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Uncovering Dominant-Satellite Relationships
in the U.S. Soybean Basis:
Temporal Causation and Spatial Dependence

Daniel A. Lewis, Todd H. Kuethe, Mark R. Manfredo, and Dwight R. Sanders

This study examines the degree to which market information is shared in discovering the
local basis. The analysis draws from tests of temporal causation and spatial dependence
of weekly county-level soybean basis values across 13 markets. Time series analysis
shows that local soybean basis levels have some tendency to follow basis levels at export
locations (Toledo and U.S. Gulf). Processing centers tend to show the most independence
in basis discovery. Spatial statistics suggest a similar phenomenon in which basis values
at interior locations are highly correlated with neighboring locations. The patterns of
spatial correlation appear consistent throughout the growing season.
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Basis values, the difference between cash and futures price, play an important role in
guiding commodities through the supply chain (Tilley and Campbell, 1988; and Tomek
and Robinson, 1990). For storable commodities, namely grains and oilseeds, the
difference between local cash and futures prices reflects the market determined price of
storage for a particular market location, encompassing physical storage costs, quality
differentials, and transportation costs from the local cash market to a par delivery point.
While conventional wisdom suggests that basis is discovered and determined at the local
market level, grain elevators may take cues from other locations, such as terminal or
export locations, and make adjustments for transportation differentials when determining
and quoting the basis for their particular market location. That is, the basis may not be
entirely local, as some locations provide a source of market information used in
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determining the basis at other locations. If this is indeed the case, these grain marketing
locations may play an important role in discovering and determining the basis for other
markets. This is often referred to as a dominant-satellite relationship (Koontz, Garcia, and
Hudson, 1990). Moreover, if several local elevators within in a particular geographical
location determine their basis in a similar fashion, then there is likely to be correlation in
the basis across these neighboring elevators as well.

Some evidence exists to support the idea that the grain basis may not be an entirely
local concept. In examining how soybean basis levels respond to barge rate shocks and
other supply and demand disruptions, McKenzie (2005) found that, for Arkansas soybean
markets, Gulf basis shocks cause simultaneous movements in the Memphis basis.
McKenzie (2005) also found that Memphis basis shocks influence the basis for Arkansas
Delta locations (Little Rock). However, basis shocks at Little Rock did not transmit to
Memphis, suggesting a dominant price discovery role for Memphis. Similarly, Haigh and
Bessler (2004) found that Illinois grain prices are highly influenced by both barge freight
markets and Gulf export markets. Manfredo and Sanders (2006) also provide evidence of
dominant-satellite relationships in the corn basis. Their findings show that the basis at
export locations and terminal market locations tend to lead the basis at interior locations.
In particular, they identified the importance of Toledo, Ohio, in that the basis at Toledo
tended to lead the basis at various river terminal and interior locations. While each of
these studies suggest that certain market locations may be dominant markets in terms of
determining the basis for other locations with respect to timing of information, these
studies do not account for the potential correlation in basis among locations at a given
time.

Focusing on the basis for soybeans, this study attempts to provide further insight into
the discovery of the basis by examining potential dominant-satellite relationships, as well
as the degree to which markets simultaneously share pricing information across space.
Following the previous work of Manfredo and Sanders (2006), McKenzie (2005), and
Koontz, Garcia, and Hudson (1990), we test for causal relationships through time for a
number of market definitions, including export terminals, interior river locations,
processing centers, and interior markets. The analysis provides relevant information on
market leaders or dominant points of basis discovery. We also address the degree to
which markets simultaneously share pricing information across space through the use of
spatial statistics. The analysis indicates the degree to which basis levels may be correlated
over space. That is, the analysis provides a measure of whether basis exhibits a
systematic pattern across locations or is generated by a random process. The spatial
analysis therefore provides an alternative measure of the degree to which price
information is shared among neighboring locations.

