

The World's Largest Open Access Agricultural & Applied Economics Digital Library

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.



#### Presentation from the USDA Agricultural Outlook Forum 2017

United States Department of Agriculture 93<sup>rd</sup> Annual Agricultural Outlook Forum "A New Horizon: The Future of Agriculture"

> February 23-24, 2017 Arlington, Virginia

# Economics of Robotic Milking Systems





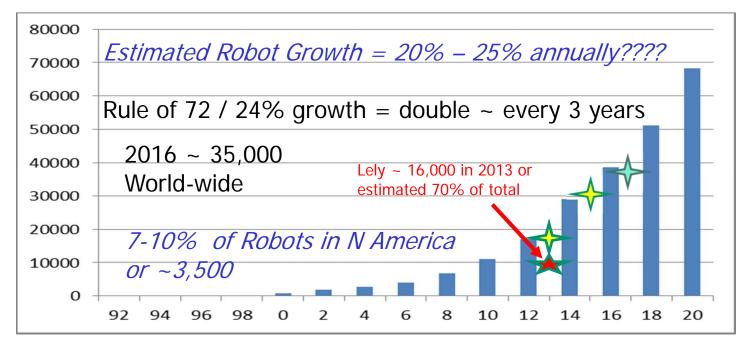
**Dr. Larry Tranel** Dairy Field Specialist ISU Extension, NE/SE Iowa

IOWA STATE UNIVERSITY Extension and Outreach

**No Endorsement of Product Intended** 

# A Dairy Specialist's Vision of DC




### Milking robots are here to stay!

#### **North American Data**

- >2500 AMS units
- >1000 farms
- >140,000 cows
- >381,000 milkings/day
- Avg 2.5 AMS units/farm

Rodriguez, DeLaval, 2014 Jim Salfer, U Minn

#### End 2017 Estimated 40-43K Robots Worldwide



#### WI ~ 320; IA ~ 130 (46 farms); IL ~ 70 (26 farms)

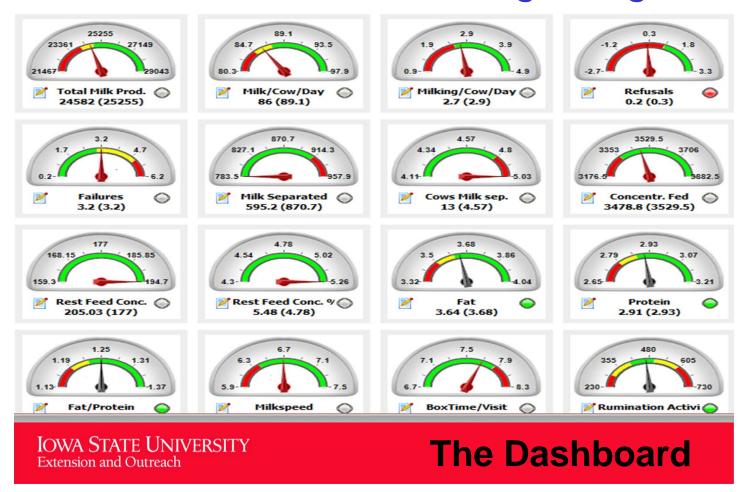
IOWA STATE UNIVERSITY<br/>Extension and Outreach**3.5% - 5% of Farms in Midwest** 

# **Evaluating Robots Financially?**

| Cash Flow-Ability | = | -\$50,000 to +\$20,000 |
|-------------------|---|------------------------|
|-------------------|---|------------------------|

- Net Financial Impact = -\$25,000 to +\$35,000
- Quality of Life = +\$10,000 to +\$25,000
- Cash Flow-Ability vs Net Financial Impact & Q of L -\$50,000 vs +\$25,000 + \$25,000

