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INTRODUCTION

This paper represents a further development of research initially carried out

in the Agricultural Economics and Farm Management Department at Massey University.

Professor W.V. Candler, Head of the Department until September 1967, suggested the

project and gave considerable assistance to Mr. Rae during 1967 and 1968.

The application of Mathematical Programming to the management of horticultural

enterprises is well illustrated in this paper. I hope that horticultural producers

will be encouraged to support further work in this field as the horticultural industry

in New Zealand has considerable potential for growth in the future. Managers must be

aware of modern methods of analysis and have some appreciation of their potential application

in practice. Horticultural Advisory Officers should also find this paper of value

when they try to assess the place of programming as a research method.

I wish to thank all those who gave of their time and knowledge in answering

Mr. Rae's many questions. The assistance of members of the Vegetable Growers' Federation,

Officers of the Department of Agriculture and the farmers who provided detailed

information is especially appreciated.

A.R. Frampton,

January 1970 Professor of Agricultural Economics
and Farm Management.



Preface

This paper discusses the role of quadratic programming in solving two distinct

horticultural management problems. Parts-A and B each deal, firstly, with the theoretical

aspects of the problems and formulate the theoretical models, and secondly, each presents

an empirical example from New Zealand horticulture. Attention will be concentrated on

theory and the likely occurrence of the problems, with the practical examples discussed

somewhat briefly. Readers wishing for greater detail, however, should refer to Chapters 5

and 6 of my M.Hort.Sc. thesis, "Applications of Mathematical Programming on Four New

Zealand Horticultural Holdings", Massey University, 1968.

The first management problem discussed involves the determination of profit-

maximising behaviour under conditions of imperfect competition in product and/or factor

markets. -Contrary to one assumption of perfect competition, necessary for linear

programming to be appropriate, product prices may have to fall if producers wish to sell

an increased level of output. In such a case the profit function to be maximised will no

longer be linear and non-linear programming techniques are required.

The second situation discusses the formulation of cropping programmes under

conditions of risk. After stating the general model, attention is then turned to one

aspect of risk in production, namely the variability of prices and yields, (i.e., income).

A model is then described which will allow a series of plans to be found, each of which

minimises income variability for some level of average (or expected) income. The risk

model is seen to be most appropriate to fresh vegetable production, since auction prices

(and also yields) may be notoriously unstable, and managers may prefer a lower but more

stable income rather than the highest possible income.

The empirical application of the risk model was intended as one of the programming

studies of my thesis, but for reasons mentioned in the thesis, the solution was not

available in time for inclusion in that work. The solution to the model is, however,

presented in this paper, and I would like to express my thanks to the Department of Farm

Managementr University of New England, through whom the solution was obtained at the

University of Melbourne.

• Part C of the Discussion Paper summarises the situations discussed and the likely

importance of quadratic programming in horticultural management.

ALLAN N. RAE

University of New England
, August 1969
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I

Part A

'PROFIT MAXIMISATION UNDER CONDITIONS OF IMPERFECT COMPETITION

A.1 INTRODUCTION

The behaviour of many farm firms may be realistically approximated as perfectly

competitive in both factor and product markets. The New Zealand fresh vegetable

industry, for example, comprises a large number of relatively small holdings and any

single producer is but one of many sellers-". Under such conditions it may be assumed

that individual firms cannot affect the price they receive by changing output levels,

and are thus price-takers, the demand conditions facing such firms being perfectly

elastic. These firms may also be near-perfect competitors in factor markets, since

the larger the number of buyers, the less can any one firm influence the price it pays

for a factor by changing the quantity it uses.

Two further market characteristics lend support to the supposition of a 'nearly'

perfectly competitive fresh vegetable industry in New Zealand. Firstly, the wide

variety of vegetable products generally available topurchasers suggests that individ-

ual firm's product demand curves will be elastic rather than inelastic, and the demand

elasticity will be greater the larger the number of substitute products, and the

greater the substitutability of one product for another.

Secondly, relatively little capital is required to enter the fresh vegetable

industry, particularly since the average size of holdings tends to be small. Such

ease of entry and exist effectively reduces the possibility of the industry earning

anything above normal profits.

Therefore, as the above would indicate, it may be realistic to treat such firms

as 'perfect competitors' when aspects of firm behaviour, such as changing output to

maximise profits are under study. Thus linear programming may be employed to deter-

mine profite-maximising behaviour since it has been assumed that the market price of

any product is independent of the amount produced, and that factor costs are unaffect-

ed by the quantity of resources purchased/'? Along with the assumption that constant

returns to scale exist (and therefore marginal and average costs remain constant as

the firm's output of a product increases), the above implies the existence of a linear 

profit function.

1. There are approximately 2600 growers in the industry, with about 4o peroent of
growers owning properties not larger than 10 acres. (See Report on the Economic 
Position of the Fresh Vegetable Industry in New Zealand, Enting, L.M., Philpott,
B.P., and Ridler, D., New Zealand Vegetable & Produce Growers' Federation (Inc.),
Wellington, 1965, p.1.

2. For an application of linear programming involving fresh vegetable production, see
Rae, A.N., "Applications of Mathematical Programming on Four New Zealand Horticult-
ural Holdings", unpublished M.Hort.Sc. thesis, Massey University, 1968, Ch.3.

3. Situations of falling average revenue and increasing average costs may be approx-
imated by linear programming - see, for example, Candler, Wilfred and Musgrave,
Warren F., "ApPractical Approach to the Profit Maximisation Problems in Farm Man-
agement", Journal of Agricultural Economics, Vol.14, pp.208-223, 1960. Should
the supply curve of a factor be downward-sloping, however, the convexity
assumption of linear programming would be violated.



Fig.A.1(a) Individual Firm's Demand
Curve - Perfect Competition
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Fig.A.1(b) Total Revenue and Total Cost
Curves - Perfect Competition

Fig.A.1 illustrates a single-product case, where profits will be maximised by

increasing output until further expansion is prevented by some resource(s) being re-

strictive. This situation may be generalised to the typical multi-product case, with

profit a linear function of output levels of all products.

So much for the assumptions of perfect competition and linear programming. .Do

situations exist in New Zealand horticulture where competition is less than perfect,

and the behaviour of some firms can influence prices and thus the behaviour of other

firms? The author believes such situations do exist, and will become more prevalent

in future years. The emergence of relatively large vegetable-producing enterprises,

for example, indicates that some assumptions of perfect competition may be violated,

since changes in output levels by these firms may influence market prices. Such

large firms may also have some monopsonistic influence in factor markets. Even

relatively small veget4ble producing firms may be able to influence market prices by a

considerable expansion in output of some product and flooding the market, a situation

which does occur from time to time.