While a sizeable body of research exists examining the factors impacting the basis for
grains (Garcia and Good, 1983; and Naik and Leuthold, 1991) and basis forecasting
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(Sanders and Manfredo, 2006; and Jiang and Hayenga, 1997), little is known about the
relationships between bases realized at various market locations throughout the grain
marketing system. While the basis is typically thought to reflect local supply and demand
conditions, the notion that the local basis follows a dominant basis location and/or
markets simultaneously share pricing information across space has considerable
ramifications for how economists and market participants should approach modeling and
forecasting the basis. Indeed, understanding these relationships is important as accurate
basis information is critical in developing successful risk management and marketing
strategies (Tomek and Peterson, 2001). It has also been suggested that economists move
away from explicitly predicting prices, and focus attention on forecasting basis (Brorsen
and Irwin, 1996). That is, price forecasts can be formulated using prevailing futures
prices and the expected basis (Kastens, Jones, and Schroeder, 1998). Most importantly,
however, this research will add to the general body of literature examining basis
behavior—an important and needed avenue of inquiry for agricultural economists
(Tomek and Peterson, 2001).

Methods

This research takes a two-stage approach to analyzing how information from other
market locations impacts the discovery of the local basis. First, potential dominant-
satellite relationships among alternative soybean market locations are examined using
time series techniques, namely Granger Causality tests (Manfredo and Sanders, 2006;
Koontz, Garcia, and Hudson, 1990). This analysis will provide insight into whether one
or more market locations play a dominant role in discovering and determining the local
basis. If the basis in one market is found to lead the market in another, this would suggest
that the lagging market takes cues from the leading market in terms of how pricing
information is used through time. Second, spatial statistics are used to examine the degree
to which neighboring market locations simultaneously share this pricing information
across space. Thus, if basis patterns are affected by dominant-satellite relationships as
demonstrated in time series-based tests, these relationships should also be observed in
cross-sections over space. In other words, local markets may take cues from a dominant
market location when discovering and determining the basis while simultaneously
sharing information with neighboring markets across space.

Time Series Analysis—Granger Causality

Granger Causality provides one approach to identify whether markets share information.
In a Granger Causality framework, market X is said to Granger cause market Y if market
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X provides valuable information when forecasting market Y. The method has been used to
test corn basis relationships among major export markets and interior locations
(Manfredo and Sanders, 2006), as well as the relationship between spot and futures prices
for live cattle (Koontz and Hudson, 1990; Ollerman and Farris, 1985). The causality test
is based on the equation:

(1) Ve=a+ Tl Ay + X1 0% j+ @

where y, is the basis value at time ¢ in market y, x, is the basis value at time ¢ in market x,
and m and n are the optimal lag lengths for y, and x,, respectively. The optimal lag lengths
m and n are determined using the method proposed by Beveridge and Oickle (1994),
where equation (1) is estimated for all lag values of i=1 to 12 and j=1 to 12 with the
model which minimizes Akaike’s Information Criteria (AIC) ultimately used in the
causality test. The null hypothesis that X does not Granger cause Y is examined using a
Wald test on the restriction §/=0 Vj (Hamilton, 1994). If the null hypothesis is rejected,
this suggests that market X dominates market Y, or more simply, that market X plays a
role in the discovery of the basis at market Y. White’s test is used to test equation (1) for
heteroskedasticy, and White’s heteroskedastic consistent covariance estimator is used to
correct the covariance matrix, if necessary.

Spatial Analysis

The concept of serial correlation is widely recognized within the empirical analysis of
commodity price behavior. The phenomenon occurs as the result of information being
shared across time periods, as prices in one time period influence prices in the following
time periods. A similar, although increasingly complex, phenomenon can also be
observed across locations — called spatial autocorrelation. In the case of the local soybean
basis, when grain buyers in one location establish price bids based in part on information
from buyers at other locations, prices can exhibit a systematic pattern across locations.
The spatial autocorrelation can arise as a result of buyers directly sharing information, but
it may also be the result of similar geographic properties at each location, such as access
to transportation or natural geographic features (McNew, 1996).

Spatial autocorrelation differs from the time series equivalent in two important ways.
First, spatial autocorrelation is multi-dimensional because spatial locations exist in a
multi-dimensional context (of two or three dimensions). Second, spatial autocorrelation is
multi-directional. With time series analysis, neighboring locations are clearly defined as
the time periods which precede the current time period. However, spatial relationships
may exist in an infinite set of directions. For example, a spatial observation may have
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neighbors directly north or directly south or in a limitless number of surrounding angles.
An additional component of multi-directionality is that locations may share information
in two directions. This follows the common phrase “I am my neighbor’s neighbor.” As a
result, the identification and measurement of spatial autocorrelation is increasingly
complex.