## **Evaluating Technology on the Farm**



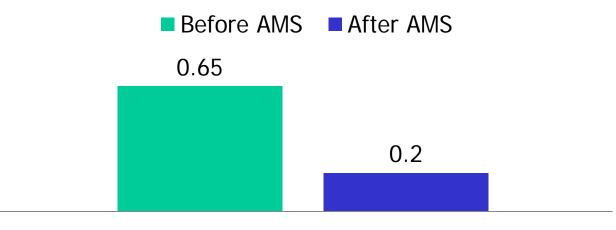

# Why Invest in Robotic Milking— Even on Large Farms?

- Milking Is Labor intensive: (typically **40-50%** of total labor costs)
- Labor: 20-30% Of Total Dairy expense
- Large parlor: 2—6 skilled workers, 3 shifts per day
- Finding qualified workers 365/24/7: Expensive, difficult
- Managing labor is expensive and often frustrating
- Milking is a very repetitive task
- Milking requires very little decision making
- Cows thrive on consistency and predictability
- And, it provides data, 100 measurements/milking

Salfer, U of Minn

#### **Robots Provide Data for Higher Mgt**








Hours of Milking Labor

Labor is #1 Reason Producer Go Robotic!

# 70% Decrease in Heat Detection



Hours of Heat Detection



# **Labor Efficiency**

- Primary goal when installing an AMS
  - Labor savings valued at \$44,030/year
  - Hiring, training, and overseeing employees decreased (37 minutes/day)
  - Records Management labor increased minimally at \$212 per year (37.8 minutes/day)
    - Information and records collected from AMS

#### **Are Robots Profitable? Compared to What?**



#### **TRANS Iowa LCP vs Robotic Milking**



#### Milking System Payback Periods

| 1-5 years for LCP      | VS | 6-15 years for AMS        |
|------------------------|----|---------------------------|
| 64-75 cows/person/hour | VS | 3,000-6,000 lbs/robot/day |
| <\$1.00/cwt            | VS | \$1.75 to \$3.00/cwt      |

## **Rotary Parlor with Human Robot**



#### Australia: Lady milked 903 cows solo in 6 hrs

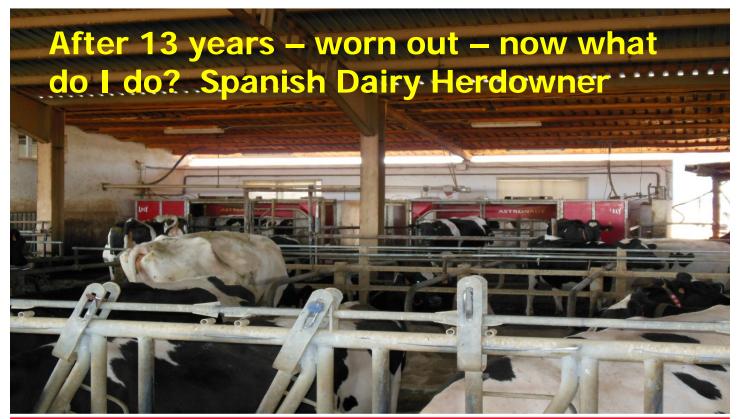
| Herd and Financial Assump                    | tions           |           | Units           | Instructions or Reference Value            |
|----------------------------------------------|-----------------|-----------|-----------------|--------------------------------------------|
| Herd Size both milking and dry               |                 | 144       | no. of cows     | Typical herd size of 66-74 cows/robot      |
| Mailbox Milk Price                           |                 | \$17.50   | \$ per cwt.     | Typical range \$13.00 - \$20.00 / cwt      |
| Estimated Cost per Robot includ              | e robot housing | \$220,000 | \$ per robot    | Typical range of \$185,000 - \$230,000     |
| Estimated Annual Change in Milkir            | ng System Repa  | \$7,000   | \$ per robot    | Typical range from \$5,000 - \$9,000/robot |
| Number of Robots Needed                      |                 | 2         | no. robots      | Typical range of 55-65 milking cows/robo   |
| Years of Useful Life                         |                 | 10        | years           | Typical rage is 7 - 15 years               |
| Value per Robot after Useful Life            |                 | \$40,000  | \$ per robot    | Typical range of 10-30% of purchase price  |
| Interest Rate of Money                       |                 | 5.50      | % interest rate | Value of own or borrowed money             |
| Insurance Rate per \$1,000 Value             |                 | 0.50      | %               | Typical rate is 0.5% per 1,000 investment  |
| Increased Insurance Value of Robo            | t vs. Current   | \$400,000 | \$ per farm     | Value of robot(s) over current system      |
| IOWA STATE UNIVERS<br>Extension and Outreach | ITY             |           |                 |                                            |

