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TECHNOLOGIES AND LOCALIZED TECHNICAL CHANGE 
Johannes Sauer1, Catherine Morrison-Paul2 

Abstract 
This contribution is based on the notion that different technologies are present in an industry. 
These different technologies result in differential “drivers” of economic performance depend-
ing on the kind of technology used by the individual firm. In a first step different technologies 
are empirically distinguished. Subsequently, the associated production patterns are approxi-
mated and the respective change over time is estimated. A latent class modelling approach is 
used to distinguish different technologies for a representative sample of E.U. dairy producers 
as an industry exhibiting significant structural changes and differences in production systems 
in the past decades. The production technology is modelled and evaluated by using the flexi-
ble functional form of a transformation function and measures of first- and second-order elas-
ticities. We find that overall (average) measures do not well reflect individual firms’ produc-
tion patterns if the technology of an industry is heterogeneous. If there is more than one type 
of production frontier embodied in the data, it should be recognized that different firms may 
exhibit very different output or input intensities and changes associated with different produc-
tion systems. In particular, in the context of localized technical change, firms with different 
technologies can be expected to show different technical change patterns, both in terms of 
overall magnitudes and associated relative output and input mix changes. Assuming a ho-
mogenous technology would result in inefficient policy recommendations leading to subopti-
mal industry outcomes. 

Keywords 
Heterogenous Technologies, Transformation Function, Localized Technical Change 

1 Introduction3 
In most industries different firms operate with different technologies or production systems. 
Recognizing these differences is key to understanding structural change, which is likely to 
involve varying technical change patterns for different systems or movements toward diffe-
rent systems. That is, as an industry evolves, technical change does not just increase the 
amount of output possible from a given amount of inputs (productivity growth) and induce 
substitution among inputs (technical change biases), as is traditionally recognized in producti-
vity analysis.  It also involves new production systems with different characteristics in terms 
of output and input mix, which may be in the form of a continuum with discrete changes or 
may involve entirely different production frontiers. The presence of different technologies in 
an industry means that empirical analysis of technical change, and its drivers and effects, is 
more complex than is typically modeled by shifts and twists in a common production frontier 
or function.  In fact, it will be misleading to assume that technology is the same for different 
firms, as estimated coefficients of a common technology will be biased (Griliches, 1957).  
This has been recognized in the literature on localized technical change, which posits differen-
                                                 
1  University of Manchester, Oxford Road, M139PL Manchester, UK. johannes.sauer@manchester.ac.uk 
2  University of California, Davis, USA. 
3  This research commenced when the second author was a visiting scholar in the ARE Department at UC Davis, 
California, USA. Funding for this research was provided by the British Academy (SG-48134). The authors are 
grateful to Jakob Vesterlund Olsen, Landscentret, Skejby, Denmark for making the data available and to Prof. 
Julian Alston for initial discussions. Senior authorship is equally shared. 
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tial “drivers” of economic performance depending on the kind of technology used by a firm 
(Atkinson and Stigliz, 1969). Modeling and measuring localized technical change in this con-
text involves first characterizing the different technologies, and then distinguishing the pro-
duction patterns associated with these technologies and how they change over time.4 
In particular, the technological specification used for empirical analysis of production techno-
logies and technical change should accommodate both different points on a production fron-
tier and separate frontiers for different firms. Recognizing the presence of different output and 
input mixes and especially technologies may reduce apparent substitution elasticities, as sub-
stitution possibilities for a specific technology are likely more limited than implied by a single 
common production frontier that combines movements within and between production sys-
tems. It is also important to distinguish different technical patterns in terms of movements 
around versus between production frontiers, or changes in production systems, versus move-
ments in the function itself, or technical change. That is, once different production systems or 
technological frontiers are recognized in the model, technical change involves an outward 
move at one point of the production function rather than a general shift of the function, or a 
shift in the technology-specific rather than common production frontier. Empirically analy-
zing productivity growth thus requires distinguishing different technical change patterns for 
the different production systems, including the rate of and input biases associated with techni-
cal change – differences in overall productivity growth and resulting input intensity. 
One industry that has exhibited significant structural changes and production system differen-
ces in the past few decades, in both the U.S. and E.U. countries, is the dairy industry. To 
distinguish farms by their different technologies, researchers have sometimes categorized 
producers into, for example, organic versus conventional operations (e.g., Kumbhakar et al., 
2009). However, such a grouping may be both arbitrary and incomplete. In this paper we 
instead use a latent class model (LCM) to group dairy producers into “classes” based on their 
probability of having a variety of characteristics that proxy different technologies or producti-
on systems, called separating variables or q-variables. For example, for dairy operations, one 
might use characteristics such as cows/hectare or fodder/cow to proxy the use of pasture or 
purchased feed (extensive vs. intensive production) and labor/cow or capital/cow to proxy 
input intensity (associated with different milking practices).  The latent class model allows us 
to represent a variety of classes (with the number of classes determined empirically), based on 
a combination of differences in such variables as well as netput (output and input) variables. 
The technological differences are then summarized in terms of the estimated parameters of the 
underlying multinomial logit (MNL) model for each class, the summary statistics by class, 
and the estimates of the technology by class. Further, the posterior probabilities show the ex-
tent to which the important technological differences are distinguished by the model. 
Because the LCM model distinguishes the classes while simultaneously estimating their tech-
nological structures as different production frontiers, the classification of producers by tech-
nology depends on both the parameters of the MNL on which the probabilities are based and 
the parameters of the technological specification. We model the production structure for each 
class by a flexible transformation function model with multiple outputs and inputs to recogni-
ze farms’ different netput intensities. 
In summary, our model distinguishes the technological structure from the probability of being 
in a class, defined by a MNL model with multiple separating variables. The posterior probabi-
lities distinguishing the classes and technology depending on the parameters of both the tech-
nology (transformation function) and the probability (MNL) model.  Our technical change 
measures for the different technologies can thus be compared to consider the most productive 
                                                 
4  It also involves productive response to specific factors such as learning by doing and knowledge spillovers 
that may be technology-specific, which are beyond the scope of this study but will be addressed in subsequent 
work. 
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technologies, changes in specific technologies, and movements between technologies. We 
find that overall (average) measures do not well reflect individual firms’ production patterns if 
the technology of an industry is heterogeneous. That is, if there is more than one type of pro-
duction frontier embodied in the data, it should be recognized that different firms may exhibit 
very different output or input intensities and changes associated with different production sys-
tems. In particular, in the context of localized technical change, firms with different technolo-
gies can be expected to show different technical change patterns, both in terms of overall 
magnitudes and associated relative output and input mix changes. 