The assumptions of perfect competition may not be appropriate for some nursery

firms, since the price which the firm can charge if it hopes to sell its entire output

may decrease as the quantity produced-increases. Also, some of the larger nursery

firms may be able to act as price leaders, so that prices received by smaller firms in

the industry will depend upon the behaviour of the price leader.

Where such elements of imperfect competition exist in product and/or factor

markets, non-linear programming techniques may provide more realistic solutions to

profit-maximisation problems than would linear programming.

4
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A.2 A QUADRATIC PROGRAMMING MODEL OF PROFIT MAXIMISATION

In linear progrmming, it is assumed that product prices remain constant regardless of

the volume of output. Such a programming model may be converted into a somewhat more geneml

model by allowing the prices of at least some products to decrease as their output is increas-

ed. In particular, if we assume that the firm's demand curves are linear and downward-slop-

ing, the profit-maximisation problem has been converted into one of quadratic programming

since the larofit function is now of quadratic form (see Fig.A.213).

Price Profit

Fig.A.2(a) Individual Firm's Linear
Demand Curve - Imperfect
Competition 

qe

Fig.A.2(b) Individual Firm's Profit
Function

Generalising, assume the firm can produce n commodities at levels x. 1 = n

and these products may be sold at a. price p, where -j

(1) p. = a.-b.x. (a.> o, b..o for all j).
0 JJJJ

Where b is zero, the firm can sell all it produces of product j at a fixed price. Should

b be positive, however, an increase, in the quantity of j produced must be accompanied by a

reduction in price (p.) if the entire output is to be sold.

To allow for the possibility that the firm may exert a monopsonistic influence in

factor markets, the linear supply functions for the i factors (i = may be written:

(2) 
pi 
. = a.+b.

a.

where u. is the quantity of factor i purchased. If b. is zero, the firm could purchase any

amount of factor i at a fixed price; if bi is positive the price of factor i would increase

as the quantity of the factor purchased was increased; and if bi is negative, the factor

supply curve would be downward sloping.

Therefore, the firm's net revenue function may be written as

Net revenue = total revenue - total variable costs

E p.x - E p
i 
u.

J  
j=1 

1

•
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(3)

= E (a. - - E (a. + b.u.)u.
j

j=1 3. 
. 
=1 
,1' 11 1

'm
E a .x E a.u. - E b.x- E

1 1. j
j=1 i=1 j=1 i=1 

1 i

The objective function (3) is therefore of quadratic form, and may be maximised'sub-

ject to the usual linear restraints

(4) E r..x. (i = m)

j=1 1J J

xi o 1C,i = •••,

where d. is the supply of the ith resource, and r.. are fixed technical coefficients indic-

ating the per unit requirement of x. for d..
3

To present a graphical representation of the model, assume the firm produces only two

product's, xl and x2. In Fig. A.3 resource supplies limit the production of x2 to OA, and

x
2

I/

I tiLl illililtI II I I I I

Iso-net-revenue
contours

Fig.A.3 The Quadratic Model with Two Products and TWO Restraints

x
1

production of x
1 
to OB. Thus all feasible combinations of x

1 
and x

2 
are bounded by OACB.

The iso-net-revenue contours represent a 'birds-esip' view of the quadratic net revenue sur-

face, with net revenue reaching a maximum at M. Since M lies outside the feasible region,

however, it does not give the solution to the problem. Rather, point N gives the net-revenue

maximising combination of x
1 
and x

2' 
since it is that feasible combination of x

1 
and x

2
which lies on the highest possible iso-net-revenue contour.
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A.3 AN EMPIRICAL APPLICATION OF THE MODEL 1/

The above type of quadratic programming model was constructed for a nursery firm.

(A linear programming model was not appropriate since the nurseryman stated that any increae

in output of his products may have to be accompanied by a reduction in price.)

Since the nursery produced well over 1,000 different plant types, the formulation of

the optimum output of the nursery as a whole was beyond the capability of the available com-

puting facilities. Data, was therefore collected from the nurseryman relating only to a

small number of plants (nineteen) propagated in glasshouses during the spring and summer.

The limiting resources included a heated glasshouse, an unheated glasshouse, a lath-

house, labour, and an area of cropland. Other nursery resources such as a soil sterilisatim

unit, worksheds, stock plants to provide cutting material and outdoor frames were assumed to

be non-limiting resources present in more than adequate supply, so did not require inclusion

in the model.

The supplies of limiting resources were set equal to the total requirements of the

nineteen plant types for the various nursery resources when produced at the levels of the

past season. The end result was a nursery which although hypothetical, was based on 'real-

life' data. 'Thus, the quadratic programme was formulated and solved, not to assist the

nurseryman to increase his profits, but rather to illustrate how such production and market-

ing situations may be handled by quadratic programming.

A.3.1 THE OBJECTIVE FUUCTION

Although imperfectly competitive in some product markets, the nurseryman had no influ-

ence over the price paid for factors of production (i.e. he is a:perfect competitor in fact-

or markets). This, accompanied by the assumption of linear production functions for the n

commodities, meant that average and marginal yariable costs of production (ci) would remain

constant for all (positive) values of x = n).

The objective, to maximise total net revenue, may be written as

Maximise TNR = TR - TVCn 
n

Ii n;
E p - E c
j=1 J J j=i J

(5)

j= 
E [x .(p c .)]

Ji

n
E x.(a. - b.x. - c.)

JJ JJ

E (a. - c .)x b .x2.
j=1 J . J J 331

4. A full discussion of the model and its solution is given in Rae, A.N., op.cit.,Ch.5.



It can be verified that (5) is equivalent to (3) when bi = 0,

since E a.u. = E c.x = Tvc
J1=1 j=1

The problem then is to maximise (5) subject to the linear restraints 4).

A.3.1.1 ESTIMATION OF DEMAND FUNCTIONS

A more reliable estimate of the linear demand functions could have been made had

accurate elasticity coefficients been available-V.

The demand function

x- = )
J i

could then be calculated from

(6)

where

x. - x.
3 0

x.
_ .

3

P- - P-P-0 3 1 1 

Pj 
. ij
1 

_
Pi

e. is the demand elasticity of product j with respect to its own price,
J

c.. is the cross-elasticity of demand between product j and the price of
1,)

product i,

and

x., j., and p
i 

are the average values observed during the last season.

The lack of such data meant that to obtain some indication of the slope of the de-

mand curves, two sets ofdata had to be used - the past season's outputs and prices, and

the nurseryman's estimate of by how much price would need to be reduced to sell (say) an

extra 100 plants. The nurseryman was also asked if the quantity sold of some plants

would affect the demand for others, but found this question difficult to answer. This

measurement problem made it necessary to assume that cross-effects did not exist '.

The nurseryman considered that he could sell as much as he produced of nine of the

nineteen plant types, so the demand curves for those products would be horixodal.

