that the dollar values can actually
be used as the utility values.

The optimal strategy was obtained by use of the computer
programme listed in Appendix I. To enable the input data to be
assembled, the decision tree of Figure 5 must be redrawn to a
uniform format as in Figure 6. Here, each decision stage must
have one set of decision nodes and one set of event nodes, and
every decision branch emanating from the initial decision node
must continue through to the final stage. To accomplish
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this 'dummy' decision and event nodes might be required with a

zero monetary return, and with the 'dummy' event branches having

a probability of one.

The problem consists of three stages, and decisions

must be made at three points within the planning period. Since

computation begins at the final stage, this stage is numbered as

stage one for data preparation purposes, and thus the initial

stage in the decision-making process appears as stage three.

Also, the decision nodes within each stage are numbered, 'starting

at the top of the decision tree with node one.

All costs and returns in the tree refer to a complete

stage, and might be the summation of costs associated with a

decision branch and an event branch within that stage. If the

land is leased and planted with winter cauliflower, then a

return of -$77 will result if the season is 'bad', this being

equal to the cost of $278 plus the return of $201.

If lettuce is grown in the second stage of the period

rather than pumpkin, the pumpkin marketing decision of the third

stage is not applicable. This provides an example of the use of

dummy nodes. To allow returns to be summed to the right-hand

edge of the tree, two dummy event branches and one dummy decision

branch are required. As explained before, these events would

have a probability of unity.

The payoff matrix referred to in the programme listing

contains row by row, the individual components of the payoff

streams, with one stream for each path through the decision tree.
As the tree of Figure 6 has 32 end points and three stages, these
are the dimensions of the payoff matrix, which may be written
as:
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WWI

-77 -30 689

-77 -30 935

. . .

. . .

408 -86 1089

-278 o 290
imme•

Following cards in the input deck give the discount

rate, the coefficients of the utility function, and information on

the structure of the decision tree. A complete listing of the

data deck is given in Appendix II.

Appendix III gives the solution to the leasing problem.

The solution procedure is exactly the same as that given in

Section 5. At each stage the expected payoff associated with

each decision branch is calculated, and the optimal decision

branch for any decision node is indicated. By working back

through the solution output, then,, the optimal strategy can be

pieced together. This is presented below in Figure 7; as

indicated in the print-out, the optimal strategy has an expected

income of $1759.20.

The 'best-bet' decision, then, is to lease the land

and plant it initially in lettuce. Should the winter be 'bad'

a stored pumpkin drop will follow; given less severe winter

conditions, a cabbage planting would follow the lettuce crop, to

be followed in turn by a stored pumpkin crop.

In order to determine the 'best-bet' initial decision,

we first of all had to determine the 'best-bet' acts for the

future. This necessity of having to examine future acts and



Acts Events Acts Events

ri LEASE -
 
?LA IT

1-2-1‘..41.46 LeTTLAce

sow PcsAmPtC(N

Figure 7. Optimal strategy - leasing problem

Acts Events

sToRC QtAmi2K

sow PumP k
A Nz, sTo RE

'Do NT kktki(vEsr-

Sow c'uMQKttI

AND sTockE

sbok
40

04.-)

Payoffs

vcE $ 859

PRic $1,982

13-`c6 497

#111 PRICE- $1,199

$1,883

$3,006

$1,521

$2,223
$1,227

$2,350

865

$1,567



-22 -

events in order to arrive at the best initial decision is a

general feature of this type of problem and, of course, compli-

cates the solution procedure. We should also realise that

although the solution tells us what to do throughout the entire

planning period, it is only the initial decision that needs to be

implemented now. The future acts specified in the 'best-bet'

strategy are in fact the best acts in terms of the information

currently available. Once the winter lettuce crop has been

harvested, we will probably have more (or better) information

available to us than we included in the decision tree, and we may
2

even think it worthwhile to re-analyse the problem, again, of

course making use of all available information.

7. CONCLUDING COMMENTS

When constructing a decision tree for a real problem

that might confront us, we will soon realise that it is just not

possible to put down and analyse all possible acts and all

possible eventualities because of their complexity (even if we

could find a piece of paper large enough!) As with any type of

model building, then, we must learn to cultivate the art of

efficient model building. That is, we want to be able to

construct a model of the decision problem that is an adequate

representation of the underlying problem in its real-world

setting. Now, just what is 'adequate' is probably a matter of

personal judgement, and here skill and experience is all-important

in guiding us to theessential features of the management problem.

