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Abstract 

Using a squential logit model and a mixed-effects logistic regression approach this empirical 

study investigates factors for the adoption of automatic milking technology (AMS) at the farm 

level accounting for problems of sequential sample selection and behaviour identification. 

The results suggest the importance of the farmer’s risk perception, significant effects of peer-

group behaviour, and a positive impact of previous innovation experiences. 
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1  Introduction 

The adoption of new technologies in primary agricultural production has been at the centre of 

traditional agricultural economic analysis for the last 50 years: One stream of studies 

empirically investigates technology adoption and diffusion taking into account farmers’ 

perceptions with respect to the risk of future yields. Others point to the importance of 

information gathering, learning by doing and resources’ accumulation for the adoption 

decision. An increasing number of studies model the adoption decision as a sample selection 

problem where the farms have to pass a first threshold to be selected into the sample of 

potential adopters. Depending on the technology to be adopted, the selection threshold refers 

either to size, network access or a certain level of human capital. Building on these findings 

our study aims to make a step forward by simultaneously modelling the effects of risk, social 

interaction, past innovation experiences and the sequential structure of adoption decisions. 

Different econometric models are applied to incorporate these potential factors and structural 

characteristics. A unique dataset on dairy producers in Northern Europe is used to empirically 

investigate the adoption of automatic milking systems (AMS). 

2 Automatic Milking 

Rising labor costs in the mid seventies were one of the main reasons for an increasing 

automation in the milking sector. Crucial steps were the development of a reliable cow 

identification system which could then be used for automatic concentrate feeders, the 

development of automatic cluster removers, sensors to detect udder health problems, and 

finally the development of automatic teat cup attachment systems (MEIJERING et al. 2002, 

KOCHAN 2004). An entirely automated milking system (AMS) - also called robotic milking 

system (RMS) - was firstly developed in the Netherlands in the 1980s and the first 

commercial RMS was placed into production there in 1992. Until the mid of the 1990s about 

250 farms worldwide used AM systems whereas the breakthrough of the AMS technology 

occurred at the end of the 1990s. Today AMS is in use on about 5,500 milk farms worldwide 

(SVENNERSTEN-SJAUNJA and PETTERSSON 2008). More than 90% of all dairy farms using 
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AMS are located in northwestern Europe where investments are driven by high labor costs, a 

continuous increase in the average herd-size and a dominance of the family farm structure 

(MEIJERING et al. 2002). Originally, AMS were targeted for small family farms with up to 150 

cows, however, with continuous technological progress and increased management skills, 

AMS is now also installed on larger farms with more than 500 cows per herd. In general there 

are two basic designs of automatic milking systems. The first is the single-stall system, in 

which one milking robot serves only one milking stall with approximately 60 cows. The 

second design is a multi-stall system, in which the robot travels along a rail between different 

stalls where each stall can service fewer than 60 cows (HYDE et al. 2007). Automatic milking 

relies on the cow’s motivation to enter the system voluntarily where the main motive is the 

supply of concentrate. 

 

Previous studies on the economics of different milking systems revealed that a minimum herd 

size of about 60 cows is needed for an automatic milking system to work more profitable than 

traditional milking systems (see ROTZ et al. 2003, HYDE and ENGLE 2002, DEKONING et al. 

2002). On farm sizes well above this threshold multi-stall AMS show greater potential net 

return than the use of two or more single-stall units. The herd milk production level was 

found to have only a small effect on the economic difference between traditional and 

automatic milking systems with a greater difference at a higher level of production. The 

potential benefit of AMS is improved if a substantial increase in production is maintained 

through a greater milking frequency. Studies showed that a large increase in the cost of labor 

can improve the net return of an automatic milking system over all herd sizes. Finally, farm 

net return with an AMS is significantly reduced if the economic life of the automatic system 

is reduced to represent a more rapid depreciation than normally occurs with traditional 

milking systems (ROTZ et al. 2003). Two great advantages with AMS include reducing the 

workload of milking and milking more often than twice daily without incurring extra labor 

costs (DIJKHUIZEN et al. 1997). On average, a 10% reduction in total labor demand is reported 

compared with conventional milking systems with twice milkings per day (Schick et al. 2000, 

DEKONING et al. 2003). Furthermore, milking frequencies of more than twice daily can be 

reached under automatic milking which is desired for high-yielding cows as 3 milkings a day 

are expected to enhance lactation milk yield by 10 to 15% on average (BILLON 2002, 