411.

5. See Louwes, S.L., Boot, J.C.G., and Wage, S., "A Quadratic Programming Approach
to the Optimal Use of Milk in the Netherlands", Journal of Farm Economics, vol.499
pp.309-317, 1963. Regression techniques may also be used if adequate data is
available.

6. Such an assumption is probably unrealistic, since the wide range of ornamental
trees and shrubs available suggests that significant substitution relationships
would be present. This is also suggested by the high own-price elasticity co-
efficients mentioned in a note to Table A.1.



For the remaining ten products, the linear demand functions were estimated as

X) — xi

(7) x — x 
1 P — P (P 131)

2 1

where P
1 
and x

1 
is one set of price—quantity co—ordinates and

P
2 

and x
2 
is the other.

The linear demand functions are to be found in Table A.1 . (Price is measured

in $1 units, and quantities are measured in units of 100 plants).

A.3.1.2 Average variable costs

Although variable costs will not be;tabulated here, they include the cost of such

items as soil—fumigation materials, fungicides, insecticides, and weedicides, polythene

film used for weed control, and packing and marketing materials.

A.3.1.3 The total net revenue objective function

The objective function is identical to that given by equation (5). Average

variable costs (c.) were subtracted from the a values of the demand functions, and then
J 

j un 

the (now average net revenue functions) were multiplied throughout by x. to give the

quadratic total net revenue function to be maximised.

A.3.2 The Solution to the Quadratic Programming Problem

Since the solution to the quadratic programme will be given in terms of the x.'s,

the price which the nurseryman can charge in order to sell the entire output of product

j is found by substituting the appropriate value for x. into the demand function for

that product.

For example, the value of x2 (the production level of Acacia) in the solution is

26.40 hundred plants. To obtain the maximum price which the nurseryman can charge, this

value is substituted into the demand function for Acacia as follows:

P
2 
= 61.67 —0.666Ix

2

= 61.67 — 0.6667 (26.40)

= 44.07

7. The functions are presented as inverse demand functions, since they express
p = f(x) rather than x = f(p). Such transposition was necessary since the
problem must be solved in terms of the x values (as in the objective function
(5)) as some prices are assumed to remain constant and hence are already known.

8. Only production levels and prices will be presented. Other aspects of the
solution such as resource requirements, shadow prices of scarce resources,
and marginal opportunity costs of growing omitted products, may be found in
Rae, A.N., op.cit Ch. 5, section 5.8.



TABLE A.1 The Demand Function

Product Demand Function
(p. . a .-b .x .)

J 33

Telopea

Acacia

Passiflora

Banksia

Photinia

Eucalyptus

Stachyurus

Cistus

Protea

Tibouchina

Azalea indica

Viburnum

Rhododendron

Weigela

Forsythia

Azalea occidentalis

Magnolia

Callicarpa

Hypericum

pl = 81.78 - 0.1220x1

132 = 61.67 - 0.6667x2

p3 = 55.00

P4= 78.00

p5 = 60.00

P6 . 56.13_0.5732x6

p7 = 65.00

P8 = 60.25 - 0.9524x8

P9 = 100.00

10 = 
55.00

p11 
= 71.96 - o.

537x11
pi2 = 64.67 - 1.333x12
1313 = 125.65 - 0.8696x13

P14 = 54'32 
- 1.8000x14

p15 = 73.01 - 1.3986x15

P16

17

P18

P19

= 130.00

110.00

60.00

= 62.86 - 0.8276x
19

••••

Note: Own-price demand elasticities (E) may be derived from the linear demand
functions as

E = LILLE
dp.x

••••

Using the means of the two quantity-price coordinates, the estimated
functions imply elasticity coefficients of between -3.42 and -7.16 for
eight of the ten 'downward-sloping' functions. The two remaining
coefficients are somewhat higher being -9.21 (for Viburnum) and -17.62
(for Telopea). Such high coefficients would appear reasonable a priori,
at least those between -3 and -7. This is because purchasers are faced
with a wide raage of ornamental trees and shrubs from which to choose,
and this type of plant is considered a luxury rather than a necessity,
both these factors suggesting a highly elastic demand.
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Therefore profit maximisation requires inter alia the production of 2,640 Acacia plants

sold at a price of $44.07 per hundred (i.e. 44 cents each). The prices and production

levels of all products in the solution are ...given in Table A.2, as well as the correspond-

ing values for last season's production of the nineteen plant types.

TABLE A.2
Output, Prices and Total Net Revenue

Product Value in Optimum Plan Value in Past Year
Output Price Output Price

(No. plants) ($ per plant) (No. plants) ($ per plant)

Telopea 2,974 0.78 3,100 0.78

Acacia 2,640 0.44 1,000 0.55

Passiflora 16,000 0.55 4,000 0.55

Banksia 5,659 0.78 200 0.78

Photinia - - 5,100 0.60

Eucalyptus 1,405 0.48 1,070 0.50

Stachy-urus _ 1,200 0.65

Cistus 595 0.55 550 0.55
Protea - _ _ 220 1.00

Tibouchina _ _ 320 0.55

Azalea indica - - 1,300 0.65

Viburnum _ _ 350 0.60

Rhododendron 904 1.18 1,800 1.10

Weigela - _ 240 0.50

Forsythia - _ 930 0.60

Azalea occid. 3,769 1.30 300 1.30

Magnolia 3,933 1.10 1,275 1.10

Callicarpa - - 200 0.60,---

Hypericum - - 950 0.55

Total Net Revenue $26,891 $15,769

It can be seen from Table A.2 that prices to be charged for six of the nine products

included in the optimum solution are similar to those of the past year. Four of these six
products (Passiflora, Banksia, Azalea occid. and Magnolia) can be produced at any level with
no effect on price, and the quantities of each of these plants to be produced in the optimum
plan are considerably above those of the past year. Changes in the output levels of Telopea
and eistus from those of the past season are sufficiently small to have had a negligible
effect on price. Profit maximisation requires a reduction in price for both the Acacia and
Eucalyptus products, but allows Rhododendron prices to rise.

The maximum value of total net revenue from the existing supply of resources is
$26,891, which is 70 percent greater than the total net revenue from the past season's out-
put.
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A.4 Some Comments on the Quadratic Programming Model

Since this application of quadratic programming was intended only to illustrate a

method of solving a not uncommon problem in horticultural management, rather than to provide

the manager with a plan for possible adoption, some comments can be made on additions to the

model which may be necessary in practical applications.

Only plants propagated during Spring and Summer were considei-ed, and as a result re-

sources such as glasshouses were unoccupied for about five months of the year. In practice,

plants are propagated all year round and glasshouses may always be occupied. Thus in a

practical application additional products and restraintswould be necesaary to represent all-

year-round production.