Thus, acts that seem almost certain to be unprofitable or

technically infeasible may be withdrawn from further consideration.
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Likewise, some events may not seem to exert as great an impact

on payoffs as some other events, or some future acts and events

may be considered to have little influence on the choice of the

initial action, so may also be deleted from the problem.

An important question is just how many events need to

be specified at each event fork, for example, two, three, four or

five possible price levels? The greater the number of events,

the better will the problem approach reality, but the bigger also

will be the decision tree. Also, it is often more efficient

in terms of problem-solution to represent random variables by

continuous, rather than discrete, distributions as explained, for

example, by Hadley (1967). It is up to the analyst and

horticulturist to determine the minimum number of acts and events

that allow the decision tree to capture the essence of the

decision problem. Although this will almost certainly involve

some gross simplifications, the writer believes that sufficient

of the original problem will still remain to allow a better

decision to be made than if risk was completely ignored.

We have seen that the estimation of certainty

equivalents requires recognition of beliefs and preferences.

Now, where a risky prospect (or event fork) is composed of more .

than two or three possible outcomes, the specification of

certainty equivalents becomes rather difficult. Preferences for

gambles with a large number of possible payoffs may be hard to

perceive. To get over this problem, we can examine historical

data and question the grower in order to estimate the relevant

probabilities, and obtain a numerical estimate of the utility

function that allows us to measure the satisfaction he obtains

from the various payoffs by employing a suitably-designed

questioning procedure (Makeham, et al. (1968)). If this is done

successfully we can then solve the problem 'away from the farm',
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so taking up less of the grower's time.

All relevant diversification and flexibility

opportunities that exist should be identified in the problem-

formulation stage, and included in the framework of the decision

tree. The optimal strategy will then contain the optimal degree

of diversification and flexibility, in accord with the decision-

maker's preference for, or aversion against, the risks that

exist.

What is the relationship between the decision tree

technique and other planning techniques? Decision tree analysis

can be considered as a way of thinking, rather than as a

technique separate from others such as budgeting and linear

programming. In fact, decision trees can be incorporated into

these other techniques. First, it should be clear that the

leasing problem was of the type that is often analysed by partial

budgeting, and that is what we really did with the decision tree.

However, there was not just one partial budget but several, since

we recognised that one of several outcomes could occur. In this

sense, the technique of decision tree analysis can be looked upon

as 'budgeting for uncertainty' or, perhaps, 'probabilistic

budgeting'.- Second, a decision tree analysis can be put into a

mathematical programming framework, in which case we could be

talking about quadratic risk programming (Rae (1970)) or

stochastic linear programming (Rae (1971)). This might be

relevant if we wish to take specific account of production

restraints, or if acts are continuous rather than discrete. In

the first situation, inclusion of production (and marketing)

restraints within the decision model will ensure that any

solution provided by the model will be operational. When the

decision tree model is used, however, some initial budgeting will

be required during construction of the tree to check that all



- 25 -

acts, as represented by the decision branches, are in fact

feasible. In the second situation, acts can be described as

'continuous' when levels of the decision variables can take on

....2zar value within some range, rather than various discrete levels.

Rather than specify an act as "accept beetroot contract", it

might be possible to "accept beetroot contract for any tonnage up

to 100 tons". A further advantage of the mathematical

programming approach is that marginal value products are easily

imputed to the resources, which is valuable information in

studying, say, factor acquisition involving risk.

Finally, just the exercise of constructing a decision

tree can be of immense value to both adviser and grower alike.

What may have seemed an incomprehensible and highly complex

problem becomes clearer after being stripped to its essentials.

This should then lead to both a better understanding of the

choices that are available and of the risks that must be faced.
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Appendix I COMPUTER PROGRAMME DESCRIPTION

This Appendix contains a listing of a FORTRAN computer

programme that can be used to solve decision tree problems.7

The following notes, plus the data listing of Appendix II and the

decision tree example of Figure 6, should explain the data input
requirements of the programme.

The cards consist of six groups, as follows:

i) Payoff-stream matrix definition card;

ii) The payoff-stream matrix cards;

iii) Discount rate card;

iv) Utility function coefficients card;

v) Decision tree definition cards:

(a) number of stages card;

(b) number of decision node cards;

(c) number of decision branches cards;

(d) number of event branches cards;

(e) event probability cards;

vi) Last card.

Payoff-stream matrix definition card

Columns Format Variable name Purpose

1-3 13. N Number of rows in
matrix.

4-6 3 K Number of columns in
matrix.