2 The Technological Model  
For our purposes, a transformation function is desirable for modeling technological processes 
because multiple outputs are produced by Danish dairy farms (milk, livestock and crops), 
precluding estimation of the production technology by a production function, yet we wish to 
avoid the disadvantages of normalizing by one input or output as is required for a distance 
function. That is, imposing linear homogeneity on an input (output) distance function requires 
normalizing the inputs (outputs) by the input (output) appearing on the left hand side of the 
estimating equation.  This raises issues not only about what variable should be chosen as the 
numeraire, but also about econometric endogeneity because the right hand side variables are 
expressed as ratios with respect to the left hand side variable.  Although a common approach 
in input distance function-based agricultural studies is to normalize by land (e.g., Paul and 
Nehring, 2005), to express the function in input-per-acre terms, this is questionable when a 
key issue to be addressed is whether different kinds of farms with potentially different pro-
ductivity use land more or less intensively. 
We thus rely on a transformation function model representing the most output producible 
from a given input base and existing conditions, which also represents the feasible production 
set. This function in general form can be written as 0=F(Y,X,T), where Y is a vector of out-
puts, X is a vector of inputs, and T is a vector of (external) shift variables, which reflects the 
maximum amount of outputs producible from a given input vector and external conditions. By 
the implicit function theorem, if F(Y,X,T) is continuously differentiable and has non-zero 
first derivatives with respect to one of its arguments, it may be specified (in explicit form) 
with that argument on the left hand side of the equation.  Accordingly, we estimate  the trans-
formation function Y1= G(Y-1,X,T), where, Y1 is the primary output of dairy farms (milk) and 
Y-1 the vector of other outputs, to represent the technological relationships for the dairy farms 
in our data sample. Note that this specification does not reflect any endogeneity of output and 
input choices, but simply represents the technologically most Y1 that can be produced given 
the levels of the other arguments of the F(•) function. We approximate the transformation 
function by a flexible functional form (second order approximation to the general function), to 
accommodate various interactions among the arguments of the function including non-
constant returns to scale and technical change biases. A flexible functional form can be ex-
pressed in terms of logarithms (translog), levels (quadratic), or square roots (generalized line-
ar, sometimes erroneously called generalized Leontief for a primal function). We use the ge-
neralized linear functional form suggested by Diewert (1973)  to avoid any mathematical 
transformations of the original data (e.g. taking logs of variables which would lead to model-
ling problems based on zero values). 
 (1) YM,it = F(YNMQ,it,Xit,T)  
      = a0 + 2a0NMQYNMQ

0.5 + ∑2a0kXk
0.5 + aNMQNMQYNMQ + akkXk + ∑aklXk

0.5Xl
0.5  

             + ∑akNMQXk
0.5YNMQ

0.5 + bTT + bTTTT + ∑bkTXk
0.5T + bNMQTYNMQ

0.5T, 
for farm i in time period t, where Y1=YM=total quantity of milk, Y2= YNMQ=non-milk outputs 
is the only component of Y-1, X is a vector of Xk inputs XLD=land, XLAB=labor, XKAP=capital, 
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XCOW=cows, XFOD= fodder, XEN= energy, XCHM=chemicals, and XVET=veterinarian services, 
and a time trend T is the only component of the T vector.  
When estimating the technology for a group of observations, if the firms (farms) in the sample 
are using different technologies estimating a “common” technological frontier is misleading. 
With a flexible functional form, even when assuming a common technology, differences 
among observations are at least partly accommodated because a different netput mix is allo-
wed for in the production structure estimates that depend on all the other arguments of the 
function. For example, estimated output elasticities with respect to a particular input will de-
pend on the levels of that input, all other inputs and current technical conditions, and so will 
differ by observation. Unobserved technological heterogeneity is also partially accommodated 
by a standard error term for econometric estimation, but then the factors underlying the hete-
rogeneity cannot be directly represented and will bias parameter estimates if they are correla-
ted with the explanatory variables (Griliches, 1957). To more fully recognize and evaluate 
heterogeneity among production systems, we thus explicitly distinguish technologies by esti-
mating the technology separately for different groups or “classes” of farms.  This is particular-
ly important in order to explore technical change specific to a particular technology type. To 
group firms or farms with different technologies, researchers sometimes group their observa-
tions by exogenous classifications, such as farms that define themselves as “organic,” or by a 
particular input threshold such as hectares per animal (to define a pasture-based or extensive 
operation). However, such divisions are at least somewhat arbitrary, and also usually rely on 
only one distinguishing factor. It seems preferable to group observations by their probability 
of exhibiting certain characteristics that differ among technologies, especially if multiple cha-
racteristics may distinguish production systems, as well as to estimate the groups and the 
technology in a one-step framework to allow for differences also in netput levels and mix. To 
accomplish this, we combine the estimation of our transformation function with a latent class 
structure (Greene, 2002, 2005), as explained further in the next section. 