It may be necessary to differentiate between different types of labour, since some

operations (e.g. making cuttings) are often carried out by women, whilst others (e.g. spray-

ing and soil sterilisation) usually make use of male labour.

The quantity, of cuttihg material available from existing stock plants is likely to

form additional restraints on production. (For example, the above solution requires large

increases in the outputs of Passiflora, Banksia, Azalea occid. and Magnolia, which may not

be consistent with the quantities of cutting material available). Such restraints would

simply take the form of an upper bound on the production level of the crop in questilon, and

the values which could be inputed to such restraints would indicate to the nurseryman the ex-

tent to which profits are likely to rise if he were to increase the number of stock plants in

the stoolbed.

Apart from the problem of estimating the demand functions as accurately as possible,

the profit-maximising point of a linear demand curve may be so far removed from the quantity-

price co-ordinate of the _past year as to give an unrealistic price and quantity estimate.

It is interesting to note; however, that for any given price, a linear function will usually

underestimate the quantity demanded and hence revenue (see Fig. A.4). At a price of pl,

'true' demand is q2, whereas the linear demand curve approximates demand as ql.

1

*z___ true_ demand curve

linear approximation

4-2- observed co-ordinate

qi

Fig. A.4 Linear Functions may Under-
estimate True Demand

cl2

A method of providing a better approximation of a non-linear demand function has been
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suggested /. The principle is analagous to a market demand curve being the sum of all

individual's demand curves - the total demand curve for a product may be the sum of two or

more separate linear functions.

Fig. A.5 Approximation of Demand Curve
with Several Linear Functions

In Fig.A.5, the separate linear demand curves are bd and ae. When summed horizontally
they give a total demand curve for the .particular product, of bcf.

The equations of bd and,ae may be written

- b:x.

and

13 
u. = a

i 
- b.x1 1 11

Three further restraints must be added to the model:

Pj = Pi

xjuj =
(xj,uj o)

x.u. = 0 (x.,u. o)
11 1 1

Thus, if is equal to og, a total quantity oh of the product is produced .e. x = oh,

13- --":TYarld. 11 = 0)-Butsinceazeroclualltitrofx-is produced,1

x. = 0
1

g,Pi

and
.ui = 

9. The author wishes to thank A.D.Woodland of the Department of Economics, University of
New England, for suggesting this approach.
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Part B

CROP DIVERSIFICATION FOR RISK AVERSION

B.1 The Stochastic Nature of Production

Both budgeting and liqear programming assume that all information relating t

the management problem, such as crop yields, prices and costs, resource supplies, and

input-output data, is known with certainty. Often, production plans formulated under

this assumption, may be acceptable to managers'. In other cases, however, farth

managers may criticise linear programmed solutions, saying they cannot fallow a pre-

determined plan since values of many variables (such as prices) cannot be known with

certainty, but may be considered to occur at random. In these situations, farm

planning methods should take account of the random or "chance" variability inherent

in the prodqc.tion data. Such chance, or stochastic, variation in data values may

occur for many reasons, a few of the more important being :

(i) the price of proli,c)e sold on the auction floor may vary, both from dy to

day, and from one period of the year to the corresponding period of the

following year;

(ii) yields may vary from season to season due to both climatic conditions and

the incidence of disease (the latter may be partly influenced by the weather);

(iii) the time of planting may need to be altered due to had weather.at the

scheduled planting time, or an unexpected frost may damage the young

seedlings so that a second and consequently later planting is required;

(iv) the labour input for many operations such as land preparation, handweeding

and spraying will vary, due mainly to climatic conditions; and

(v) the labour supply may be reduced through sickness, or difficulties may be

experienced in obtaining labour when required.

If the above aspects of risk were not important, then the linear programming

model (1) would be appropriate.

Maximise Z cx

subject to Ax b

x

Should risk play an important role in a farm manager's future planning, though,

model (1) may be generalised to a stochastic linear programming model (2) where para-

meters (e.g. prices) are represented, not as discrete values known with certainty, but

as distributions of values.

.(2) Maximise Z = (ct,)x

subject to (A+4120:x 4 (b43)

1. For the comments of two horticulturists on linear programmed cropping systems,
see Rae, A.N., op.cit., sections 3.12 and 4.10.
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where

Z = net revenue

x = vector of cropping levels

c = vector of gross margins

b = vector of resource supplies, and

A = matrix of input-output data.

That is, model (2) allows all coefficients to have associated error terms,, a

and p, which correspond to random deviations between the real world value of the parameter
and the estimated value.

Methods are available to allow the solution of stochastic problems', but unfortun-

ately only trivially small problems have been solved in practice.

If, however, We are prepared to assume that stochastic errors are associated only

with the components of the objective function (i.e. prices, costs and yields), and that

other parameters of the problem (resource supplies and input-output data) are known with

certainty, quadratic programming can provide solutions to practical problems. In other

words, we assume that the only aspect of risk of importance to managers is variation in

their incomes, and the procedure is to find a series of farm plans, each of which minimises

this variation for various levels of average income".

B.2 Theoretical Background to Crop Combination under Risk

This section will introduce iso-income and iso-variance concepts, and will indicate

the combination of crops which will produce some level of expected income with the minimum

income variability, or minimum risk.

B.2.1 Iso-income curves

The expected income from two cropping activitiesproduced at levels xi and x
2' 

may

be written

(3) E(income) = p
1
x

1 4- P2x2'
where

pi and p2 are the expected net incomes (gross margins) of the two activities.

A given levelof income may be obtained from some acreage of xi, some acreage of x2, or

from some combination of both xi and x2.

In Fig.B.1 a level of income E
1 
may be obtained from all combinations of x

1 
and x as given

by all points on the iso-income line ab.

2. See, for example, Cocks, K.D., "Discrete Stochastic Programming", Management Science 
vol.15, pp.72-79, 1968.

3. The procedure was first postulated by Markowitz in relation to selecting portfolios
of securities which minimised income variations. See Markowitz, Harry M., "Portfolio
Selection - Efficient Diversification of Investments", John Wiley and Sons, Inc.,
1959.
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Fig.B.1 Iso-income Curves

B.2.2 Iso-variao:e curves

•

The varialw,e of income'- from a combination of the two crops x
1 
and x2 is equal

•

to

(4) 2
V(Variance) x a 

4- x 
2
a - 2x x1 '11 2 '22 1 2 12

where
is the income variance of xc111 1'

q22 is the income variance of x
2' 

and

c112 

5/
is the income covarianl:e between x

1 
and x

2.
-

rhe iso-variance curves, which indicate all levels of x and x
2 

which produce

the same varian:e of iqcome, are indicated by Fig.B.2.