Parts of the programme aremodifications of the programme of
Marien and Jagetia (1972), although their programme is
designed to solve 'new product' decision problems through a
dynamic programming approach.



Payoff-stream matrix cards

Columns Format Variable name Purpose

1-80 10F8.0 ARRAY Matrix coefficients,

read in row by row.

Discount rate card

Columns Format Variable name Purpose

1-5 F5.0 RATE Discount rate as a

decimal.

Utility function coefficients card

Columns Format Variable name Purpose

1-10 F10.0 AUT Coefficient a,

11-20 F10.0 BUT Coefficient b,

21-30 F10.0 CUT Coefficient c, of the

utility function

U = aX + bX
2 
+ cX3.

Decision tree definition cards

Number of stages card

Columns Format Variable name Purpose

1-2 12 NMAX Number of decision stages

in the tree.

Number of decision nodes cards

Columns Format Variable name Purpose

1-3 13 NSTAG Identification number of

present stage.

4-6 13 LMAX Maximum number of deci-

sion nodes in present

stage.
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•

Number of decision branches cards

Columns Format Variable name Purpose

1-3 13 NSTAG As above.

4-6 13 NXN Identification number of

present decision node.

7-9 13 JMAX Maximum number of

decision branches

extending from present

decision node.

Number of event branches cards

Columns Format Variable name Purpose

1-3 13 NSTAG As above.

4-6 13 NXN As above.

7-9 13 JXN Identification number of

present decision branch.

10-12 13 KMAX Maximum number of event

branches extending from

present decision branch.

Event probability cards

Columns Format Variable name Purpose

1-3 13 ) NSTAG As above.

4-6 13 NXN As above.

7-9 13 JXN As above.

10-12 13 KXN Identification number of

present event branch.

3-20 F8.0 PROBK Probability of present

event branch.
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Last card

Columns Format Variable name Purpose

1-3 13 N Directs programme to END,

and may be any negative

integer, or else blank.

The following points regarding the organisation of the

'decision tree definition cards should be noted:

i) The final stage in the decision tree is stage

number 1.

ii) All cards relating to any one stage must be read

in together, with stage 1 read in first.

iii) All cards relating to any onedecision node

within a given stage must be read in together.

iv) All cards relating to any one decision branch

from a given decision node must be read in

together.
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A FORTRAN PROGRAMME FOR DECISION TREE ANALYSIS

DECISION TREE ANALYSIS
THIS PROGRAM SOLVES DECISION TREES FOR THE OPTIMAL STRATEGY BY THE
METHOD OF BACKWARDS INDUCTION - PAYOFFS MAY BE DISCOUNTED TO A
PRESENT VALUE AND UTILITY MAY BE EXPRESSED AS A LINEARtGUADRATIC
OR CUBIC FUNCTION OF (DISCOUNTED) PAYOFFS
DIMENSION ARRAY(200020),TP0(200),UTP0(200),ENV(200)tBEST(200)
NI=2
N0=3
READ IN NUMBER OF ROWS AND COLUMNS IN PAYOFF STREAM MATRIX

1 READ (NI,10) NO(
10 FORMAT (213)

IF (N) 127,127,15
READ IN PAYOFF STREAM MATRIX,ROW BY ROW

15 READ (NI,20) HARRAY(I,J),J=1,K),I=1,N)
20 FORMAT (10F8.0)

READ IN DISCOUNT RATE AS A DECIMAL
READ (N1,30) RATE

30 FORMAT (F5.0)
WRITE (N0,31) RATE

31 FORMAT (1H1,17H DISCOUNT RATE = ,F5.2,14H X 100 PERCENT,/)
PAYOFF STREAMS ARE SUMMED TO A (DISCOUNTED) TERMINAL VECTORS TPO(I)
DO 40 I=1,N
TPU(I)=0
DO 40 J=1,K
TPO(I)=TPO(I)+ARRAY(I,J)/(1.0+RATE)**J

40 CONTINUE
READ IN LINEAR, QUADRATIC, AND CUBIC CUEFFS4 OF UTILITY FUNCTION
READ (NI,50) AUT,BUT,CUT

50 FORMAT (3F10.0)
WRITE (N0051)

51 FORMAT (' UTILITY FUNCTION CUEFFS ARE')
WRITE (N0,52)- AUT)

52 FORMAT (17X,13HLINEAR = tF10.5)
WRITE (N0,53) BUT

53 FORMAT (17X,13HQUADRATIC = ,F10.5)
WRITE (N0,54) CUT

54 FORMAT (17X,13HCUBIC = ,F10.5)
TERMINAL PAYOFFS ARE TRANSFORMED TO TERMINAL UTILITIES
WRITE (N0,60)

60 FORMAT ( 'OJOINT EVENT TERMINAL PAYOFF UTILITY PAYOFF')
DO 70 1=1,N
UTPO(I)=0
UTPO(I)=AUT*TPO(I)+BUT*TPO(I)**2+CUT*TPU(I)**3