3 The Latent Class Model 
Various methods to explicitly allow for heterogeneity in a production model have been used 
in the production literature. Some researchers have chosen their data sample based on some 
criterion of homogeneous production, such as Tauer and Belbase (1987) who delete farms in 
their sample with technologies too different from the norm5 and Felthoven et al. (2009) who 
focus on a portion of a fishing fleet with specific characteristics (catcher-processors). Some 
have chosen particular characteristic to divide the sample and estimate different frontiers, 
such as Hoch (1962) who separates Minnesota dairy farms by location, Bravo-Ureta (1986) 
who separates new England dairy farms based on breed, Newman and Matthews (2006) and 
Tauer (1998) who separate Irish and New York dairy farms by production process (stanchion 
versus parlor milking and specialist and non-specialist farms, respectively), and Kumbhakar et 
al. (2009) and Gillespie et al. (2009) who separate Finnish and U.S. dairy farms, respectively, 
into conventional and organic farms. Researchers such as Maudos et al. (2002) and Alvarez et 
al. (2008) instead accommodate multiple criteria for separating farms using cluster analysis 
based on output and input ratios, which divides the sample according to similarities in specific 
characteristics by maximizing the variance between groups and minimizing the variance 
within groups. Further, studies such as Kalirajan and Obwona (1994), Huang (2004), and 
Greene (2005) rely on random coefficient models that essentially model each farm as a sepa-
rate technology in the form of continuous parameter variation. 

                                                 
5  Tauer and Belbase (1987) deleted dairy farms from their data sample that participated in a particular (dairy 
diversion) program, that purchased most of their feed or replacement livestock, or that had a large proportion of 
non-milk sales. 
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It has increasingly been recognized, however, particularly in the stochastic frontier (technical 
inefficiency) context that is the focus of most of these studies, that latent class models are 
desirable for representing heterogeneity (Greene, 2002, 2005, Orea and Kumbhakar, 2004). 
This approach separates the data into multiple technological “classes” according to estimated 
probabilities of class membership based on multiple specified characteristics. Each firm/farm 
can then be assigned to a specific class based on the probabilities. This method distinguishes 
the classes based on homogeneity among firms/farms in terms of both the estimated technolo-
gical and probability (multinominal logit, MNL) relationships, rather than looking for simila-
rity in specific variables. The LCM model estimates a MNL model in one stage with the esti-
mation of the overall technological structure (although the number of parameters that may be 
estimated simultaneously by LIMDEP is limited by degrees of freedom for multiple out-
put/input specifications). Statistical tests can be done to choose the number of classes or tech-
nologies that should be distinguished.  A random effects model assuming firm-specific ran-
dom terms along with the technological groupings can be incorporated to further capture firm 
heterogeneity, as developed by Greene (2005) and Cameron and Trivedi (2005) and applied 
by Abdulai and Tietje (2007) for stochastic frontier analysis of German dairy farms and Alva-
rez and del Corral (2009) for Spanish dairy farms. For our analysis we focus on the technolo-
gical structure and technical change rather than on unobserved “inefficiency,” so we do not 
include a one-sided error as in a stochastic frontier model. Our specification of multiple tech-
nologies based on multiple characteristics, outputs and inputs, along with random effects and 
a flexible functional form, however, accommodate heterogeneity in our sample of Danish dai-
ry farms. 
More specifically, we can write our latent class model in general form as equation (1) for 
class j: 
(2) YM,it = F(YNMQ,it,Xit,T) |j  
where j denotes the class or group containing farm i and the vertical bar means a different 
function for each class j.  As we are assuming that the error term for this function is normally 
distributed, the likelihood function for farm i at time t for group j, LFijt, has the standard OLS 
form. In addition, as in Greene (2005), the unconditional likelihood function for farm i in 
group j, LFij, is the product of the likelihood functions in each period t, and the likelihood 
function for each farm, LFi, is the weighted sum of the likelihood functions for each group j 
(with the prior probabilities of class j membership as the weights): LFi = Σj Pij LFij The prior 
probabilities Pij must, by definition, fall between zero and one and sum to one for each farm. 
They are therefore typically parameterized as a multinomial logit (MNL) model, based on the 
farm-specific characteristics used to distinguish the technologies or determine the probabili-
ties of class membership, called separating- or q-variables (qi), and the parameters of the 
MNL to be estimated for each class (relative to one group chosen as numeraire), δj. That is,  
(3) Pij = exp(δjqi)/[Σj exp(δjqi)], or,  
(4) Pij=exp(δ0j + Σn δnj qnit)/[Σj exp (δ0j + Σn δnj qnit)], 
where the qnit are the N q-variables for farm i in time period t.  For our application we include 
four types of features that are key to distinguishing technologies and may be represented by 
alternative ratios.6  One important feature of dairy farms is the intensive or extensive nature of 
production, which may be reflected by pasture versus purchased feed; two variables that could 
capture this are thus qCOW,HA=cows/hectare and qFOD,COW=fodder/cow.  The extent of organic 
production may be captured by qCHM,HA=chemicals/hectare or qORG,TOT= organic milk reve-

                                                 
6  Variables in levels such as the numbers of cows or hectares could also be included.  However, as they are 
essentially “size” variables that  are already included as production structure arguments, and thus are also taken 
into account in the LCM model, we only included the ratio measures.  In preliminary investigation when we did 
try including such variables, however, their estimated coefficients tended to be quite significant. 
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nue/total revenue.7 The input intensity of production may be represented by qLAB-

COW=labor/cow or qKAP,COW=capital/cow.8 Finally, production diversity or specialization is 
reflected in the ratio of outputs, qM,TOT=milk/total output.  These separating variables are spe-
cific technological indicators distinguishing farms with different technologies. We chose our 
preferred q-variables by trying different combinations of the four types of indicators and eva-
luating the latent class model (LCM) q-variable coefficient’s estimates’ significance and the 
resulting posterior probabilities for the individual classes. The number of classes is determi-
ned by AIC/SBIC tests suggested by Greene (2002, 2005) that “test down” to show whether 
fewer classes are statistically supported.  Further, the base model incorporates a panel data 
specification where each farm is recognized as a separate entity that is assigned to a particular 
class. 
(5) yM,it |j = a0 + 2a0NMQ,j yNMQ,it