4. In the quadratic programming approach to risk aversion, the variance of incomes
is taken as an index of the degree of risk attached to a particular plan.

An unbiased estimate of variance is given by

q.. = 4: (c.- )2
ii k i

•

n-1
and an unbiased estimate of covariaAce is given by

q.. = F(c
i 
-

i
)(c - , whereij

n-1

c. and c. are the observed net revenues from the i
th 

and j
th 

activitiesi
_ _ 3 respectively, in each of the k years,th
C. and c. are the average net revenues of the i and j

th 
activities1

3 respectively, and
a is the number of observations.

5. A measure of net revenue covariance between each pair of crops is necessary since,
for example, crops A and B may both be subject to high net revenue variance and
therefore high risk, while combinations of A and B may provide a net revenue subject
to much less variance if the net revenues from both crops are inversely correlated -
that is, a low return from A in one year will be offset to some degree by a high
return from B. Generally, for anything less than perfect (positive) correlation
between net revenues, a combination of the crops will result in some offsetting effects.
See Heady, E.O., "Economics of Agricultural Production and Resource Use",
Prentice-Hall, Inc., New Jersey, 1952, pp.510-524.
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x
2

a

0

Fig.B.2 Iso7Variance Curves

For example oa of x
2' 

ob of x
1' 

or any combination of x
1 
and x

2 
given by the curve ab will

produce a variance of income of Vo. (It may be noted that the iso-variance curves would

be straight lines only if net incomes from x
1 
and x

2 
were perfectly correlated).

B.2.3 Choice of the preferred (Minimum Variance) level of crops 

The above iso-income and iso-variance curves are drawn on a single graph in Fig.B.3.

It then becomes apparent that tangency of the two types of curve indicates the levels of

x
1 
and x

2
whichwill produce some level of expected income at minimum variance. (Orconverse-

ly, such points of tangency indicate the crop combination which will produce a maximum lelel

of income for a given level of income variance.

x
2

1 2

Fig.B.3 Preferred Crop Combinations

For example, the co-ordinates of point a are the levels of x1 and x2 which produce an

income of E
1 
with a variance of V

2. 
However, point b gives another combination of x

1 
and

x2 which produces the same income the1 1'
farmer be averse to risk (as measured ly income variability), he will prefer combination b

to combination a. The line OA is the locus of all such preferred combinations of the two

crops, trhich minimise the variance of income for any given level of income.

The preferred, minimum-risk crop combination (i.e. all points on OA), may be deter-
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mined by minimising the variance function (4) subject to a given level of income (3).

That is,

(5) Minimise Z = V

subject to El = pixi + p2x2

Forming the lagrangian function and setting its partial derivatles with respect

to x
1, 

x
2 

and the lagrangian multiplier (X) equal to zero, gives equations (6), whose

simultaneous solution will give the levels of x
1 
and x

2 
which will produce the income

E
1 
at minimum variao.:.e.

(6)
x2q12 XPI ° •

x
1

ci12 x2c122 
•X-P2 = °

xipi + x2p2 = E

B.2.4 The preferred crop combinations when restraints on production exist,

The above analysis assumes that xl and x2 may be produced at any (non-negative)

level, that is, infinite supplies of resources are available. In practice, the farm-

er owns only so much land, labour, buildings etc., which prevents the production of

crops from beilg expanded continuously.

Fig.B.4 is similar to Fig.B.3, except that upper bounds have been placed on the

x
2 

levels of x
1 
and x

2.

expansion path

Iso-variance curve

44Z— Iso income curve

Fig.B.4 Preferred Crop Conainat.ions  with Restraints on Production
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Resource supplies are such that all feasible combinations of x
1 
and x

2 
are bounded

by OBCDE. As in the previous example, the expansion path OA joins all points of tangency

between the iso-income and iso-variance curves. Thus, as production is expanded from 0 to

A, variance of the resulting income will have beenminimised. Because of the production re-

straint it is not possible to move along the expansion path beyond A, so a new direction of

expansion must .be found within the feasible region, along which income can be increased

with a minimum increase in variance. Such a path is from A to C, where another restraint

becomes effective. Production may then be expanded to D, at which the maximum possible

income is attained. Note that as production deviated further and further from the expan-

sion path (i.e. to C and then to D), the increment in variance associated with a given

increment in income became larger and larger.
Expected
income

E
1

t_

V
o

Fig. B.5

Infeasible combinations

Feasible
combinations

IncomeV
1 V -

2 variance

Preferred Combinations of Income and Variance

Letting income and variance associated with points A, C and D be E V , E Vi, and
o o

E
2
V
2 

respectively-, the preferred feasible crop combinations from Fig. B.4 may be graphed

in E-V space (Fig.B.5). All Combinations below OD are feasible, •whereas those above OD

are infeasible. For example, K is preferred to C since it has the same income, but lower

variance, but from Fig.B.4 it is seen that K lies outside the feasible region. It is also

easily seen that for a given increase in variance, the increase in income becomes smaller,

until the point of maximum income (D) is reached.

All points on OD are preferred to all points to the right of OD, since the points

on OD represent plans with smaller income variance or greater income than any other feas-

ible plan with the same income or variance. Thus the problem of finding all feasible

variance-minimising plans (as in Fig.B.4) is equivalent to identifying all points on OD in

Fig.B.5.

B.2.5 An E-V indiferrence system

The decision maker is assumed to behave in accordance with an E-V indifference

system as in Fig.B.6.
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Expected
Income

increasing utility

Fig.B.6 An E-V Indifference System

Income
variance

I
1,
 12 and 13 

represent successively higher indifference curves. The manager will

be indifferent between all points on any one indifference curve - each indifference curve

gives all possible combinations of income and variance which result in equal satisfaction

to the decision maker.

Once all points along OD (Fig.B.5) have been found, the particular combination of

income and variance which maximises the individual's satisfaction will be defined by tang-

ency of an indifference curve to OD, as in Fig.B.7.
Expected'
income

1
2 DI

Fig.B.7 Maximisation of Utility

Income
variance

Thus A represents the crop combination which will maximise the decision maker's

utility. Even though K would give him greater utility than A, it is an infeasible combin-

ation. Plans C and D are not preferred to Plan A since they would give levels of utility

of 12 and I1' which are both less than the utility derived from Plan A.

Note that as the decision maker becomes less averse to risk, the indifference curves
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will become less steep. For a farmer who completely disregards risk, the indifference

curves will be horizontal, and the plan giving maximum income (i.e. Plan D) will also give

maximum utility.

In practice, the farmer may be able to make a choice amongst all preferred plans

without having recourse to indifference curves. Thus the problem of defining the farmer's

E-V indifference system is avoided,although the choice of a plan which the farmer believes

will maximise his utility implies tangency of the preferred path OD and an indifference

curve.