SVENNERSTEN-SJAUNJA et al. 2000, SPERONI et al. 2002, WAgner-STORCH and PALMER 

2003). Others stress the consistency of the milking process with automatic milking 

technology: In a working AM system, the animals are treated in the same way at each milking 

and the routines are predictable for the cows which increases milk production (SAMUELSON et 

al. 1993). Different research projects have been conducted to understand the effect of AMS on 

milk quality including both compositional and hygienic aspects. A comparison of 

conventional and automatic milking showed no differences between the milking systems for 

fat and protein contents (SVENNERSTEN-SJAUNJA et al. 2000). However, others revealed an 

increased level of free-fatty acid concentration (FFA) in milk collected from farms that had 

introduced AMS (JUSTESEN and RASMUSSEN 2000) or when compared with levels of milk 

FFA before automatic milking was introduced (DEKONING et al. 2003). With respect to milk 

hygiene, reports from the Netherlands and Denmark indicated that the total bacterial count 

(TBC) increased in the bulk milk after introduction of automatic milking. Other studies, 

however, revelaed that after 6 months the TBC stabilized and after 1 year the level of TBC 

was almost the same as on farms with conventional milking (KLUNGEL et al. 2000, 

Rasmussen et al. 2002). Initial studies concluding in an increased somatic cell count (SCC) 

after introduction of AMS (see e.g. KLUNGEL et al. 2000) were followed by studies showing 

that automatic milking does not increase the incidence of udder infections and SCC (e.g. 

BERGLUND et al. 2002 or SVENNERSTEN-SJAUNJA and PETTERSSON 2008). Finally, with 

respect to animal welfare, HAGEN et al. (2005) note, that the cows kept in an AMS displayed 
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an increased chronic stress (measured as heart rate variability) compared with cows kept in a 

loose housing system. On the other side, such stress was not observed during milking 

corresponding to the findings by GYGAX et al. (2006) who could not confirm differences in 

milk cortisol between cows milked in an automatic vs such milked in an conventional system. 

It is clear from these previous studies that AMS is not only a new milking system, but rather a 

completely new management system. MATHIJS (2004) as well as HYDE et al. (2007) stress that 

noneconomic factors such as lifestyle choices including avoiding labor management are at 

least as important as economic factors for the decision to adopt an automatic milking system. 

3 Adoption Literature Review 

Since the seminal work by GRILICHES (1957) numerous studies have been produced 

investigating different aspects of technology adoption in agriculture. FEDER and UMALI 

(1993) as well as SUNDING and ZILBERMAN (2001) provide surveys on the general 

technological adoption literature. PUTLER and ZILBERMAN (1988) examine computer and 

application ownership patterns in Californian agriculture. Their analysis indicates that the size 

of the farming operation, education level, age level, and the ownership of a farm-related 

nonfarming business significantly influence the probability of computer ownership. Foltz and 

CHANG (2002) study the adoption and profitability of Recombinant bovine somatotropin 

(rbST) on dairy farms in Connecticut. Their research shows that larger farms with more 

productive technologies and with younger, more educated farmers are more likely to adopt 

rbST. BARHAM et al. (2004) investigate the dynamics of rbST adoption on dairy farms and 

examine the characteristics that distinguish among nonadopters, disadopters, as well as early 

and late adopters. Their results confirm previous findings showing that larger farms with 

complementary feeding technologies are more likely to adopt rbST whereas nonadopters 

appear quite unlikely to become adopters. ABDULAI and HUFFMAN (2005) try to explain 

diffusion of crossbred-cow technology for a sample of Tanzanian farmers and conclude that 

the adoption of such technology positively depends on the proximity of the farm to other 

users, on his schooling, and on his access to credit as well as extension services. So far, no 

research has been undertaken which investigates the adoption of automatic milking 

technology in favor of conventional milking systems. 

Risk: One stream of studies empirically investigate technology adoption and diffusion taking 

into account farmers’ perceptions with respect to the risk of future yield. YARON et al. (1992) 

attempt to analyze the effect of price uncertainty on the degree of innovation exhibited by 

family farms in Israel. KIM and CHAVAS (2003) investigate the dynamic effects of 

technological progress on risk exposure by using the conditional moments of the estimated 

yield and profit for corn farmers in Wisconsin. They conclude that technological progress 

significantly contributes to reducing the exposure to risk and downside risk over time. 

KOUNDOURI et al. (2006) built on the framework suggested by ANTLE (1983, 1987) and 

followed by KIM and CHAVAS (2003) and develop a theoretical model to describe irrigation 

technology adoption by farmers facing production risk and incomplete information about new 

technology. The adoption decision is derived under the assumptions of farmers’ risk aversion 

and uncertainty because of random climatic conditions and future profit development. The 

estimated first four moments of the farmers’ profit distribution are incorporated in the 

technology adoption model as explaining factors. They found risk to play an essential role in 

farmers’ decision to adopt the new technology. 