## Labor Changes

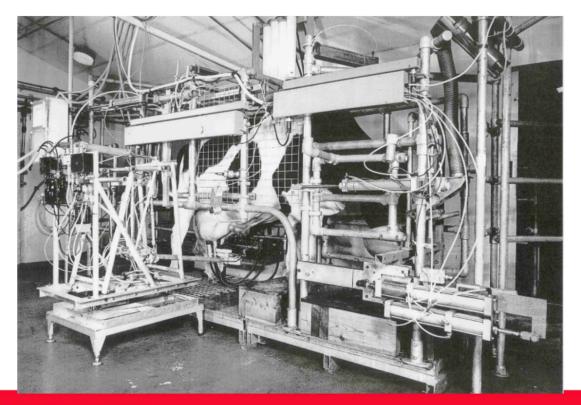
Current Hours of Milking Labor Anticipated Hours of Milking Labor Current Hours of Heat Detection Anticipated Hours of Heat Detection Labor Rate for Milking and Heat Detection Increased Hours for Records Management **Reduced Hours for Labor Management** Labor Rate for Records and Labor Management

| 6.5            | hours per day | Include set-up and cleanu       | p              |
|----------------|---------------|---------------------------------|----------------|
| 1.5            | hours per day | Include fetching cows and       | cleanup        |
| 0.5            | hours per day | Typical is 0.2575 hours         |                |
| 0              | hours per day | Typical is 0 - 0.5 hours        |                |
| 615 <b>.00</b> | \$ per hour   | Typical rate is \$10 - \$18 wit | th benefits    |
| 0.25           | hours per day | Include AMS management          | records        |
| 0.5            | hours per day | Include hiring, training, ov    | erseeing, etc. |
| 20.00          | \$ per hour   | Typical rate of \$12 - \$25     |                |

| Milk Production, Herd Healt                     | <mark>h, Reproduct</mark> | ion and Milk Qua | ality Changes                              |
|-------------------------------------------------|---------------------------|------------------|--------------------------------------------|
| Lbs of Milk per Cow per Day, Past Year          | 70                        | lbs/cow/day      | Typcial range of 50 - 90 lbs               |
| Projected Change in Milk Production             | 7                         | lbs/cow/day      | Typical 5-15% more if 2x; 0-10% less if 3x |
| SCC Premium per 1,000 SCC Change                | \$0.003                   | \$ per cwt       | Typically \$0.002 - \$0.004/cwt            |
| Current Annual Bulk Tank Average SCC            | 240,000                   | SCC per ml       | Typical range of 100,000 - 400,000 SCC     |
| Estimated Percent Change in SCC                 | -5.0                      | %                | Typical range of -10 to +2%                |
| Reproduction and Herd Health Value of Software  | \$35.00                   | \$per cow/year   | Estimated range of \$20 - \$60 per cow/yr  |
| Feed Co                                         | sts and Intake            |                  |                                            |
| Lbs of TMR Dry Matter (DM) per lb of Milk       | 0.65                      | lb DM/lb Milk    | Typical range of 0.55 - 0.8                |
| Cost per lb of TMR Dry Matter                   | \$0.125                   | \$ per lb DM     | Typical range of \$0.8 - \$0.15            |
| Estimated Change in cost/lb Dry Matter          | -\$0.002                  | \$per lb DM      | Typical range of -\$0.005 to +\$0.005      |
| IOWA STATE UNIVERSITY<br>Extension and Outreach |                           |                  |                                            |