On the other hand, it may be possible to estimate the farmer's utility function''.

If this is a quadratic, the E-V pairs for all preferred plans may be substituted into the

expected utility function, so that the utility associated with each plan can be numerically

specified.

B.2.6 Summary of the risk minimisation model

The model assumes (i) that the variance of crop returns and total income is an

adequate measure of risk. That is, very high and very low returns are equally undesirable,

, and the model seeks to eliminate both these extremes. Although some farmers may be averse

to only very low returns and regard high returns as being acceptable, the assumption is

acceptable to others who wish to obtain a stable income;

(ii) that the variance of crop returns as observed in the past is

a true indication of such variability in the future; and

(iii) the decision maker's indifference system is of an E-V type.

Such a system appears to be satisfactory for farmers who consider expected income as desir-

able and income variance (risk) as undesirable.

Given the above assumptions, it has been shown that it is phssible to define those

crop combinations which are preferred to all -others. ,Such combinations are those with

maximum expected income for any given level of variance (or minimum variance for any given

level of expected income).

The decision maker is then left to choose, from among all such preferred crop com-

binations, that which maximises his utility.

B.3 The Use of Quadratic Programming to Solve the Risk Minimisation Problem

A parametric quadratic programming technique can be employed to find all points

6. Makeham, J.P., Halter, A.N., and Dillon, J.L., "t-Bet Farm Decision",
Professional Farm Management Guidebook No.6, Department of Farm Management,
University of New England, 1968, pp.31-69.



20

on the boundary OD (Fig.B.5)2/. This model may be specified as :

(7) Maximise Z = 06X XIQX

subject to Ax b

x 0

where C = a vector of crop average net incomes,

Q = an income variance-covariance matrix,

A = a matrix of input-output coefficients,

b = a vector of resource supplies.

First, the problem is solved for 0 = 0, and the algorithm then proceeds to trace

out the preferred boundary (OD) by allowing 0 to 'increase until the plan corresponding to

maximum income is obtained (beyond which any further increase of 0 will have no effect on

the solution).

B.4 An Empirical Application of the Model-p'

B.4.1 Introduction

Market prices of fresh vegetables may be expected to fluctuate markedly even from

day to day, and many producers may attempt to reduce the consequent fluctuations in their

incomes by cultivating crops which may be expected to realise, on average, a rather low but

stable income. However, other growers may be less averse to risk and may wish to cultivate

crops whose prices may vary greatly, in the hope of receiving a high but fluctuating income.

Under such conditions, the quadratic programming risk-minimisation model is most

appropriate to enable management plans'to.be formulated. An empirical model was constructed

with data provided by a New Zealand producer of fresh vegetables, where both market auction

prices and crop yields were subject to stochastic variability.

The farmer owned 90 acres of cropland and had the opportunity of leasing a further

19 acres of land especially suitable for some spring and summer crops. The labour supply

consisted of the owner and two men.

7. Wife, P., "The Simplex Model for Quadratic Programming", Econometrica, vol.27,
pp.382-398, 1959.

8. The algorithm used to solve the empirical application of the following section
minimised the objective function

Z' = ecx +'x'Qx, which is equivalent to maximising Z.

9. The formulation of this programming model, (e.g. discussion of activities, restraints,
construction of the matrix and estimation of net revenues and the variance-covariance
matrix) will be discussed only briefly here. For such details, the reader should
refer to Rae, A.N., op.cit., Ch.6.

For other examples of quadratic risk programming, see:
Heady, Earl 0., and Candler, Wilfred, "Linear Programming Methods", Iowa State Univ-
ersity Press, 1958, Ch.17;
Sturgess, N.H., "Enterprise Combination Under Risk", M.Agr.Econ.thesis, University
of New England, Australia, 1965;
Camm, B.M., "Risk in Vegetable Production on a Fen Farm", The Farm Economist, vol.10,
p.89, 1962-65;
McFarquhar, A,M.M., "Rational Decision Making and Risk in Farm Planning - An Applic-
ation of Quadratic Programming in British Arable Farming", Journal of Agricultural 
Economics, vol.14, p.552, 1961
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Crops which may be grown include spring carrots, crown pumpkin, butternut pumpkin

and buttercup pumpkin, parsnips and both winter and spring crops of cabbage, cauliflower and

lettuce. Also, the carrot, parsnip and pumpkin crops may be grown on either land block.

Crop rotation, as well as the grower's past marketing experience, also imposed re-

straints on the maximum possible acreage of crops cultivated.

B.4.2 Formulation of the objective function

Since construction of the restraints is exactly the same as in linear programming

models, attention will be concentrated on the objective function.

It is necessary to calculate the average net income from each crop, as well as the

variance-covariance matrix of net income for all crops. From the grower's marketing accouris

total quantities marketed and average prices received could be accurately derived over each

of the three previous seasons. Thus the gross income earned by each crop in each year could

be determined and by subtracting variable costs of production
10/
-- , the net income from each

,crop in each year was found. From this information it was possible to calculate the average

net income and the variances and covariances of net income (using the formulae of footnote 4).

Table B. 1 gives an example of the crop data.

TABLE B.1 Casts and Returns - Winter Cabbage 

1963-64 1964-65 1965-66

Average wholesale price ($/case)

Quantity sold (cases/acre)

Gross income ($/acre)

Variable costs ($/acre)

Net income ($/acre)

1.062 1.238 1.362

528 383 ' 546

560.74 474.16 743.66

88.92 81.68 89.82

471.82 392.48 653.84
c:

Note: Wholesale price is the average of prices received in each fortnightly period of
the marketing season, weighted by the quantity sold in each fortnightly period.

Annual net incomes and their averages, for all crops, are given in Table B.2.

10. Variable costs of production included such charges as seed, fertiliser and spray
materials, tractor running expenses, contract labour, and marketing costs con-
tainers and auctioneer's commission).
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TABLE B.2

Crop

Crop Annual Net Incomes ($/acre)

1963-64 1964-65 1965-66 Average

;ring carrot

arsnip

rown Pumpkin

3uttercup pumpkin

Butternut pumpkin

Tinter cauliflower

ipring cauliflower

halter cabbage

.pring cabbage

anter lettuce

lpr.ing lettuce

664.91

334.60

328.88

416.06

No crop

457.60

401.10

471.82

439.38

931.18

1072.18

469.11

282.40

66.80

183.72

202.46

546.68

460.86

392.48

343.76

No crop

736.54

1047.81

No crop

44.38

318.46

350.86

712.78

587.68

653.84

662.86

2015.40

471.74

727.26

308.50

146.68

306.08

276,66

572.36

483.22

506.04

482.00

1473.30

760.16

Once the data of Table B.2 had been assembled, the next task was to calculate all

crop net income variance and covariance estimates'. These are presented in Table B.3.