The classic measure of spatial autocorrelation is Moran’s [ (Moran, 1950). Moran’s |
measures the degree of spatially weighted deviations from the global mean. The measure
examines whether neighboring locations deviate from the global mean in a systematic
way. Moran’s [ is expressed:

N ZiZjwi(Xi=X)(X;-X)
2 I = =
) LiZjwij Zi(x—X)?

where N is the number of observations, wy is a neighbor definition which is strictly

positive when observations 7 and j share a meaningful relationship in space, and Xis
global mean value of the random variable X

Moran's I is weakly bounded by — 1 and + 1, where — 1 indicates perfect negative
spatial dependence and + 1 indicates perfect positive spatial dependence. When
observations are perfectly negatively (positively) spatially autocorrelated, a reduction in
the observed value of X at any location leads to negative (positive) changes in the value
of its neighbors. Thus, under perfect negative spatial autocorrelation, as basis weakens at
one location, the basis values at its neighbors will fall by the same degree. The measure
takes the value of 0 for spatially independent variables. There is not a distributional
assumption for the Moran’s [ statistic, and as a result, hypothesis testing is conducted
using a bootstrap procedure based on random draws with replacement. That is, the basis
values are randomly reassigned with replacement, and the distribution of the Moran’s 1
measure for each arrangement is compared against that of the observed data.

The Moran’s I statistic presented in equation (2) provides a “global” measure of
spatial autocorrelation because it yields only a single value for the entire study area. The
homogeneity assumed by Moran’s I can, however, mask clusters of local spatial
autocorrelation. In other words, a small subset of observations may be spatially
autocorrelated. For example, elevators in similar locations, such as country elevators in
the Midwest, may share information to a greater degree than the population at large. A
variation of the Moran’s I statistic, called the local Moran’s I, can be estimated at each
location in an effort to detect clusters of spatial autocorrelation (Anselin, 1995). The local
Moran’s I is calculated in a manner similar to “moving” or “rolling” estimates in time
series analysis. The statistic measures the correlation between one location and its
neighbors, and the local Moran’s I can be calculated for each observation in the study
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area. Using the same notation as above, the Local Moran’s I for each location i can be
expressed:

) N(X;=X)
bOTixi-Ry?

(3) ZjWij(Xj—X)

The local Moran’s I provides potentially useful information in understanding spatial
patterns in basis values as it signals the degree to which certain locations may be
influenced by changes in basis levels at neighboring locations. It therefore informs
concerns previously addressed by time series methods, yet it adds a new interpretation.
That is, a particular market or group of markets may take cues from a dominant market,
yet share this information among its neighbors. Although correlation does not necessarily
imply causation in the same way time series methods may, the measure indicates the
potential for what Fortin, Dale, and ver Hoef (2006) call “true spatial autocorrelation”
which arises from casual space-time processes. True spatial autocorrelation can be
interpreted as “a clue or ‘signature’ left by the past action of space-time processes”
(Fortin, Dale, and ver Hoef, 2006, p. 1). Thus, if basis patterns are affected by dominant-
satellite relationships, as demonstrated in time series-based tests, they should also be
observed in cross-sections over space.

Data

To keep the Granger Causality analysis tractable, the data are selected for 13 markets
shown in Figure 1. The sample locations include the major export terminals of Louisiana
Gulf and Toledo, Ohio (Lucas County); interior river locations of St. Louis, Missouri (St.
Louis County) and Peoria, [llinois (Peoria County); a major soybean processing facility
in Bellevue, Ohio; and several interior locations including Omaha, Nebraska; Raleigh,
North Carolina; Central Illinois (Champaign County); Northwestern Iowa (Buena Vista
County); Central lowa (Hamilton County); Eastern lowa (Black Hawk County); Central
Kansas (Pawnee County); and Southeastern Indiana (Decatur County). The data are
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Figure 1. Market Definitions and Locations

comprised of weekly (Wednesday) nearby basis values obtained from
cashgrainbids.com.l For the Louisiana Gulf, Omaha, and Raleigh locations, the basis data
provided by cashgrainbids.com are USDA-AMS data. For all other locations except for
Bellevue, the nearby basis used is an average of the basis reported at individual elevators
within the county noted, with anywhere from two to eight elevators from each county
composing the average. > Each time series spans January 2003-November 2009,
providing 357 weekly observations of the basis for each location.