 

Learning, Network Externalities and Peer-Group Effects: SUNDING and ZILBERMAN (2001) 

point out that a complete analytical framework for investigating adoption decisions should 

include information gathering, learning by doing and resources’ accumulation. ROSENBERG 

(1982) distinguishes between three different forms of learning: ‘learning by doing’, ‘learning 
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by using’, and ‘traditional learning’. Learning by doing relates to the supply of the 

technology, hence does not provide an explanation for why a firm would be an early or late 

adopter (MCWILLIAMS and ZILBERMAN, 1996). Learning by using describes the effect of the 

users of a given technology (i.e. the demand side) increasing their productivity over time as 

they learn how to better use this new technology. Finally, traditional learning as the most 

commonly discussed form of learning which involves potential adopters gathering 

information about the performance of a new technology (i.e. its expected profit and variance). 

Firms or farms are uncertain about the value of the new technology and are thus hesitant to 

invest in the technology without having sufficient information on its performance. Such 

information may be obtained by observing and interacting with others adopting and using the 

technology (i.e. peer-group spillover effects, informational cascades), by talking to 

technology suppliers, or by experimenting with the new technology themselves. In the context 

of this paper learning by using as well as traditional learning will be of interest (see also 

LINDNER et al. 1979, STONEMAN 1981, JENSEN 1982). BAERENKLAU (2005) points out, that 

traditional learning in the sense of ‘learning from others’ is more complicated as it may 

become rational for a forward-looking agent to postpone adoption (at least partially) until 

better information becomes available regarding the expected benefit of adoption. Such agents 

would tend to ‘wait and see’ what happens to their neighbors (i.e. free-riding on others’ 

technology experiences) before they assume the expected private costs of experimenting with 

a new technology themselves (i.e. an information or network externality). Foster and 

ROSENZWEIG (1995) as well as BESLEY and CASE (1997) found that dynamic information 

externalities have only small observable effects on the less costly and reversible adoption of 

new seed varieties. For adoption decisions with respect to large, capital-intensive and 

irreversible decisions as examined in this study, a non-dynamic type of behavioural spillover 

– referred to as neighborhood effect or peer-group effect (BANERJEE 1992) – may have greater 

relevance. Social scientists have examined such effects in several theoretical contributions 

(e.g. COLEMAN et al. 1966, SCHELLING 1971, for a recent overview see also Brock and 

DURLAUF 2001). However, with respect to empirical modelling confounding identification 

problems have to be considered (MANSKI 1993): i) endogenous (peer-group or 

neighbourhood) effects refer to the phenomenon that the propensity of an agent to behave 

varies with the behaviour of his peer-group; ii) exogenous (contextual: time and space related, 

i.e. fixed) effects describe the covariance  between the propensity of an agent to behave and 

exogenous characteristics of the peer-group; and iii) correlated (unobservable influences, i.e. 

random) effects refer to the observation that agents in the same group tend to behave similarly 

because of similar individual characteristics or institutional constraints. Nevertheless, 

previous research on technology adoption behaviour has acknowledged the effect of such 

peer-group effects by noting the importance of network externalities as a function of the total 

number of technology users or by formulating the concepts of an informational cascade, first-

movers based on signalling, and pure conformity preference. BROCK and DURLAUF (2001) 

found that nonlinear modeling can be used to identify these individual effects (see also An 

and KIEFER 1995 and DURLAUF 2003), however, as BAERENKLAU (2005) notes, there remains 

a lack of empirical research that incorporates social interactions into behavioural models to 

explain technology adoption. 

 

Selectivity, Sequential Decisions and Path-Dependent Behaviour: An increasing number of 

studies model the adoption decision as a sample selection problem where the adopting farms 

or firms have to pass a first threshold to be selected into the sample of potential adopters. 

Depending on the technology to be adopted, the selection threshold refers either to size, 

network access or a certain level of human capital. The modelling structure has then to correct 

for such sample selection bias. ASTERBRO (2003) uses a Heckman two-stage selection model 

to study how sunk costs and size affects the probability and depth of adoption (see also 
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SMALE et al. 1994,  DRIDI and KHANNA 2005 or ABDULAI et al. 2008). SMITH et al. (2004) 

investigate the computer and internet use by Great Plains farmers by modelling the exposure 

to the technology as adoption threshold. FOLTZ and CHANG (2002) note that the decision of a 

farmer to adopt rbST is based on each farmer’s self-selection instead of random assignment. 