70 WRITE (NOt80) I,TP0,(I),UTPO(I)
80 FORMAT (4X,I3,9X,F9.2,7X,F9.2)

STAGE CYCLE
• READ IN NUMBER OF STAGES CARD
READ (NI,90) NMAX

90 FORMAT (12)
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WRITE (N0,91) NMAX
91 FORMAT (/.12H PROBLEM HAS,14 7H STAGES)

DO 125 N=1,NMAX
I=1
READ IN STAGE DEFINITION CARD AND NO OF DECISION NODES
READ (N1,100) NSTAG ,LMAX

100 FORMAT (213)
IF (NSTAG -N) 101,102,101

101 WRITE (N09103)
103 FORMAT ( 1 DATA CARD OUT OF ORDER')

GO TO 127
STATE CYCLE

102 DO 121 L=1,LMAX
wRITE (N091102)

1102 FORMAT (I,' STAGE NO DEU% NUDE NO DECN BRANCH NO EXPECTED VALUE
1')
BEST(L)=-9999999.
BEST 15 THE CURRENT OPTIMUM VALUE FOR THIS DECISION NODE
BRNCH=0
READ IN STAGE NUMBER-LEVEL NUMBER-NO OF DECISION BRANCHES
READ (NI,104) NSTAG ,NXN,JMAX

104 FORMAT (313)
IF (NSTAG -N) 101,105,101

105 IF (NXN-L) 101,106,101
106 DO 120 M=1 JMAX 

ENV(M)=0
ENV(M) IS THE COMPUTED EXPECTED VALUE FOR AN EVENT NODE
READ IN STAGE NO-LEVEL NO-DECISION BRANCH NO-NO OF EVENT BRANCHES
READ (NI,107) NSTAG 9NXN,JXN,KMAX

107 FORMAT (413)
IF (NSTAG -N) 1019108,101

108 IF (NXN-L) 101,109,101
109 IF (JXN-M) 101,1109101
110 DO 116 K=1,KMAX

READ IN STAGE NO-LEVEL NO-DECISION BRANCH NU-EVENT BRANCH NO AND
EVENT PROBABILITY
READ (NI,111) NSTAG ,NXN,JXN,KXN,PROBK

111 FORMAT (413,F8.0)
IF (NSTAG -N) 101.1129101

112 IF (NXN-L) 101,113,101
113 IF (JXN-M) 1019114.101
114 IF (KXNK) 1019115,101
115 ENVK=PRUBK*UTPO(I)

ENV(M)=ENV(M)+ENVK
116 1=1+1

WRITE (NOt118) NSTAG ,NXN,JXN,ENV(M)
118 FORMAT (2X,13,9X913,12X,13910X9F9.2)

IF (ENV(M)-BEST(L)) 120.120.119
119 BEST(L)=ENV(M)

BRNCH=M
120 CONTINUE
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WRITE (N0,122) NSTAG ,NXN,BEST(L)
122 FORMAT (26H MAX EXPECTED VALUE STAGE 9I3,11H DECN NODE 013,4H IS

1F942)
121 WRITE (N0,123) BRNCH
123 FORMAT (12H AND BRANCH ,F3.0953H IS THE BEST DECISION BRANCH EXTEN

1DING FROM THIS NODE)
END OF DECISION NUDE LEVEL CYCLE
BEST(L) IS THE ARRAY FOR KEEPING OPTIMUM VALUES FOR EACH DECISION
NODE IN A CERTAIN STAGE
DO 124 I=1,LMAX

124 UTPO(I)=BEST(I)
125 CONTINUE

END OF STAGE CYCLE
WRITE (N0,126)

126 FORMAT ( sOTHIS IS AN OPTIMAL SOLUTIONS)
C BACK TO READ ANOTHER TREE

GO TO 1
127 STOP

END
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Appendix III COMPUTER OUTPUT SOLUTION