Thus all the necessary data for the quadratic programme (equation (7)) had been .

colletted and the model could then be set up and solved.

B.4.3 Solution to the risk-minimisation model

The 24 preferred cropping programmes which comprise the solution to the risk minimis-

ation model are given in TableB.4, along with the expected value of net income and the 90

percent confidence limits:12/

11. To allow completion of the variance-covariance matrix, an estimate was required for
covariances involving the three crops which were grown in only two of the three years.

Since

where

r.. the estimate of covariance was obtained from101 11 jj

rij 
is the mean value of all correlation coefficients (i
which could be calculated.

12. The 90 percent confidence limits are given by

(E± 2.925),

where

-)

E is expected income
S is the standard deviation of expected income, and

2.92 is the value of t for a probability of 0.10 and two degrees of
freedom.

•••



• TABLE B.3 Net Income Variance-Covariance Matrix

Crop
Spring 

Pars. 
Crown Buttercup Butternut Winter Spring Winter Erpin g Winter Spring

p
carrot pumpkin pumpkin pumpkin cauliflower cauliflower cabbage cabbage lettuce lettuce

Spring carrot 86,618 2,108 -11,765 14,347 5,991 29,395 22,186 39,408 48,153 43,772 -52,900

Parsnip 1,362 1,133 836 752 928 682 960 1,173 5,491 2,155
,

Crown pumpkin 25,022 14,273 3,220 -16,611 -11,931 -6,142 -7,612 23,526 44,121

,
Buttercup pumpkin 13,610 2,375 -3,870 -2,501 5,981 7,233 17,351 16,818

Butternut pumpkin 11,0I1 2,637 1,940 2,728 3,334 15,608 6,126

Winter cauliflower 16,774 12,333 13,799 16,919 19,264 -37,850

Spring cauliflower 9,078 10,394 12,742 14,171 -27,612

Winter cabbage 17,956 21,944 19,930 -25,312

Spring cabbage 26,819 24,356 -31,098

Winter lettuce 587,767 44,756

Spring lettuce 90,550

Note: For the quadratic programme computations, variance and covariance estimates were calculated to two decimal places.
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For example, if Plan 1 was adopted, the grower could expect, over a number of years,

rtterage net income of $7,110. But in any single year, there is a 90 percent probability

(i.e. a "9 in 10 chance") that his net income will fall somewhere between $6,099 and $8,121.

Conversely, there is only a "1 in 10 chance" that his net income will fall outside these

limits.

The preferred combinations of expected income and variance (the boundary separating

the feasible and infeasible region, as in Fig.B.5) are graphed in Fig.B.8 and expected

income and its confidence limits are presented in Fig.B.9.

It can be easily seen from the latter two figures that for expected incomes greater

than about $23,000 any further increase in expected income is made only at the expense of

very large increases in income variance - the confidence limits are relatively close

together until an expected income of around $23,000 is reached, and beyond this point the

limits tend to become very wide.

As an extreme, Plan 24 provides the highest possible average net income ($36,681),

but net income in any one year may fall anywhere (vith a "9 in 10 chance") between the

very wide limits of $9,331 and $64,032.

When data was collected from the vegetable grower, the cropping programme which he

was following at that time was noted for comparison with the preferred plans. This plan is

summarised in Table B.5 and its expected income and variance are plotted in Fig.B.8 as point

X. The producer could obtain the same level of expected income, but with a greatly reduced
13

level of variance
/

—' by moving to point Y on the preferred boundary in Fig.B.8. Or he could

obtain the same income variance as from his present cropping system (i.e. run the same level

of risk), .but a higher level of expected income by moving to point Z on the preferred bound-

ary. Thus, without any knowledge of the farmer's indifference system, it is at least known

that he would obtain greater satisfaction from any plan corresponding to all points between

Y and Z, as well as Y and Z themselves, than from his present cropping programme. This is

because all such points correspond to an expected income not   than, and an income var-

iance not higher than, that of his present system (point X).

Attention will now be directed towards the levels of individual crop acreages in the

preferred. plans.

The initial plan (which, incidentally, does not cover the fixed costs of the holding

of $7,725) includes only spring crops of cauliflower and lettuce. Although spring lettuce

is a high income variance crop, returns from the two crops are negatively correlated, a low

return from one tending to be accompanied by a hgh return from the other, thus stabilising

income.

13. The 90 percent confidence limits of the grower's present cropping system are $52,579
and $6,636. However, Plan 16 with an expected incomesimilarto that of the grower's
present plan, has the much narrower confidence limits of $43,874 and $15,012.



TABLE B.4 The Preferred Cropping Plans

Crop Plan 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . 16 17 18 19 20 21 22 23 24

Spring
carrot (acres) 1.7 8.0 • 8.8 10.7 13.3 16.7 19.3 18.9 18.7 20.1

Parsnip 18.9 - 20.0 22.5 23.6 23.1 22.7 22.3 21.6 21.6 21.5 19.8 12.3 11.2 8.5 6.0

Crown
pumpkin ' -0.7 0.3 0.3 • 0.3 0.3 1.2 1.4 1.5 1.6 4.7 4.2 2.8 2.8 5.8 2.8 2.1 2.0 4.8

Buttercup
pumpkin 0.4 1.1 1.2 2.1 2.0 2.3 2.1 1.9 2.8 4.9 4.6 3.1 5.4 8.3 13.9 8.6

Butternut
pumpkin 1.8 1.8 1.6 1.9 6.4 6.6 7.2 7.5 10.6 6.7 5.2

Winter cauli-
flower 5.0 6.9 10.0 10.0 9.9 4.3 7.1 6.1 5.0 5.0 5.0 5.0 5.0 5.0 7.9 8.5 10.0 10.0 10.0 10.0 10.0 10.0 9.8

Spring cauli-
flower " 10.0 10.0 8.1 5.0 5.0 5.1 5.7 7.9 8.9 10.0 10.0 10.0 10.0 10.0 10.0 7.1 6.5 5.0 5.0 5.0 5.0 5.0 5.0 5.2

Winter
cabbage 0.1 0.7 1.0 2.8 4.3 5.0 5.0 5.0 5.0 5.0 2.1 1.5

Spring
cabbage 2.6

Winter
lettuce 0.1 0.7 1.4 2.7 3.0 3.9 3.9 4.0 3.9 4.8 5.0 5.0

Spring
lettuce • 3.0 5.0 5.0 5.0 5.0 5.0 5.0. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 .5.0 5.0 5.0 5.0 4.1 3.8 2.6

Upper limit $ 8,121 13,148 13,359 13,862 21,713 22,214 23,637 23,959 25,012 26,195 26,642 27,840 28,117 29,772 33,358 43,874 45,608 49,881 52,499 56,836 59,137 61,391 62,521 64,032

Etpected
income $ 7,110 11495 11,661 12,038 17,824 18,194 19,247 19,484 20,226 21,009 21,293 22,001 22,156 23,017 24,738 29,443 30,171 31,950 33,010 34,712 35,544 36,251 36,574 36,681

Lower Limit $ 6,099 9,842 9,964 10,215 13.934 14,174 14,857 15,008 15,439 15,823 15,944 16,163 16,194 16,262 16,118 15,012 14,735 14,019 13,521 12,588 11,951 11,110 10,628 9,331

f

Note: A rotation restraint required the area of Spring carrot and parsnip crops grown in the freehold land to be no.sore than 20 acres. For those
plans in which the combined acreage of these crops exceeds 20 acres, any balance is to be cultivated on the leased land block.