0.5 + ∑2a0k,j xk,it
0.5 + aNMQNMQ,j yNMQ,it  

+ akk,j xk,it + ∑akl,jxk,it
0.5xl.it

0.5 + ∑akNMQ,j xk,it
0.5 yNMQ,it

0.5 + bT,j tit + bTT,j tittit  
+ ∑bkT,j xk,it

0.5 tit + bNMQT,j yNMQ,it
0.5 tit + eit |j, 

for farm i in time period t and class j, with e denoting an iid standard error term and the inde-
zes as explained above. However, as an alternative specification we allow each observation to 
be a separate entity, allowing farms to switch between classes to identify changes in producti-
on systems over time (i.e. a cross-sectional specification): 
(6) yM,i |j = a0 + 2a0NMQ,j yNMQ,i

0.5 + ∑2a0k,j xk,i
0.5 + aNMQNMQ,j yNMQ,i + akk,j xk,i  

+ ∑akl,jxk,i
0.5xl.i

0.5 + ∑akNMQ,j xk,i
0.5 yNMQ,i

0.5 + bT,j ti + bTT,j titi + ∑bkT,j xk,i
0.5 ti  

+ bNMQT,j yNMQ,i
0.5 ti + ei |j, 

for observation i and class j, with e and the indezes as explained above. 
The probabilities Pij are therefore functions of the parameters of the MNL model, and the like-
lihoods LFij are functions of the parameters of the technology for class j farms, so the likeli-
hood function for firm i is a function of both these sets of parameters.  The overall log-
likelihood function for our model, defined as the sum of the individual log-likelihood func-
tions LFi, can be maximized using standard econometric methods.  Further, the posterior 
probabilities of class members can be computed from the resulting parameter estimates using 
Bayes Theorem: 
(7) P(j/i) = PijLFij/Σj PijLFij . 
The posterior probabilities thus also depend on both the parameters of the technology (argu-
ments of Lij), and the parameters of the MNL model (arguments of Pij). As noted by Orea and 
Kumbhakar (2004), this means that the LCM model can group the firms/farms into classes 
based on goodness of fit of the technological frontier even if other “sample-separating’ infor-
mation (q-variables) is not provided.  
For purposes of our analysis, due to degree of freedom problems for the LCM model from the 
many outputs and inputs in our data, we initially characterize our classes based on an ap-
proximation to the GL transformation function that does not include cross-effects. This is 
equivalent to using a Cobb-Douglas function – it is essentially a first-order approximation 
allowing for appropriate curvature of the overall marginal product and transformation curves 
for each input and output but not for second-order interaction terms among these variables. 
The resulting first-order elasticities represent the contributions of each output and input to 
production, as well as overall technical change and returns to scale, for each class. To ac-
commodate and measure the second order effects involving output and input technical change 
                                                 
7  We initially used a organic subsidies/total subsidies variable but it had many missing values as there is only 
limited information for these categories of farms before 1990, and is also quite highly correlated with the chemi-
cals ratios. 
8  A measure of labor per total output rather than labor per cow was also tried in preliminary estimations. 
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biases and substitution, we then estimate the full GL form for the full sample and the separate 
classes.  If the distinctions among classes capture key differences in technology, the average 
first-order elasticities for the constrained and fully flexible functional forms will be compara-
ble, but incorporating the interaction terms will allow assessment of cross effects.  

4 The Measures 
More specifically, to represent and evaluate the technological or production structure, the 
primary measures we wish to compute are first- and second-order elasticities of the transfor-
mation function. The first-order elasticities of the transformation function in terms of milk 
output YM represent the (proportional) shape of the production possibility frontier (given in-
puts) for output YNMQ, and the shape of the production function (given other inputs and YNMQ) 
for input Xk – or output trade-offs and input contributions to milk output respectively. That is, 
the estimated output elasticity with respect to the “other” (non-milk) output, 
εM,NMQ=∂lnYM/∂lnYNMQ= ∂YM/∂YNMQ•(YNMQ/YM), would be expected to be negative as it 
reflects the slope of the production possibility frontier, with its magnitude capturing the (pro-
portional) marginal trade-off.  The estimated output elasticity with respect to input k, 
εM,k=∂lnYM/∂lnXk= ∂YM/∂Xk•(Xk/YM), would be expected to be positive, with its magnitude 
representing the (proportional) marginal productivity of Xk.   
Second-order own-elasticities may also be computed to confirm that the curvature of these 
functions satisfies regularity conditions; the marginal productivity would be expected to be 
increasing at a decreasing rate, and the output trade-off decreasing at an increasing rate, so 
second derivatives with respect to both YNMQ and Xk would be negative (concavity with 
respect to both outputs and inputs). Returns to scale may be computed as a combination of the 
YM elasticities with respect to the non-milk output(s) and inputs. For example, for a producti-
on function returns to scale is defined as the sum of the input elasticities to reflect in a sense 
the distance between isoquants. Similarly for a transformation function such a measure must 
control for the other output(s). Formally, returns to scale are defined for the transformation 
function similarly to the treatment for the distance function in Caves, Christensen and Diewert 
(1982) – for our purposes as εM,X=Σk εM,k/(1 - εM,NMQ).9 Technical change is measured by 
shifts in the overall production frontier over time.  As our only technical change variable is 
the trend term T, productivity/technical change is estimated as the output elasticity with 
respect to T, εM,T=∂lnYM/∂T= ∂YM/∂T•(1/YM). This represents how much more milk may be 
produced on an annual basis in proportional terms, given the levels of the inputs and other 
output(s).  