Given that the spatial statistics are cross-sectional in nature, the data are further
aggregated for the purposes of spatial analysis. The county-level basis values are
aggregated over four periods in the crop year over the years 2003 to 2009. Thus, each
observation is the mean monthly basis value in each period. The four periods are defined

! In the event of missing observations for Wednesday, we selected from nearby data with the given priority:
Tuesday, Thursday, Monday, or Friday.

For St. Louis, Missouri, the basis data are drawn from an individual elevator in St. Louis County.
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as spring (April-June), summer (July-August), fall (September-November), and winter
(November-March). Thus, the degree of spatial correlation is calculated for 27 cross-
sections (seasonal periods) ranging from spring 2003 to fall 2009, with each cross section
containing 13 locations.

Results
Time Series Analysis

Augmented Dickey-Fuller tests (ADF) were first conducted to ensure that each of the
basis series were indeed stationary in levels prior to conducting the Granger Causality
tests. Following the procedure of Beveridge and Oickle (1994) the optimal lag length for
the Granger Causality tests were found by estimating equation (1) for all lag
combinations i=1,...,12 and j=1,....,12 and using the lag structure that minimizes Akaike
Information Criterion (Akaike, 1974). In addition, we test for heteroskedasticity using
White's test and apply White's consistent covariance estimator where necessary.

The Granger Causality results are reported in Table 1. Table 1 shows the information
flow from the row to the column and vice-versa. For example, considering Toledo (row)
and Omaha (column), the — symbol signifies that Toledo (x) leads Omaha (v), with the
rejection of the null hypothesis that 8; = 0 V j at the 1% level of confidence (equation 1).
However, when the relationship is reversed, Omaha (x) does not lead Toledo (y), since
there is a failure to reject the null hypothesis of 8; = 0 V j at the 1% level. Therefore, it
can be said that the direction of causality is from Toledo to Omaha. Considering Omaha,
row, and Central Illinois (C IL), column, the «— symbol signifies that Omaha (x) does not
lead C IL (a failure to reject the null hypothesis at the 1% level), but C IL (x) does lead
Omaha (y) since the null hypothesis of §; = 0V j is rejected at the 1% level. Hence the

direction of causality is from C 1L to Omaha. The <> symbol signifies two-way or
simultaneous causality significant at the 1% level. For example, in the case of Peoria
(row) and Raleigh (column), the null hypothesis that Peoria (x) does not cause Raleigh (y)
is rejected at the 1% level. When the relationship is reversed the null hypothesis that
Raleigh (x) does not cause Peoria (y) is also rejected, thus suggesting two-way or
simultaneous causality. A zero (0) in any of the row/column combinations suggests that
there is a failure to reject the null hypothesis in both directions, hence neither market
leads the other.



Lewis et al. Soybean Basis: Temporal Causation and Spatial Dependence 9

Table 1. Granger Causality Results™”

Gulf Toledo St Louis Peoria  Bellevue Omaha  Raleigh CIL NWIA CIA EIA CKS SEIN
Gulf o 0 P - - - © - [ o © -
Toledo © « - g «r - - « o - g

St Louis 0 © “ - - o - - - -

Peoria © - L - © « « © g

Bellevue = o o 0 o o 0 «

Omaha © - 0 - - - P

Raleigh © « L « - ©

ciL 0 - - 0 -

NWIA g g - ©

clA L «— g

ElA © -

CKs 0

SEIN

“ Results are interpreted from row to column. For example, for Peoria (row) and Raleigh (column), there is a
simultaneous causality relationship in that there is a rejection of the null hypothesis that Peoria does not
lead Raleigh, and a rejection of the null that Raleigh does not lead Peoria, both at the 1% level («).
Similarly, for Peoria (row) and Omaha (column), Peoria leads Omaha (®) as there is a rejection of the null
that Peoria does not lead Omaha, but a failure to reject the null that Omaha does not lead Peoria. For
Omaha (row) and C IA (column), C 1A is found to lead Omaha (—) at the 1% level (rejection of the null at
the 1% level), but Omaha does not lead C IA (failure to reject null). A zero (0) suggests that there is a failure
to reject the null in each direction (no causality).

2 C IL is Central lllinois, NW IA is Northwest Iowa, C IA is Central Iowa, E IA is Eastern Iowa, C KS is
Central Kansas, and SE IN is Southeast Indiana.