Hence, their modelling approach consists of an index function model (i.e.probit) to 

endogenize the adoption decision with respect to yield and profit estimations. Different other 

contributions aim to tackle the phenomen that the adoption decision is not only subject to 

prior threshold criteria, moreover is part of a joint or sequential decision structure. Moreno 

and SUNDING (2005) estimate a nested logit model of joint technology and crop choices 

aiming to acccount for unobserved correlation among these decisions. The results support 

their modelling choice of a nested structure alternative to a standard multinomial logit 

approach. KHANNA (2001) applies a double selectivity model based on bivariate sequential 

probits to study the sequential decision to adopt two site-specific technologies, soil testing and 

variable rate technology and the impact on nitrogen productivity. The results indicate that the 

factors for the two sequential adoption decisions differ significantly and that nitrogen 

productivity gains from adoption depend on the soil quality given. The experiences with the 

implementation of automatic milking systems reported in the previous section suggest that a 

relevant empirical adoption model should incorporate the following aspects: (i) individual risk 

preferences to account for the tendency of farmers to care about profit developments in the 

first years after AMS adoption, (ii) sample selection due to a minimum herd size threshold, 

(iii) sequential decisions with respect to an increase in herd size and the adoption of automatic 

milking, (iv) learning by using, peer-group effects and network externalities based on the 

social interaction of the farmers with others who have already adopted the technology as well 

as the dissemination of individual experiences with AMS, and (v) the potential relevance of 

earlier experiences with the successful adoption of other technologies (e.g. organic dairy 

farming practices). 

4 Conceptual Framework 

We assume that risk averse dairy farmers utilize a vector of inputs x to produce an output q 

through a technology described by a well-behaved - continuous and twice differentiable - 

production function f(⋅). The individual farmer is assumed to incur production risk as milk 

yield and quality might be affected not only by herd health but also by technology 

underperformance or failure. Such risk can be considered by a random variable ε with its 

distribution G(⋅) which is exogenously determined. Dairy farmers in our sample are assumed 

to be price-takers in both the input and output markets as our study area consists of a 

relatively small and homogenous geographic area and hence factor price variability is low 

(HUFFMANN and MERCIER 1991). Dairy farmers in Europe further face a minimum guaranteed 

milk price regulated by the dairy regime of the Common Agricultural Policy of the EU. As 

outlined in the previous section labor input (xl) is essential in the dairy farm production 

process. The efficiency of labor use critically depends on the utilized milking technology and 

can be captured by incorporating a function h(α) in the milk production function 

[ ( ) , ]lq f h xα= x  where α is a vector of heterogeneous farm and farmer characteristics. The risk 

averse dairy farmer maximises the expected utility of profit ϖ described by (1) 
 

(1) { }
, ,

max [ ( )] max [ ( , ( ) , ) ' ] ( )
l l

l l l
x x

E U U pf h x r x dGϖ α ε ε= − −∫x x
x r x   where U(⋅) is the von Neumann-

Morgenstern utility function, and p and r as the non-random output and input prices 

respectively. The first-order condition for labor input choice is given by 
 

(2) �����′� = � 	
 ��(�,�(����,��
���

�′� ⟺ ��
� = � 	��(�,�(����,��

���
� + ������;��(�,�(����,��/"#$�

%����  
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Figure 1 

 

 

 

 

D1: herdsize 

decision 

D1n: no increase 

D1y: increase 

D2: ams adoption 

decision 

D2n: no adoption 

D2y: adoption 

 

with ' ( ) /U U ϖ ϖ= ∂ ∂ and with the first term on the right-hand side denoting the expected 

marginal product of the labor input, and the second term measuring deviations from risk-

neutral behaviour in the case of assumed risk-aversion (KOUNDOURI et al. 2006). The decision 

whether or not to adopt a more labor efficient milking technology can be modeled as a binary 

choice, where the farmer chooses to adopt (=1) or not (=0). In the case of adoption, labor use 

efficiency is increased: h
1
(α) > h

0
(α) for 0<α<1. The dairy farmer will adopt the new and 

more efficient milking technology if the expected utility with adoption (E[Uϖ1
]) is greater 

than the expected utility without adoption (E[Uϖ0
]): E[Uϖ1

] - E[Uϖ0
] > 0. Future profit flows 

after adopting the new milking technology are not known with certainty due either to 

ignorance of the exact technology performance or to the higher probability of technology 

failure as a consequence of errors in the use and maintenance of this technology. Furthermore, 

investing in the new milking technology entails sunk costs because of a fixed cost portion and 

the risk linked to a potential resale of the equipment. As DIXIT and PINDYCK (1994) point out, 

additional information on the performance and risks of the new technology might possess a 

positive value for the individual farmer. Linked to such information is the case that some 

dairy farmers may prefer to delay the adoption until more information becomes available and 

consequently, an extra premium may enter the technology adoption decision: (E[Uϖ0
]): 

E[Uϖ1
] - E[Uϖ0

] > InfV where InfV ≥ 0 represents the value of new information for the 

individual dairy farmer. InfV can be described as a function of the initial fixed costs of 

technology investment, the level of uncertainty related to the new technology (e.g. access to 

peer-group experiences, extension services), and the farmer’s own characteristics and 

experiences (e.g. age, farming experience, successful technology innovations in the past). 