These measures may be computed for each observation and presented as an average over a 
subset of observations (such as for the full sample, a farm, a time period or a particular class), 
or may be computed for the average values of the data for a subset of observations. The latter 
approach is called the delta method; it evaluates the elasticities at one point that represents the 
average value of the elasticity for a particular set of observations, allowing standard errors to 
be computed for inference even though the elasticity computation involves a combination of  

                                                 
9  The adaptation of this treatment for the transformation function was outlined by W. Erwin Diewert in private 
correspondence. Essentially, given the transformation function defined in equation (1), if all inputs are increased 
by a scale factor S, and one looks for another scalar factor (US) such that U times the initial vector of outputs Y 
is still on the transformation function, U(S) is implicitly defined by: U(S)Y1=F(U(S)Y2,SX,T).  The implicit 
function rule can then be used to calculate the derivative U’(S) evaluated at S=1: U’(1) = 
(ΣkdlnF(Y2,X)/dlnXk)/(1-dlnF(Y2,X)/dlnY2).  If this measure exceeds one, it implies increasing returns to scale.  
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econometric estimates and data10,11 In addition to computing technical change in terms of rela-
tive shifts in production frontiers, we can compute the relative levels of productivity among 
different groups or classes.  This requires determining whether one frontier is above the other, 
in terms of predicted output levels for a given amount of inputs, as in Kumbhakar et al. (2009) 
and Alvarez and del Corral (2009). Further, we can compute second order or cross elasticities 
to evaluate output and input substitution as well as output and input-using or -saving technical 
change (technical change biases) if a flexible functional form is estimated. These elasticities 
involve second-order derivatives such as, for input substitution, εk,l = 
∂2YM/∂Xk∂Xl•[Xl/(∂YM/∂Xk)].  If one thinks of MPM,k=∂YM/∂Xk as the marginal product of 
YM with respect to Xk (holding all other arguments of the function, including YNMQ, constant), 
this elasticity can be written as εk,l = ∂MPM,k/∂Xl•(Xl/MPM,k). Such an elasticity represents the 
extent to which the marginal product of Xk changes when Xl changes, or substitutability 
among the inputs.  Similarly, for technical change,  εk,T = ∂2YM/∂Xk∂T•[1/(∂YM/∂Xk)] = 
∂MPM,k/∂T•(1/MPM,k) represents whether technical change is input k-using or -saving – or 
tends to increase or decrease the input-intensity of input k – as εK,T is positive or negative. We 
can also measure whether returns to scale is increasing or decreasing over time (with technical 
change) for each class by computing εY,X,T= ∂εY,X/∂T. 

5 The Data 
The data used for our illustration are for milk (total and organic) and non-milk outputs, and 
land, labor, capital, cow, fodder, energy, veterinary and chemicals inputs, as well as deflators 
(producer price indexes for milk and dairy products, agricultural materials, and machinery and 
buildings). The data are taken from Landscentret, Denmark (“Regnskabsdatabase”: economic 
farm account database collected for various years) and Danmark Statistic (various agricultural 
price indezes). Summary statistics for the data by the final preferred (3) classes can be ob-
tained from the authors upon request due to space limitations. Overall, milk was about two-
thirds of total production for these farms, which averaged about 77 hectares with about 68 
cows, 4300 labor hours/year, 6.2 million Danish Kronor in capital, and about 5600 Kronor in 
feed/cow/year, with revenue of about 1,800,000 Kronor/year (in 1986 monetary units). When 
divided into classes, Class 1 farms tend to be larger operations with about 2,500,000 
Kroner/year in revenue, more cows and land (about 93 cows and 109 hectares), less labor and 
more capital input per cow, and more organic production and fodder/cow on average – al-
though the range for all of the variables is very large. Class 3 is the reverse – seemingly more 
traditional farms that are smaller, somewhat more diversified, with more labor and less land, 
capital and fodder per cow. Class 2 is in the middle in terms of size, with the least milk/total 
revenue (more diversification) and organic/total production. Differences over time for the data 
for the first and last years of the sample show a dramatic increase in milk production per farm 
(nearly three-fold) and proportion of organic milk while non-milk output was dropping, com-
bined with much more capital and land, less chemicals use, more than twice as many cows, 
and less labor and fodder per cow. These trends are consistent with those for dairy farms in 

                                                 
10  The “delta method” computes standard errors using a generalization of the Central Limit Theorem, derived 
using Taylor series approximations, which is useful when one is interested in some function of a random variable 
rather than the random variable itself (Gallant and Holly, 1980, Oehlert, 1992). For our application, this method 
uses the parameter estimates from our model and the corresponding variance covariance matrix to evaluate the 
elasticities at average values of the arguments of the function.  
11  Such computations for a particular “Class” are based on using the highest posterior probability to assign farms 
to a particular group. If some farms have a reasonable probability of being in another class, it may be misleading 
to choose one reference technology. One way to deal with this is instead to compute a posterior-probability-
weighted sum of the measures (Orea and Kumbhakar, 2004, Greene, 2002). However, if these probabilities are 
very high this is not likely to be a problem. As our average posterior probabilities range from 0.97 to 0.99 for the 
different classes, it does not make a substantive difference.   
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the U.S. and other EU countries toward larger more specialized farms and more capital-
intensive production systems. 