• •

um



Preferred Combinations of Income and Variance
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TABLE B.5 The Grower's Present Cropping System

Crop Acreage

Spring carrot 18.0

Parsnip 2.0

Crown pumpkin 4.5

Buttercup pumpkin 7.0

Butternut pumpkin 2.0

Winter cauliflower 6.0

Spring cauliflower 4.0

Winter cabbage 4.0

Spring cabbage 3.0

Winter lettuce 2.0

Spring lettuce 1.0

Expected net income $29,608

Income variance 61,887,300

Next, a Winter cauliflower crop is introduced, its net income also being negatively

correlated with Spring lettuce incomes.

The next noticeable features of the preferred plans are the introduction of parsnip

and Winter cabbage, in Plans 5 and 6 respectively. Although parsnip net incomes are posit-

ively correlated with those of all other crops, its net income variance is lowest of all.

Winter cabbage net income is inversely correlated with 'net incomes of two other crops in

Plan 6, parsnip and Spring lettuce, so the introduction of Winter cabbage will have some

effect in reducing income variance.

The acreage of parsnip and Winter cabbage increases over the next several plans, and

all three pumpkin crops are gradually introduced. Although the latter three crops have the

lowest average net income of all crops, the variance of both buttercup pumpkin and butternut

pumpkin net incomes is very low (only parsnip has a lower net income variance). Also, crown

pumpkin net income is negatively correlated with both Winter and Spring cauliflower and

Winter cabbage, and buttercup pumpkin net income is negatively correlated with that of both

cauliflower crops.

Plans 13 and 15 see the introduction of two. high average income and high income vari-

ance crops. Winter lettuce has the highest average income and variance of all crops, and

Spring carrot, the third highest income and variance. Winter lettuce net income is positive-

ly correlated with all crops in the .preferred plans at that. stage, although Spring carrot

net income is inversely correlated with the net incomes of crown pumpkin and spring lettuce.

Incidentally, Plans 15 to 17 exhibit the maximum diversification - all crops with the

exception of Spring cabbage are included in these plans.

From this point (Plan 15) onwards , the acreages of Spring carrot, Winter lettuce
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and linter cauliflower gradually increase while the area planted in parsnip, Spring cauli-

flower, Winter cabbage and Spring lettuce fall, as expected income is allowed to rise and

less impdrtance is placed on low income variance in the selection of preferred crop combin-

ations. Winter cabbage is excluded from all preferred plans beyond Plan 17, parsnip from

Plan 19, and the butternut pumpkin crop reaches a maximum in Plan 20, but is excluded from -

the two final plans.

Plan 24 represents the combination of crops which is expected to realise the highest

possible net income from the fixed resources of the holding. This plan, in which income

variance plays no role in the selection and combination of crops, is identical with the plan

which would be obtained from the normal linear programming model, with the expected crop net

incomes forming the coefficients of the objective function.

B.5 Summary and Conclusions of the Risk Minimisation Model

After describing those situations in horticultural management in which risk is likely

to assume an important role when cropping programmes are formulated, attention was concen-

trated on only one aspect of risk, namely stochastic variability of income. The theoretical

background to crop combination to reduce such variability was then presented, and the use of

quadratic programming to solve such problems was indicated. Finally, an empirical applica-

tion of the model to a New Zealand fresh vegetable holding was described.

It may be noted, however, that the maximum expected income plan (i.e. the normal

linear programming solution) would also maximise the grower's utility only if his utility

function was linear - that is, expected utility is equivalent to (a linear function of)

expected income. ,For a grower who is averse to risk, however, utility will be a function

of both expected income and-income variance, and linear programming methods will not allow

him to maximise his utility.

Thus, where horticultural producers are averse to risk, and such risk may be adequate-

ly measured by the variance of income, quadratic programming (rather than linear programm-

ing) becomes the appropriate tool.

Note: Unfortunately, since the author had left New Zealand by the time a solution to the
problem was obtained, it was not possible to present the grower with the list of
preferred plans.
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Part C

CONCLUSIONS'

Provided that perfect competition prevails in both product and factor markets (and,

of course, that other linear programming assumptions are applicable) linear programming may

be usefully employed to define optimising behaviour of producers. However, should produc-

ers consider future prices, yields and technical coefficients as "risky", that is, not known

with certainty, then stochastic linear programming will genera:Uy provide more meaningful

results. Since further research into such techniques is required before the general stoch-

astic model can be employed on practical problems, though, it is necessary to assume that

only the variables in the objective function (prices, costs and yields) may occur at random

and that all other management data is known with certainty. Parametric quadratic programm-

ing can then be used to obtain solutions and, for producers who are averse to incoie varia-

bility, will be more useful than ordinary linear programming.

Also, once the assumption of perfect competition in product and factor markets is

inapplicable to the situation under study, linear progr/mming may only approximate the

optimum behaviour of the firm. If the product demand curves and factor supply curves

facing the firm are restricted to a linear form, then the profit-maximising model becomes

a quadratic programming problem.

To summarise, then, the existence of imperfectly competitive elements in some

horticultural product (or factor) markets could .provide many instances where quadratic

programming techniques would be more appropriate than a linear programming approach.

Vegetable growers, as well as nurserymen, may find that marketing increasing quantities

has a depressing effect upon prices, especially since large holdings are becoming more

numerous and replacing, to some extent, the traditional small family unit.

It is hoped that the risk-minimisation model (and its empirical application) has

indicated the likely role of this technique in management advisory work, especially for

growers who sell their produce through an auction system. Many growers would prefer to

avoid excessive price fluctuations so as to guard against the likelihood of low incomes.

The risk model, although doing nothing to reduce such price fluctuations in the market,

does provide producers with cropping plans for which the variability of income has been

minimised. By estimating the grower's (quadratic) utility function, or simply by allowing

him to make a choice amongst all such plans, the particular combination of income and risk

(and the corresponding cropping programme) which maximises the grower's utility, may be

identified.
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