DISCOUNT RATE = 0600 X 100

UTILITY FUNCTION COEFFS ARE
LINEAR

• QUADRATIC
• CUBIC

JOINT EVENT
1

3
4

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28

• 29
30
31
32

TERMINAL PAYOFF
582400

• 828.00
1951.00
466.00
1168600

• 532.00
1373.00
1619600
2742.00
1257600
1959600
1863.00

• 613400
859.00

19824100
497600
1199.00

• 1043.00
1439.00
1637.00
1883.00
3006.00
1521.00
2223.00
2067.00
981600
1227.00
2350600
865.00
1567.00
1411.00
12.00

PROBLEM HAS 3 STAGES

PERCENT

1600000
0.00000
0.00000

UTILITY PAYOFF
582.00
828.00
1951.00
466600
1168400
532.00
1373400
1619600
2742600
1257600
1959600
1863400
613600
859400
1982.00
• 497400
1199600
1043800
1439.00
1637.00
1883.00

.3006600
1521800
2223400
2067400
981400
1227400
2350.00
865.00
1567600

• 1411.00
• 1200



STAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE

1 1 1 582600
1 1 2 1103625

MAX EXPECTED VALUE STAGE 1 DECN NODE 1 IS 1103.25
AND BRANCH 26 15 THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

STAGE NO DECN NUDE NO DECN BRANCH NO EXPECTED VALUE

1 2 - 1 532600
MAX EXPECTED VALUE STAGE 1 DECN NODE 2 IS 532.00
AND BRANCH 16 IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

S TAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE
3 1 1373600

1 3 2 1894625
MAX EXPECTED VALUE STAGE 1 DECN NODE 3 IS 1894.25
AND BRANCH 26 15 THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

S TAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE
1 4 1 1863600

MAX EXPECTED VALUE STAGE 1 DECN NUDE 4 15 1863.00
AND BRANCH 16 15 THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

S TAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE

1 5 1 613600

1 5 2 1134.25
MAX EXPECTED VALUE STAGE 1 DECN NUDE 5 IS 1134625
AND BRANCH 2. IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

STAGE NO DECN NODE NO DECN BRANCHA40 EXPECTED VALUE

1 6 1 1043.00
MAX EXPECTED VALUE STAGE 1 DECN NODE 6 IS 1043.00
AND BRANCH 1. IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

S TAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE

1 7 1 1439.00
MAX EXPECTED VALUE STAGE 1 DECN NODE 7 IS 1439.00
AND BRANCH 16 15 THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

S TAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE

1 8 1 1637.00
1 8 2 2158625
1 8 3 2067600

MAX EXPECTED VALUE STAGE 1 DECN NODE 8 IS 2158.25
AND BRANCH 26 IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

S TAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE

1 9 1 981600
1 9 2 1502625

1 9 3 1411.00

MAX EXPECTED VALUE STAGE 1 DECN NODE 9 IS 1502625
AND BRANCH 26 IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE



STAGE NO DECN NUDE NO DECN BRANCH NO EXPECTED VALUE
1 10 1 12600

MAX EXPECTED VALUE STAGE 1 DECN NODE 10 IS' 12.00
AND BRANCH 14 IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

STAGE NO DECN NODE NO DECN BRANCH NO _EXPECTED VALUE
2 1 1 • 1103625
2 1 2 532.00

MAX EXPECTED VALUE STAGE 2 DECN NODE 1 IS 1103425
AND BRANCH ls IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

STAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE
2 2 1 1894625
2 2 2 1863400

MAX EXPECTED VALUE STAGE 2 DECN NODE 2 IS 1894625
AND BRANCH 14 IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

STAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE
2 3 1 1134625
2 3 2 1043600

MAX EXPECTED VALUE STAGE 2 DECN NODE 3 IS 1134425
AND BRANCH 1. IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

STAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE
2 4 1 1439400
2 4 - 2 2027405

MAX EXPECTED VALUE STAGE 2 DECN NODE 4 IS 2027605
AND BRANCH 2. 15 THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

STAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE
2 5 1 12400

MAX EXPECTED VALUE STAGE 2 DECN NODE 5 IS 12600
AND BRANCH 1. IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

STAGE NO DECN NODE NO DECN BRANCH NO EXPECTED VALUE
3 1 1 ' 1656694
3 1 2 . 1759.20
3 1 3 12600

MAX EXPECTED VALUE STAGE 3 DECN NODE 1 IS 1759.20
AND BRANCH 24 IS THE BEST DECISION BRANCH EXTENDING FROM THIS NODE

THIS IS AN OPTIMAL SOLUTION
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