6 The Results 
We estimated our LCM model by Maximum Likelihood (ML) methods using LIMDEP 9.0. 
As noted, our base LCM model includes all first order and own second order terms, to allow 
for appropriate curvature of the function, but it does not include any cross-terms between out-
puts and inputs as there were too many parameters to distinguish classes with the fully flexi-
ble general linear model in LIMDEP (i.e. insufficient degrees of freedom).  The overall first-
order elasticities representing output and input composition and technical change would be 
expected, however, to be well approximated by such estimates (as we will see below), so the 
fundamental characteristics of the different farms will be taken into account for the separation 
of the farms into classes. The parameter estimates for this model can be obtained from the 
authors upon request due to space limitations. As discussed above, the measures of interest for 
our analysis are, however, computed as combinations of these parameters rather than based 
directly on the estimated coefficients.  The first measures to evaluate are thus the elasticity 
measures for the full data sample.  As discussed above, these first order output (milk, YM) 
elasticity estimates for our constrained (no cross-terms) model reflect output tradeoffs, input 
contributions, returns to scale and technical change, evaluated at the mean values of the vari-
ables for all farms in our data.  
The (proportional) tradeoffs between the outputs are given by the εM,NMQ elasticity, where M 
denotes YM and NMQ denotes YNMQ.  The estimate for this elasticity of approximately -0.17 
shows that producing one percent more milk, given input use, on average requires reducing 
other outputs by about 17 percent for the farms in our data.  The (proportional) productive 
contributions of the inputs are given by the εM,k elasticities (k= LD, LAB, KAP, COW, FOD, 
EN, VET, CHM). These output elasticities with respect to the inputs, which can be interpreted 
similarly to more familiar Cobb-Douglas production function coefficient estimates, show that 
the livestock input (XCOW) comprises the largest marginal input “share” or contribution to 
output at about 50 percent, fodder is about 21 percent, capital is next at about 16 percent, and 
land and veterinary care follow at about 12-13 percent.  Labor has a small productive contri-
bution of about 6 percent and chemicals and energy even less at about 2 percent.  In combina-
tion, these estimates result in a slightly increasing returns to scale (εY,X) estimate of 1.04; a 
one percent increase in all netputs generates an increase in milk production of about 1.04 per-
cent.   
In turn, our technical change measure reflects changes in potential output (milk) production 
over time holding input use and non-milk production constant, is statistically as well as eco-
nomically significant at about 0.013; output per unit of input has increased about 1.3 percent 
per year on average for the farms in our sample. Note also that the reported second order own-
elasticity estimates confirm the appropriate curvature on the relationships represented by our 
first order output elasticities; as non-milk production YNMQ increases the opportunity cost in 
terms of milk production increases on the margin, and the (proportional) marginal products of 
all inputs are (positive but) diminishing. The rate of technical change is also decreasing over 
time. A fundamental premise of our study, however, is that such overall (average) measures 
do not well reflect individual firms’/farms’ production patterns if the technology is heteroge-
neous. That is, if there is more than one type of production frontier embodied in the data, it 
should be recognized that different farms may exhibit very different output or input intensities 
and changes associated with different production systems. In particular, in the context of lo-
calized technical change, farms with different technologies would be expected to have differ-
ent technical change patterns, both in terms of overall magnitudes and associated relative out-
put and input mix changes. 
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To distinguish and evaluate such technologies and associated technical change, we need to 
specify the q- or separating-variables underlying the different technologies, and determine the 
number of different technologies or classes in which to group our data. For the first of these 
problems, we used different combinations of possible variables reflecting four distinctions 
among farm technologies we believe to be important for dairy farms – extensive/intensive, 
organic/conventional, input (labor and capital) intensity, and diversification/specialization. 
Although the models using different subsets of these potential q-variables are not nested and 
thus cannot be directly tested, we evaluated their relevance based on the significance of the 
resulting MNL coefficient (εnj) estimates.  These experiments suggested that the most relevant 
grouping was qFOD,COW=fodder/cow, qORG,TOT= organic revenue/total revenue, 
qLAB,COW=labor/cow  and qM,TOT=milk/total output.  The δo and δn estimates for this q-variable 
specification based on two, three, and four classes in the LCM model are presented in Table 
A1. All of the constant terms for the 2 and 3 class models are statistically significant at the 1 
percent level, suggesting that even without the q-variables the different farm production fac-
tors show significantly distinct technologies.  However, the q-variables identify additional 
distinguishing or separating characteristics. 
A key distinguishing factor among these farms – in terms of statistical significance holding 
other production factors constant – appears to be their diversity versus specialization (the 
amount of milk relative to total output), although the average summary statistics did not ap-
pear that different. For the two class specification, the farms in Class I (with prior probability 
of 80 percent being in that class) appear more specialized (with a positive and significant 
εM/TOT coefficient) than those in Class 2. When three classes are distinguished, Class 3 be-
comes the base class with the highest prior probability, and farms in other classes have a 
lower milk share – especially Class 2, as was evident from the summary statistics. Farms in 
both Class 1 and Class 2 also use less labor/cow than those in Class 3, and those in Class 1 
also sell relatively more organic milk and in Class 2 (with a less than 10 percent prior prob-
ability of being in this class) purchase less fodder/cow, consistent with the summary statistics. 
When four classes are distinguished, the significance of the q-variables is somewhat lower 
overall (than for the 3-class case), but farms in Classes 1-3 still have a significantly lower 
milk share relative to the base (and largest prior probability) class, while those in Class 1 also 
have more organic production and labor intensity, and in Class 3 have greater labor intensity. 
In this case fodder/cow seems not to be as significant a separating variable, perhaps as it is 
instead captured in a combination of the other q-variables when this many combinations are 
allowed for.  
To determine how many classes are statistically supported, it is now recognized in the litera-
ture that one should “test down” from the most classes to determine whether restricting 
classes is justified by statistical tests. Although likelihood ratio tests may be used, Greene 
(2005) showed that it is preferable to use AIC and SBIC tests – in this case to test down from 
four classes.  Such tests showed for our specification that three classes were statistically sup-
ported but two classes were not. Also note that the prior probabilities for our preferred three 
class model are about 0.39. 0.08 and 0.54 for classes 1-3 but the average posterior probabili-
ties for the farms within each of these classes are about 0.99, 0.97 and 0.98 (for the 110, 74 
and 120 farms in those categories), respectively, indicating a very good “fit” for our classifi-
cation scheme. Given the division of classes into three groups based on the chosen q-variables 
and first order technological specification, the next step is representing the full production 
technology for the separate classes. First, however, it is important to consider whether the 
base production structure (transformation function) model without cross-effects, used for 
separating the classes, reflects the primary characteristics of the overall production technol-
ogy. 
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To evaluate the desirability of including additional cross-terms, as well as the appropriateness 
of using the base constrained (first order) model for distinguishing the classes, we estimated a 
fully flexible version of equation (1) for comparison. The parameter estimates for this model 
can be obtained from the authors upon request due to space limitations. Tests of the joint sig-
nificance of the cross-effects relative to constraining them to zero showed that a fully flexible 
form is statistically supported. Tests for setting subsets of cross-terms, including all input-
cross terms, all T-cross terms, and all YNMQ-Xk cross-terms, to zero also showed the joint sig-
nificance of these cross-effects. For our full analysis of the production structure, therefore, we 
wish to use the fully flexible model. As already noted, the fact that the LIMDEP LCM algo-
rithm does not have enough degrees of freedom to estimate the fully flexible model for the 
classes precludes using such a model for the first step. However, the validity of using the base 
model for distinguishing classes, but the flexible model for evaluating the full production 
structure for the classes, may be inferred by comparing the elasticities for the constrained and 
unconstrained model to determine whether they reflect sufficiently similar overall average 
contributions of the outputs and inputs. Comparing these elasticity estimates shows that, al-
though the cross-terms will provide us with additional insights about underlying relationships, 
the overall patterns are effectively captured by the constrained model. On balance, therefore, 
the use of the constrained model to do the initial division into classes seems justifiable, par-
ticularly as the heterogeneity of the farms in terms of their output mix is taken into account in 
the division into classes by including the qM,TOT q-variable, and can be explored more com-
pletely with the fully flexible model. That is, first consider the different productivity levels 
implied by the different production technologies. One way to consider whether different tech-
nologies are more or less productive is to evaluate the fitted output levels (milk quantity – left 
hand side variable) for the data for the different classes based on the parameters of the other 
classes (Kumbhakar et al., 2009, Alvarez and del Corral, 2009). To pursue this, we used the 
average data for the variables for each class, as reported in Table 1. 