Table 2 summarizes the Granger Causality results that are presented in Table 1 and
provides an indication of the connectivity of the individual markets. St. Louis, Toledo,
and the Gulf have the largest number of instances where the basis leads that of other
markets (6, 5, and 4 respectively). For example, the export terminal of Toledo is found to
lead Bellevue, Omaha, C IL, Northwest lowa (NW IA), and Southeast Indiana (SE IN),
and the export terminal of Gulf is found to lead Bellevue, Omaha, Raleigh, and SE IN. In
terms of lagging markets, the Omaha market (6) exhibits the largest degree of lagging
information, followed by SE IN and Bellevue respectively at 5 and 4. In addition, Raleigh
and Eastern lowa (E IA) demonstrate the greatest number of two-way information flows
((—)) with nine each, followed by Peoria (8) and Gulf, NW IA, and C IA each with 7. The
Bellevue market (site of a major soybean processing facility), NW IA, C IL, and Central
Kansas (C KS) appear to show the least amount of connectivity as indicated by the
largest number of "0's” at 3 each.
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Table 2: Summary of Granger Causality Results

Simultaneous
Causality Lead Lag No Causality

Gulf 7 4 0 1
Toledo
St. Louis

Peoria
Bellevue
Omaha
Raleigh
ci’
NW IA
ClA
EIA
CKS

SE IN 1 5 1
“C IL is Central lllinois, NW I4 is Northwest lowa, C I4 is Central
lowa, E IA is Eastern Iowa,C KS is Central Kansas, and SE IN is
Southeast Indiana.

W NN = DO N O N W

1
0
0
4
6
3
3
1
3
1
3

h W OV 1 N O b O
W O © W W O — W = N O

One can also observe market dynamics across the four market categories (major
export terminal, interior river, processing facility, and interior locations) by examining
relationships based on these average linkages. For example, each of the major interior
soybean production areas of C IL, NW IA, CIA, E IA, and SE IN are either led by or
share a simultaneous feedback relationship with the major export (Gulf and Toledo) and
river terminal markets (Peoria and St. Louis). The export markets appear to have the
greatest amount of influence on average. That is, the export markets (Gulf and Toledo)
have the greatest amount of forward linkages considering both leading and simultaneous
relationships. Further, Omaha exhibits a lagging relationship, as demonstrated by the
greatest number of lagging relationships, as well as independent relationships. Finally,
the interior river (St. Louis and Peoria) and interior markets exhibit the greatest amount
of combined forward and backward price transmissions. Overall, these results suggest
that export markets tend to display dominate relationships with other markets displaying
satellite behavior in terms of how basis is ultimately discovered and determined. This
suggests that export bids maybe systematically bid back through the marketing channel.
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Spatial Analysis

The measures of spatial autocorrelation are constructed using an inverse distance
neighbor definition such that all observations are tied, yet the relative influence of each
observation declines as the distance between two points increases. Distance is measured
by the arc distance between county centroids (the geographical center of each county).
The Moran's I test results are reported in Table 3. The first column (Global) reports the
global Moran's I outlined in equation (2). The test statistics are statistically significant
and positive across all periods except spring and fall of 2004. This suggests that basis
values at each location are positively influenced by basis values at other locations. For
example, when the basis strengthens, or for that matter weakens, it is doing so
systematically across all of the market locations but to a varying degree.

The remaining columns report the local Moran's I test results (equation 3) for the
thirteen individual market definitions. As previously stated, the local Moran’s [ statistic is
used to detect clusters of high spatial autocorrelation. For example, the first row of Table
3 reports the local Moran’s I estimate at each location for Spring 2003. The results detect
five markets with statistically significant levels of local spatial autocorrelation: Raleigh,
C KS, and all three regions of lowa (NW IA, C IA, and E IA). Local spatial
autocorrelation appears to be especially strong among the three lowa regions in terms of
the magnitude of the Moran’s I, which range anywhere from approximately 0.30 to 0.69
across the time periods.