| Culling and H                                     | lerd Replacement Ch     | anges                                           |
|---------------------------------------------------|-------------------------|-------------------------------------------------|
| Cost of Replacement Heifer                        | <b>\$1,600</b> \$ per h | eifer Typical range of \$1,300 - \$2,200        |
| Cull Price per Cow (or sold for milking purposes) | <b>\$750</b> \$ per c   | ow Typcial range of \$350 - \$1,200             |
| Expected Change in Annual Turnover Rate           | -1 %                    | Typical change has been very small              |
| Utilities and                                     | Supply Changes for N    | /ilking                                         |
| Anticipated Change in Electricity cost            | <b>\$8.25</b> \$/cow/   | /year Typical increase of 0 - 150 kWh           |
| Anticipated Change in Water cost                  | <b>-\$3.00</b> \$/cow/  | /year Typical range of -\$5 to +\$5             |
| Anticipated Change in Chemicals Cost              | <b>\$1.50</b> \$/cow/   | /year Typical range of -\$2 to +\$2             |
| The authors have used their best judgement and    | shall not be liable fo  | r any use of this software decision-making aid. |
| IOWA STATE UNIVERSITY<br>Extension and Outreach   |                         |                                                 |

| Positive Impacts                               |           |           | Negative Impacts                           |                 |
|------------------------------------------------|-----------|-----------|--------------------------------------------|-----------------|
| Increased Incomes                              |           |           | Increased Expenses                         |                 |
| Increased Milk Production                      | \$58,212  | ISU       | Capital Recovery Cost of Robots (Dep & Int | \$60,200        |
| Increased Milk Premiums                        | \$1,317   | Extension | Increased Repair and Insurance Costs       | \$16,000        |
| Increased Cull Cow Sales                       | -\$1,080  | D         | Increased Feed Costs                       | \$22,270        |
| Software Value to Herd Production              | \$5,040   | Α         | Increased Cow Replacement Costs            | -\$2,304        |
| Total Increased Incomes                        | \$63,489  | l I       | Increased Utilities and Supplies           | \$972           |
| Decreased Expenses                             |           | R         | Increased Records Management               | \$3,942         |
| Reduced Heat Detection Labor                   | \$2,190   | Y         | Total Increased Expenses                   | \$101,080       |
| Reduced Milking Labor                          | \$32,850  | TEAM      | Decreased Incomes Expected                 |                 |
| Reduced Labor Management                       | \$3,942   |           | Total Decreased Incomes                    | \$C             |
| Total Decreased Expenses                       | \$38,982  |           | Total Negative Impacts                     | \$101,080       |
| Total Positive Impacts                         | \$102,471 |           | NET ANNUAL FINANCIAL IMPACT =              | <b>\$1,39</b> 1 |
| Annual Value to Quality of Life =              | \$9,000   |           | with Annual Value of Quality of Life =     | \$10,391        |
| IOWA STATE UNIVERSIT<br>Extension and Outreach | Y         |           |                                            |                 |


| AMS Loan An        | nortization for | 2 Rot     | oots             |
|--------------------|-----------------|-----------|------------------|
| 7 Years of Loan    | Annual          | Interest  | Principal Amount |
| 12 Annual Payment  | (s) Rate        | 5.50%     | \$400,000        |
| 84 Total Payments  |                 |           |                  |
|                    |                 |           |                  |
| First Month        | Interest        | Prinicpal | Total Payment    |
| Payment            | \$1,833         | \$3,915   | \$5,748          |
|                    |                 |           |                  |
| First Year         | Interest        | Prinicpal | Total Payment    |
| Payment            | \$22,000        | \$46,976  | \$68,976         |
|                    |                 |           |                  |
| IOWA STATE UNIVERS | SITY            |           |                  |