Table 1: Fitted Productivity Levels, average data for different groups 
sample technology full sample class 1 sample class 2 sample class 3  sample 

1st class 497.19 717.31 459.62 354.59 
2nd class 403.03 540.29 381.60 301.86 
3rd class 483.22 643.77 387.49 316.02 

 

For example, for the average data for the full sample, the fitted value of YM is highest for 
farms in Class 1 and lowest for those in Class 2, suggesting that the Class 1 technology is 
generally the most productive. The fitted values for the different classes support this conclu-
sion; for example, the fitted values for Class 1 farms using their own estimated technological 
parameters is 717.31, but using those for the other classes is lower and for Class 2 is the low-
est. For the data for the other classes, in reverse, using the Class 1 parameters gives a higher 
fitted output level than using the parameters for their own class. This roughly confirms the 
notion from our discussion of the descriptive statistics and q-variable parameters that Class 1 
farms are more efficient.12,13 Next consider the first order and own second order elasticities for 
the separate classes and the fully flexible model, presented in Table A2, which represent the 
production characteristics of each technology. Note that, as the first order elasticities reflect 

                                                 
12  Note that this might underestimate the efficiency of class 2 farms as they are more diversified and this only 
represents the milk production rather than total production. 
13  If these fitted values are based on less aggregated data the results are roughly the same, although for class 3 
the fitted values for either the class 1 or class 3 technology is virtually equivalent, potentially because the smaller 
farms’ characteristics are not commensurate with taking advantage of the scale economies of the larger farms in 
class 1. This is true both when the fitted values are computed by observation and then averaged (this also results 
in a virtually identical fitted value for each own-class compared to the descriptive statistics) and when the results 
are fitted for the average values for each farm and then averaged. 
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each output’s and input’s marginal product weighted “share” (e.g., 
εM,k = [( ∂YM/∂Xk)•Xk]/YM), high values of these elasticities may arise either from a large 
marginal product or a large amount of input Xk.  Note also that the primary interpretation of 
the second order elasticities is in terms of curvature; all the estimates are negative, consistent 
with the concavity requirements of the transformation function. 
The first order elasticities for non-milk outputs for all classes are negative, as they should be, 
and the larger (in absolute value) estimate for Class 1 suggests that with that technology an 
increase in milk production on the margin involves more decrease in other outputs. This is 
consistent with the summary statistics that suggest milk relative to non-milk output is higher 
for these farms, even though the average qM,TOT ratios are not very different than those for 
Class 3.   The marginal contributions of cows, and especially land and chemicals are larger for 
Class 1 than the other classes. This appears consistent with high marginal products for each of 
these inputs, as their levels are comparable (relative to milk production) or lower (for chemi-
cals) for this class relative to the other classes, again suggesting that these farms are some-
what more efficient than those in Classes 2 and 3. In reverse, the marginal contribution of 
capital is higher for Classes 2 and 3, suggesting that more capital investment might enhance 
productivity.  Further, for Class 2 the marginal contribution of labor is higher and for fodder 
is lower than for the other classes. In turn, returns to scale are essentially constant for Class 3, 
even though they are somewhat smaller farms, suggesting that the production systems of these 
farms must be adapted to take advantage of returns to scale as they grow – for example to 
become more capital and less labor intensive. Increasing returns to scale are evident for the 
other two technologies – especially for Class 2. Note that the overall returns to scale estimate 
for the GL model, therefore, overestimates returns to scale for Class 1 and especially Class 3 
farms, and underestimates it for Class 2 farms.   
Further, technical progress is evident for all the technologies, but the most for the farms in 
Class 1; output given non-milk production and input use is growing at about three percent per 
year for farms in Class 1 and roughly half that for the other two kinds of farms.  It is also in-
creasing at a decreasing rate, as is evident from the second order elasticity, but at similar rates 
for all classes.  The overall technical change measure for the full sample and GL model there-
fore under-estimates technical change for Class 1 but over-estimates it for the other classes.  
Further, without the cross terms the measure under-estimates technical change for all classes 
relative to the fully flexible model and class distinctions. 
The fully flexible model also provides insights about the input- and output-specific patterns of 
technical change, which underlie the overall technical change elasticity reflecting how much 
milk production per unit of input (or given input use) has increased over time.  This can be 
seen from the cross elasticities for the full sample.  The elasticities of εM,NMQ and each εM,k 
elasticity with respect to T are primarily significant. These elasticities show that on average 
for the full sample milk production growth over time has been associated with: (i) a greater 
trade-off between milk and non-milk production (consistent with a trend toward more specia-
lization) ; (ii) a slightly greater marginal contribution of land (while land has been increasing 
slightly faster on average than cows, (iii) greater marginal contributions of both labor and 
capital (while labor and capital use per cow have been falling and rising, respectively); (iv) a 
smaller marginal contribution of cows (as cows per farm has expanded); (v) a greater margi-
nal contribution of fodder while fodder purchases have not increased on average as much as 
cows; (vi) a smaller contribution of energy (with no apparent underlying intuition but it is a 
small proportion); and (vii) essentially the same contributions of chemical and vet use (while 
chemical use per hectare has been decreasing substantially  and vet services per cow have 
stayed approximately stable). Note also that returns to scale have been increasing over time 
even while farm size has been increasing. 