Sequential Selection: A second layer of the model is related to the reported threshold for 

adopting automatic milking technology in terms of a required minimum herd size of about 60 

cows. This threshold can be conceptualized along the lines of a double selectivity sequential 

adoption problem: The decision to increase the scale of milk production by an increase in 

herdsize or not (D1) is followed by the decision to invest in the automatic milking technology 

or not (D2). If the farmer decides not to increase the herdsize (D1n) then the AMS adoption 

decision (D2) is not relevant (see figure 1).  

 

 

 

 

 

 

 

A rational farmer would increase the herdsize if the expected benefits �&1∗
are greater than 

zero where   

 

(5) �)*∗ =  �(&1,� − �(&1.� > 0 and correspondingly would adopt the new milking technology 

if the expected benefits  �&2∗
 are greater than zero with     

 

(6) �)2∗ =  �(&2,� − �(&2.� > 0. The net benefts �)*∗
 and �)2∗

 are latent variables, assumed to be 

random functions of vectors of observed exogenous variables Z1 and Z2   

 

(7) �)*∗ = 3*4* + 5* and �)2∗ = 3242 + 52  where ε1 and ε2 are random error terms and γ1 and γ2 are 

vectors of unknown coefficients. The observable choices of the dairy farmer are 
 

(8) &* = &*6  78  �)*∗ > 0; &* = &*9  otherwise and  
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(9) &2 = &26  78  �)2∗ > 0  and &* = &*6;  &2 = &29  otherwise. However, the selection equation  
 

(9) is defined only over the subsample where &1 = &1, (since &1 = &1. E.F &2 = &2, is not 
observed). This three-way grouping leads to a bivariate sequential model with the 

probabilities of the three outcomes 
 

(10) G�)*6,)26 = PrI&* = &*6; &2 = &26J = Φ2(3*4*, 3242, L�  
 

(11) G�)*6,)29 = PrI&* = &*6; &2 = &29J = Φ(3*4*, L� − G�)*6,)26  
 

(12) G�)*9,)29 = Pr(&* = &*9� = 1 − Φ(3*4*�     where Φ and Φ2 are the cumulative distribution  

 

functions of the standard normal distribution and the standard bivariate normal distribution 

with correlation coefficient L, respectively. 
Peer-Group/Neighboring Effetcs: A third component refers to the formalisation of effects 

based on the social interaction of the farmer with other members of the relevant peer-group 

(i.e. a non-dynamic type of behavioural spillover effect). Such network externalities and the 

dissemination of experiences based on learning by using the automatic milking technology in 

the ”neighborhood” can be approximated by a spatial diffusion measure for the new 

technology (see Brock and DURLAUF 2001, BAERENKLAU 2005). Taking a certain time lag 

into account with respect to the manifestation of such social interaction or peer-group effects 

pg is defined as a weighted proxy for the diffusion of the AMS technology in the neighboring 

region(s):     

(13) 
M�NO = PQRSTU
QR

V
NW*

 where i, t and c denote farm i, time t, and region/county c, respectively.  

 

XYEZ[
 as the number of farms in the county/region having adopted the AMS technology and 

XY as the total number of farms in the respective county/region. 

Identification Problem: As outlined above, serious identification problems have to be 

considered with respect to the empirical modelling of factors for innovation behaviour based 

on social interaction. Endogenous effects, as e.g. peer-group or neighborhood based 

influences have to be distinguished from exogenous effects, as e.g. time and space related 

influences affecting the individual farmer and his peer-group in the same way. Finally, 

unobservable (i.e. random) effects refer to the notion that farmers belonging to the same 

”group” tend to show similar behavioural patterns as a function of similar individual 

characteristics and/or structural and/or institutional constraints (e.g. similar past experiences 

with respect to core farming practices and innovation, similar structural farming conditions, 

similar exposure to policy/social events at the same point in time etc.) By applying a 

modelling approach that allows for the consideration of both fixed and random effects with 

respect to the AMS adoption decision an effort to empirically capture and probably identify 

these effects can be made. Exogenous and endogenous fixed effects are distinguished from 

random effects based on the grouping structure of the observations. 

Previous Innovation Experiences: Previous innovation behaviour and experiences with the 

adoption of new technologies and farming practices as e.g. the adoption of organic farming 

can have a potential effect on the current adoption decision. If the concept of path dependency 

at the micro-level is broadly defined the effects of such historical innovation patterns and 

experiences have to be taken into account with respect to the explanation of current 

innovation behaviour. We follow PENROSE (1959) and others who analysed how the growth 

of a firm's both organically and through acquisition is strongly influenced by the experience 

of its managers and the history of the firm's development at any point in time. Hence, by 

incorporating proxies for the succesful adoption of organic farming practices as the major 
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technology innovation for dairy farmers in preceeding years, and for potential cross-

fertilization with other individual characteristics as e.g. experience, peer-group effects, risk 

behaviour we aim to account for such path dependency in terms of individual innovation 

behaviour (see also FOLTZ and CHANG 2002, BAERENKLAU 2005). 