Looking across each time period, the results consistently suggest a high degree of spatial
clustering in interior locations, and the patterns appear consistent across the seasonal time
periods defined. Again, the markets which exhibit the highest degree of local spatial
autocorrelation include Raleigh, C KS; NW IA, C IA, and E IA. For example, the local
Moran’s I for C IA was statistically significant in 20 of the 27 time periods, and is
statistically significant for 19 of the 27 time periods for NW IA, E IA, and C KS
respectively. Overall, these results suggest that there is a considerable amount of basis
information being shared among these neighboring interior locations. As suggested by
Fortin, Dale, and ver Hoef (2006), the spatial autocorrelation tests also support the
temporal causality tests. Indeed, the markets with the highest degree of local spatial
autocorrelation also exhibit a large degree of temporal causality, as reported in Table 2.
This suggests that there is a high degree of basis information being shared by neighboring
interior market locations, and, at the same time, these locations may also be led by, or
maintain a simultaneous feedback relationship with, the dominant markets such as Gulf
and Toledo.
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Table 3. Spatial Autocorrelation Test Results

Journal of Agribusiness

Market
Global Gulf Toledo St Louis Peoria Bellevue Omaha Raleigh CIL NWIA CIA EIA CKS SEIN
2003
Spring  0.164*** -0.153 0.089 -0.124 0.035 0.142 0,050 0225** 0019 0.511** 0.572*** 0.510*** 0309** -0.023
Summer 0.196*** 0292 0.089 -0.158 0.075 0172 0219 0.251** 0078 0.571*** 0.685%** 0.599*** 0.342** 0.067
Fall 0.111*** 0565 -0.007 -0.171 0122 -0054 0332 0176  -0.016 0489** 0.501** 0461** 0273** -0.100
Winter 0047 0305 0.018 -0066 0.008 0.043 0027 0.101 0.017 0254 0.270 0.228 0005 0.004
200
Spring  -0.021  -0389 0010 -0018 0017 0.068 0.018 0148 -0.017 0.005 0.030 0.076 -0226  0.010
Summer 0.049* 0311 0154 -0022 0077 -0072 0249 0362*** 0.030 -0.068 0010 0.160 0.449*** -0.014
Fall 0.017 0700 0007 -0.103 0130 0.025 0.191 0147 0022 0038 0.118 0.234 0.229* 0116
Winter  0.057** -0333 -0.008 -0.101 -0.015 0.004 0.148 0093 0.001 0285 0311* 0267 0092 0.001
2005
Spring  0079** 0242 0019 -0.101 0031 0.049 -0003 0193 0001 0266 0.338*  0324* 0117 0031
Summer 0.098** -0.339 0045 -0064 0.129 0073 -0.369 0160 0050 0.375*  0.529** 0.539*** 0226* 0019
Fall 0.102*** -0.657 0.025 0044 0262  0.043 0.052 0097  -0.031 0340* 0.445** 0.502*** 0.227* -0.019
Winter  0.099*** -0.363 -0.002 -0.132 0032 0.025 0221 0150  -0.003 0.399** 0393** 0354** 0220* -0.005
2006
Spring  0.146*** 0332 0.031 -0079 0.065 0088 0216 0233** -0.012 0433** 0446 0.444**  0327** 0.033
Summer 0.174*** 0425 0040 -0.132 0.110 0098 0.327* 0202* -0.009 0.548%* 0.586*** 0.576*** 0.306** 0.013
Fall 0.140*** -0353 0007 -0.174 0050 0038 0252 0123 0.007 0.540**  0.594*** .557*** 0.223* 0034
Winter  0.125*** -0.282 0000 -0.476 0033 0023 0.145 0134 0.001 0496** 0.548*** 0482** 0217* 0013
2007
Spring  0.196*** -0.147 0076 -009%4 0025 0.132 0254 0.296** 0.003 0.500** 0.540 0.499*** 0.376*** 0.094
Summer 0207*** -0.288 0.037 -0.034 0.093 0.091 0.334  0.175*  -0.021 0.662*** 0.690*** 0.633*** 0.298** 0.025
Fall 0.176*** -0.210 0.000 -0.098 0.019 0013 0398 0.157 -0.027 0.653*** 0.609*** 0.476** 0276** 0.016
Winter  0.143*** -0.09 0.000 -0.098 -0.016 -0047 0330 0.169 0.017 0486 0.463 0.352 0251 0.041
2008
Spring  0.195*** 0.216 0.119 -0.025 -0.005 0.199 0.306 0331 0016 0463** 0457** 039%4** 0399  0.095
Summer 0.188*** 0,195 0.134 -0022 0004 0.201 0077 0.295** 0.003 0476** 0554* 0.500* 0.362***0.070
Fall 0.044* 0561 -0.056 0017 0.027 -0046 -0091 0084 0010 0309* 0353* 0337* 0.19%  -0.00]
Winter  0.051** 0322 0007 -0017 -0025 0037 -0.121 0077 0012 0298 0375*  0306* 0011 0.023
2009
Spring  0.167*** 0,143 0071 -0052 0017 0.123 -0023 0.212* 0018 0.575%** 0.632*** 0.443 0.265** 0.064
Summer 0.083** 0235 -0.035 -0.049 -0.144 -0008 0.126 0067 -0.021 045i** 0425** 0283 0212* 0.006
Fall 0064** 0302 -0070 -0019 -0.104 -0033 0.109 0.120 0000 0365* 0309* 0241 0.265** -0.055