|           |                     | alysis of AMS                                                 |                                                  | Totala           |
|-----------|---------------------|---------------------------------------------------------------|--------------------------------------------------|------------------|
|           |                     |                                                               |                                                  | Totals           |
| Net Annu  | al Financial I      | mpact from Partial Budget An                                  | alysis                                           | \$1,391          |
|           |                     |                                                               |                                                  |                  |
|           | Capital Reco        | overy Cost of Robots                                          | \$60,200                                         |                  |
|           | Annual Payr         | nent on Robot Investment                                      | \$68,976                                         |                  |
| Cash Flow | / Difference o      | of Capital Recovery vs Annual                                 | Payment                                          | -\$8,776         |
|           |                     |                                                               |                                                  |                  |
| Cash Flow | <i>i</i> Adjustment | for Unpaid Labor and Manag                                    | omont                                            |                  |
|           | Aujustinent         | . IOI Olipalu Labol allu Mallag                               | ement                                            |                  |
|           | •                   | ion & Milking Labor Saved                                     | \$35,040                                         |                  |
|           | •                   |                                                               | I                                                | -\$15,040        |
|           | Heat Detect         | ion & Milking Labor Saved                                     | \$35,040                                         | -\$15,040        |
|           | Heat Detect         | ion & Milking Labor Saved<br>Amount Hired                     | \$35,040<br><b>\$20,000</b>                      | -\$15,040<br>\$0 |
|           | Heat Detect         | ion & Milking Labor Saved<br>Amount Hired<br>ords Mgt Changes | \$35,040<br><b>\$20,000</b><br>\$0<br><b>\$0</b> | . ,              |

#### Where are You in Dairy Career?



#### First Robotic Milker (1981)



## **Robotic Milking Continues to Evolve.....**

#### Box systems

- Lely
- DeLaval
- GEA Farm
- Technologies
- AMS-Galaxy
- BouMatic Robotics

#### Parlor systems

- GEA Farm Technologies (Apollo Post Dip, Dairy Pro Q)
- DeLaval
- MiRobot
- BouMatic Robotics





Lely—Astronaut, A4, straight entry

DeLaval-VMS, side entry



GEA Dairy Pro Q Mono Box

**Robot Types** 



Multi-Box Systems GEA—M1 Insentec--Astrea Boumatic-MR-S1, D2



Laproma Farm-Germany

"Batch milking" Involuntary " cow traffic with AMR™

Slide compliments Mark Futcher, DeLaval





Dairy Pro Q Rotary Milking Parlor @ \$70,000 per stall

1 person milking 400 cows per person/hour

# Robotic Milking Continues to Evolve.....

# Robot performs all pre—and post---milking activities

- One operator
- For **new** + **existing stalls**: utilizes existing infrastructure
- Portable Control unit: Remote control/supervision
- Small, flexible, cow---friendly?
- Target user price: \$12,500 Per Stall (3 yr payback?)



IOWA STATE UNIVERSITY Extension and Outreach MiRobot version 1.0 under cow model

# **Summary**

- Labor is KEY Reason to install Robotic Milking! Studies have shown AMS tend to be less profitable than parlors (Salfer) or other milking systems but dependent on variables:
- **1) Milk Production change** (MN=+9.3% AMS 23,532 vs 21,528 Parlor); (IA=12%)
  - > 5 lbs Retrofit (7% of 72 pound average)
  - >10 lbs new construction (14% of 72 pound average)
  - 3-5% gain to robot; 6-10% gain to new construction
- 2) Labor Wages (and future wage inflation)
- **3)** Labor Savings for milking (~75%)
- 4) Labor Efficiency (2.2 mil/lbs/milk vs 1.5 mil/lbs/milk/FTE)
- 5) Years of Useful Life (10-13 years)
- 6) Annual Repairs (new range of \$7,000-\$15,000) what's included?