 

5 Data and Econometric Modelling 

More than 90% of all dairy farms using AMS are located in northwestern Europe where 

investments are driven by high labor costs, a continuous increase in the average herd-size and 

a dominance of the family farm structure (MEIJERING et al., 2002). This study uses a unique 

dataset based on a pooled cross-section for 241 dairy farms in Denmark for the years 2002 to 

2006. It includes information on farms which had just adopted the new milking technology, 

i.e. information on the production situation at the time the decision to adopt/not to adopt was 

made. The farms were selected by a stratified random sampling procedure based on the farm 

accounts data base collected by the Danish Agricultural Advisory Services, Skejby, Denmark. 

The farms in the sample are located all over Denmark and the relevant “neighboring/peer-

group region” were defined based on the Danish communal structure as in place before the 

communal reform in 2006. The average dairy farm in the sample produced with a herdsize of 

about 123 cows and the average farmer had about 15 years of dairy farming experience. Up to 

40% of all “neighboring or peer-group” dairy farms had experience with the adoption of AMS 

at the time the average farm adopted the new milking technology (a summary statistic can be 

obtained from the authors). The different econometric modelling steps are based on the 

conceptual framework outlined above. 

Risk Proxies: The use of a moment-based approach for the estimation of production risk is 

based on a flexible representation (see ANTLE 1983). This avoids the problem of potential 

model misspecification with respect to the probability function of farmers’ profit ϖ(·), the 

distribution of risk G(·), and farmers’ risk preferences as described by the utility function U(·) 

in (1). Hence, the sample moments of the profit distribution are estimated and subsequently 

used as explanatory variables for the farmers’ adoption decision. As our dataset contains 

information on the situation at the time the adoption decision was made, the estimated profit 

function has not yet been affected by the adoption decision. The estimated moments of the 

profit distribution can be assumed to be exogenous to farmers’ decision at the time of 

adoption. Hence, the first estimation step consists of estimating the profit function and then 

computing the moments of the profit distribution for each observation (i.e. farm i time t). 

Following the procedure outlined by KIM and CHAVAS (2003) based on ANTLE (1983) we first 

regress farm profit ϖ (profit per cow) on a vector of variable input prices r (labor price, 

fodder price, concentrates price, veterinary price, cow price), milk output price p, a vector of 

fixed inputs z (land, capital), and a vector of extra profit shifters c (farmer’s age, farmer’s 

experience, type of breed, yield per cow, off-farm income, geographical location, climatic and 

soil conditions, and time) as well as an iid error term u:    

 
(14) \�N = ]( �̂N , 
_`, a�N , b�N; c� + d�N .  
 

Assuming profit maximisation and applying a flexible translog functional form (14) is 

estimated by OLS providing consistent and efficient parameter estimates. The jth central 

moment of profit conditional on input use is defined as   

 
(15) ef(∙� = �h�\(∙� − e*�fi    
 

where µ1 denotes the mean of profit. Thus, the estimated errors from the mean effect 

regression (dj = \ − ](∙�) are estimates of the first moment of the profit distribution. These are 
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Figure 2 
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squared and regressed on the set of explanatory variables from (14), which gives     (16) 

dj�2 = k( �̂N , 
_`, a�N , b�N; l� + 5�N.   By using OLS on (16) we obtain consistent and efficient estimates 

of the variance (2
nd
 moment). This procedure is followed to estimate also the third (i.e. 

skewness) and fourth (i.e. kurtosis) central moments based on the estimated errors raised to 

the power of three and four, respectively, used as dependent variables. The estimates obtained 

for the four moments are used as proxies for the individual farmer’s milk production risk by 

incorporating them into the subsequent models of AMS technology adoption along with a 

vector of other explanatory variables. 

 

Adoption Model I: Robust Sequential Logit: If the adoption of the AMS technology is 

conceptualized as a sequential selectivity problem it can be estimated as a sequential logit  

model based on separate logistic regressions for each step, decision or transition (see KHANNA 

2001, BUIS 2007 and 2009). Such a model is known in the literature as a sequential response 

model (MADDALA 1983) or a sequential logit model (AGRESTI 2002). Figure 2 shows the 

hypothetical process which is to be quantitatively described by using a sequential logit model.  