a. *** represents statistical significance at the 1% level, ** 5% level, and * 10% level respectively.

b. CIL is Central llinois, NW [A is Northwest Jowa, C 1A is Central lowa, E [A is Eastern lowa, C KS is Central Kansas, and SE IN 1s Southeast [ndiana.

Conclusions

Our analysis demonstrates the degree to which soybean markets share information in
determining basis levels over both time and space. We define four market categories:
major export terminals, interior river locations, soybean processing facilities, and interior
locations. The evaluation is conducted through time series analysis and spatial
econometrics. The time series analysis consists of Granger causality tests of weekly basis
values in each market over the period January 2003 — November 2009. The results
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suggest that export markets may play a dominant role in basis discovery at other
locations.

The spatial analysis, on the other hand, examines the degree of simultaneous spatial
spillovers in observed basis over the period January 2006 — December 2009. The spatial
analysis addressed four periods in the soybean crop year: spring, summer, fall, and
winter. The results suggest that the basis values are globally spatially dependent as a
result of positive spatial autocorrelation. The local measures of spatial autocorrelation
also suggest that interior locations exhibit the greatest degree of spatial association.

Collectively, the results suggest a dominant-satellite relationship where the export
markets are the dominant markets in terms of discovering the basis. This information is
then transmitted to the satellite markets, predominantly those located at interior or
origination points in the marketing channel. Moreover, the fact that neighboring interior
locations are responding to changes in the same dominant basis creates local spatial
correlation for neighboring elevators. This is evidenced by the relatively high local
(spatial) correlations within, for example, the interior lowa locations. Then, those interior
locations have causal (temporal) relationships with export locations such as the Gulf or
Toledo.

This research has both important academic and practical business implications.
Namely, the findings suggest that basis modeling efforts need to include the potential for
dominant-satellite effects. Efforts to model and forecast the interior Iilinois basis for
soybeans, for example, should include lagged values of the basis at major export
locations (Gulf or Toledo) or river terminal (St. Louis or Peoria). Ignoring the
information flow from these locations could result in a misspecified model. Basis
modeling efforts should also include ways to account for the simultaneous sharing of
basis information among neighboring regions. Improved basis modeling is not only an
academic issue. Indeed, incorporating the findings from this study into current basis
forecasting efforts has the potential to improve basis forecasts, especially as the behavior
of the basis, namely the convergence of cash and futures, has become more difficult to
predict in recent years (Irwin et al., 2004). Ultimately, improved basis forecasts help
shape the marketing and risk management strategies implemented by farmers, elevators,
processors, and others along the soybean supply chain.

Recognizing the dominant-satellite relationships and the spatial connectivity among
markets should also provide managers of grain merchandising firms additional
information in terms of how they form their individual cash bids. This may be
particularly relevant for medium to small operations that do not get price information
from a centralized office. Basis information from dominant and/or neighboring locations
can be used as additional information in determining their bids, thus creating a more
efficient bid in terms of information content that reflects both local supply and demand
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factors, as well as more general market information that is being transmitted among
neighboring locations and/or through dominant market locations such as export markets.
The findings from this research should also be of use to soybean farmers as it provides
them additional insight into how basis is formed at their local elevators, allowing farmers
to potentially make more informed marketing decisions. Insights into how soybean basis
information is transmitted to local markets through dominant/satellite relationships, as
well as how the information is shared among neighboring locations, should also be of
particular interest to commodity exchange officials as the recent concerns with basis non-
convergence threatens to reduce the hedging effectiveness of the soybean contract, as
well as other futures contracts for storable commodities. In summary, this research helps
to broaden the literature and our general understanding of basis behavior — a critical area
of inquiry in agribusiness (Tomek, 1993; and Tomek and Peterson, 2001).
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