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When these elasticities are presented for the different classes, in Table A2, it is clear that dif-
ferent technical change patterns are occurring for the different technologies. In particular, for 
Class 1 the marginal contribution of labor is larger and of capital is smaller and less signifi-
cant – apparently due to a larger marginal product of labor with its lower levels and a margi-
nal product of capital that has fallen somewhat with higher capital levels.  Returns to scale are 
also increasing even faster than on average, even though these farms tend to be the largest 
farms.  By contrast, both the marginal contributions of labor and capital are smaller for both 
other classes (although that for capital is statistically significant for Class 2). The changes in 
the contributions of land and cows are also smaller but generally insignificant, and the rising 
returns to scale over time evident for Class 1 farms is less so for Class 2 and negligible for 
Class 3. In reverse, the marginal contribution of chemicals is significantly increasing for Class 
2, which is the class with the smallest share of organic milk production. 
Another question about technical change is the extent to which (and which) farms switch be-
tween classes (move to different production systems) or exit the industry. Our “preferred” 
estimates with random effects for each farm and based on a panel data specification, however, 
group the observations into class by farm rather than by observation, precluding consideration 
of such changes. To address this question we thus must categorize the observations rather than 
the farms into classes.  This model is not nested and thus not directly comparable to the ran-
dom effects farm-based specification, and in fact would be expected to yield biased estimates 
without the panel related random effects. Estimating the model allows us, however, to gener-
ally consider whether the results are comparable and assess farm switching and exit patterns. 
Although exploring such a model in detail is beyond the scope of this paper, note that the 
classification into categories by observation is roughly consistent with the farm random ef-
fects model.  1099 of the observations fell into Class 1, 693 into Class 2, and 1396 into Class 
3.  Class 1 again contained the largest, most specialized and most organic-oriented farms – 
even larger in terms of land and cows than for the farm model (which might be expected as 
the industry was evolving toward such a farm structure).  Class 2 observations were again the 
least specialized farms, in between Class 1 and 3 in size, with the most labor and fodder per 
cow.   In terms of switches, 344 farms moved from Class 3 into other classes – 226 of them to 
Class 1 – over the time period.  172 farms moved from Class 2, but most of these moved to 
Class 3 (165) rather than Class 1.  The majority of the farms that switched away from Class 1 
also moved to Class 3 – 91 of the 106 in this category.  There is therefore a general trend from 
Classes 2 to 3 and 3 to 1, as would be expected by their measured productivities. Note also 
that 26 of the 30 farms that exited the industry were categorized as Class 2 farms in their last 
year by this model; the remaining four included one in Class 1 and three in Class 3.  However, 
the farm classifications were nearly evenly divided among the different classes in the random 
effects farm model, suggesting that farms that became less productive over time tended to 
transition into Class 2 farms before they left the industry. Thus, the categorization of farms 
into classes over 20 years could be misleading in terms of which will exit the industry, as they 
may initially have been relatively productive farms that fell behind over time. 
Finally, we can consider general substitutability patterns from the estimated cross-elasticities 
(these estimates can be obtained from the authors upon request).  Overall, the cross-terms that 
reflect substitutability among inputs are largely significant.  For the full sample, interesting 
patterns found are that more non-milk production is associated with a higher contribution of 
labor and lower contribution of fodder, as one would expect for more pasture-based farms. 
More land and more fodder imply a greater, but more labor and cows a lower, contribution of 
chemicals – perhaps as the marginal product of chemicals is larger for larger farms.  Further, 
more capital is associated with greater contributions of both cows and fodder, consistent with 
trends toward larger farms with more intensive production. When the sample is broken down 
into classes these patterns are quite different.  For example, more non-milk production is not 
associated with labor contribution for any class, and only implies a lower fodder contribution 
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for Class 1.  It is, however, associated with a greater marginal contribution of cows for Class 
3, and of chemicals for both Class 2 and Class 3.  More cows are also associated with a 
greater contribution of chemicals for Class 2 but both more cows and more land imply a lower 
contribution of chemicals for Class 3, while there is very little association of any other netput 
with chemicals use for Class 1. Distinguishing the technologies thus appears very important 
for representing substitutability, but seems to imply different substitutability rather than lower 
overall substitutability. 

7 Concluding Remarks 
The main finding of our study is that overall (average) measures do not well reflect individual 
firms’ production patterns if the technology of an industry is heterogeneous. That is, if there is 
more than one type of production frontier embodied in the data, it should be recognized that 
different firms may exhibit very different output or input intensities and changes associated 
with different production systems. In particular, in the context of localized technical change, 
firms with different technologies can be expected to show different technical change patterns, 
both in terms of overall magnitudes and associated relative output and input mix changes. 
Assuming a uniform homogenous technology would result in inefficient policy recommenda-
tions leading to suboptimal industry outcomes. This seems to be especially relevant for envi-
ronmentally motivated policy measures aiming to support less intensive production systems. 
Future research should consider localized technical change using more specific measures of 
technical change. This could be done by direct measures related to learning by doing 
and/or geographical proximity both as arguments of the technology function as well as poten-
tial factors for a deviation from the relevant technological frontier. 
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