 

 

 

 

 

Corresponding to the three levels D1n, D2n, D2y the process consists of two transitions. The 

first transition refers to a choice between no  increase in herd size, i.e. D1n, on the one hand 

and D2n and D2y on the other. The second transition consists of a choice between an adoption 

of AMS, i.e. D2y, and no adoption of AMS, i.e. D2n, but only for those that have chosen D2y 

and D2n in first transition. The sequential model aims to model the probabilities of passing 

these transitions by estimating a logistic regression for each transition on the sub-sample that 

is at risk. Corresponding to equation (10) above, the probabilities p1 and p2 in figure 2 can be 

approximated for farm i at time t as    

(17) 
*�N = Pr(m,�N  n oD2q_`, D2r_`st�uv� = w#x (�yz{�
*|w#x (�yz{� (}��N�  and 

 

(18) 
2�N = Pr(m,�N n oD2r_`st�uv, ,�N  n oD2q_`, D2r_`s� = w#x (�~z{�
*|w#x (�~z{� (�a�N�       

 

where xit and zit are vectors of regressors for farm i at time t (i.e. [i] farm size proxied by the 

amount of milkquota; [ii] farmer characteristics as age and experience; [iii] farm 

characteristics: organic or conventional, debt of the farm, off-farm income, private 

consumption, subsidies received, hired labor; [iv] herd and production characteristics: type of 

breed, yield per cow, fodder expenses, veterinary expenses, labor per cow; [v] neighbouring/ 

peer-group effects; [vi] yearly effects; [vii] risk proxies: the estimated moments based on 

(14), cross effects between moments and farmers experience as well as moments and 

neighbouring/peer-group proxy)
3
. The term w#x (�z{�

*|w#x (�z{� ensures that the predicted probability 

remains between 0 and 1 by modelling the effects of xit and zit as S-shaped curves. The 

coefficients can be interpreted as log odds ratios and the likelihood function is given in 

MADDALA (1983) or BUIS (2009). The maximum likelihood estimates are obtained by 

maximizing the likelihood function with respect to the parameters by numerially 

approximating the integrals based on maximum simulated likelihood (TRAIN 2003). The 

simulations involved need to be repeated for each observation and by using a drawing 

procedure based on a Halton sequence a more regular sequence of numbers can be generated 

                                                 
3 Possible endogeneity of the monetary variables ’debt of the farm’, ’off-farm income’, ’subsidies received’, and ’private consumption’ is 
addressed by using the estimates for those variables based on a instrumental variables regression procedure (IV) as explanatory variables in 

the adoption model as outlined by (17) and (18). 
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(DRUKKER and GATES 2006. The seqlogit package in Stata is used here, see BUIS 2007). To 

address the likely problem of heteroscedasticity because of pooled cross-sectional data we 

first test for such heteroscedasticity and secondly estimate the robust covariance matrix using 

the Huber-White sandwich estimator (see HUBER, 1967 and WHITE, 1980). The latter provides 

consistent estimates of the covariance matrix for parameter estimates even when the fitted 

parametric model fails to hold because of misspecification or violation of the error related 

assumptions. Despite several cross variable terms are used in the model, the auxiliary 

regressions performed showed no severe collinearity in the explanatory variables. To examine 

the validity of the final model specification we test for a group wise insignificance of the 

parameters in (17) and/or (18) by a generalized likelihood ratio testing procedure. A Runs test 

to test for possible serial correlation is applied (see GREENE, 2000). Finally, several 

alternative pseudo-R
2
 measures have been computed to judge on the overall model quality. 

The outlined sequential logit model is finally also estimated in a slightly modified 

specification by considering previous innovation experiences as outlined in the previous 

section. Hence, xit and zit are modified by incorporating additional explanatory variables (i.e. 

[viii] organic farming practices adopted before or not, cross effects between organic 

technology and farming experience, between organic technology and peer-group effects, and 

between organic technology and the individual risk proxies). 

Adoption Model II: Robust Probit and Mixed-Effects Logistic Regression: The preceeding 

model is designed to empirically capture the selectivity problem. However, these models are 

not able to capture the influences by random effects based on different groupings of dairy 

farms in the sample. To empirically identify such random effects beside obvious fixed effects 

we apply a two-stage estimation procedure: First, we estimate a binary probit model (i.e. 

selection model) and use the estimates to form the inverse Mills ratio to address the sample 

selection problem. Secondly, we estimate a mixed-effects logistic regression incorporating the 

estimates for the inverse Mills ratio as an additional regressor to control for selection bias. 

Following Maddala (1983) the probit model assumes that    
 

(19) G(� = m1|3 = �� = Φ(��4�    
 

where L is a binary response variable, Z is a vector of regressors and Ф as the cumulative 

distribution function of the standard normal distribution. By using the concept of a latent 

variable model, the decision to increase the herdsize is generated as 
 

(20) �2�N∗ = �a�N + 52�N   
 

with �2�N∗  denotes the latent variable, zit is a vector of regressors for farm i at time t as outlined 

above, and 52 ∽ X(0,1�. L as an indicator for whether the latent variable meets the herdsize 

threshold Hit, following    

 

(21) ��N = �1 78�2�N∗ > ��N
0 ��ℎ���7[�

m    
 

and taking the value 1 as the herdsize of the respective farm i is more than 60 cows, and the 

value 0 if it is below or equal to 60 cows at time t. The log-likelihood function to be 

maximised is given in MADDALA (1983). Subsequently, the estimates obtained by (20) are 

used to generate the inverse Mill’s ratio as the ratio of the probability density function over 

the cumulative distribution function. This ratio is needed to account for possible sample 

selection bias in the second stage of the model (HECKMAN 1979). This stage (i.e. outcome 

model) consists of a mixed-effects logistic regression to estimate the technology adoption 

decision (see e.g. AGRESTI et al 2000, HEDECKER 2003) by accounting for fixed and random 

effects. Hence, we are able to predict the discrete outcome variable even if observations might 
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be correlated. If �*�fN descibes again the binary dependent variable based on the AMS 

adoption decision, realized for farmer i at time t and part of a group of farms j as l1ij, which 

takes the value of either 0 or 1, for i = 1,..., M; j = 1,..., nij. Abstracting from time the 

stochastic component is described by a Bernoulli distribution with mean vector nij 

(22) �*�f~BernoulliIl*_�tπ_�J = π_�
�y��(1 − π_��*W�y��       

 

where ��f = Pr (�*�f = 1�. The vector of random effects, bi, is restricted to be mean zero with a 

symmentric positive semi-definite variance covariance matrix (see HEDECKER 2003). The 

systematic component is     
(23) ��f = *

*|w#x (WI�u��|^u���J�  

 

where xij is the vector of known fixed effects explanatory variables for farm i in group j as 

outlined above, β as the vector of fixed effects coefficients to be estimated, rij is the vector of 

known random effects explanatory variables and bi as the vector of random effects for farm i 

based on group j (along the following factors as a consequence of [i] neighbouring/peer-group 

effects, [ii] farm group effects, [iii] time, and [iv] soil/climatic conditions). The likelihood 

function must marginalize over the random effects and is given in HEDEKER (2003) or BATES 

(2007). It can not be evaluated exactly and thus the maximum-likelihood solution must be 

approximated, e.g. based on Laplacian approximation (the xtmelogit command contained in 

Stata is used here). The outlined two-stage probit and mixed-effects logistic regression model 

is also estimated in a slightly modified specification by considering previous innovation 

experiences as outlined in the previous section. Finally different diagnosis tests and robust 

estimation procedures are applied as outlined for adoption model I. 

6 Results and Discussion 

The overall quality of the four models estimated is largely satisfactory: The likelihood ratio 

and other diagnosis tests indicate no severe misspecification and the different alternative R-

square measures show a high predictive power (due to space limitations only the estimates for 

the adoption decision are shown in table A1, other estimates and test results can be obtained 

from the authors upon request). The models estimated show a high consistency with respect to 

the individual parameter coefficients and their significance which suggests robust empirical 

results. With respect to the decision to adopt the AMS technology all models show a positive 

and significant influence of the scale of milk production, a negative and significant effect of 

the farmer’s age but a positive significant effect of farming experience. With respect to farm 

characteristics the overall debt of the farm and the amount of off-farm income have a negative 

effect on the probablity of adopting the new milking technology. On the other hand, the 

amount of private consumption showed to have a significantly positive effect on the adoption 

probability. With respect to herd characteristics, we found a negative and significant effect of 

the amount of fodder used but a positive and significant effect of veterinary expenses per cow. 

These results confirm earlier findings with respect to the scale of the production - larger dairy 

farms are more likely to adopt new technology - and the importance of the farmer’s age and 

education - younger and better educated dairy farmers are more likely to adopt new 

technology (see PUTLER and ZILBERMAN 1988, FOLTZ and CHANG 2002, BARHAM et al. 

2004). However, the finding that farming experience influences the probability of AMS 

adoption is somehow contradictory but could be explained by the measurement of the variable 

as the number of years operating the current farm. Hence, farmers tend to aquire a certain 

level of learning-by-doing with respect to the current milking technology before they decide 

to switch to a new milking technology. A soft budget constraint could explain the negative 

effect of the dairy farm’s off-farm income on the probability of adopting the AMS 

technology: the farm is able to operate with a less productive technology for a longer time 
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span. PUTLER and ZILBERMAN (1988) on the other hand stress the importance of nonfarming 

business for the adoption of new technology. Due to our findings farms at the negative as well 

as positive edge of financial risk management (i.e. high debt or high off-farm income) are less 

likely to adopt new technology. Dairy farms experiencing high veterinary costs per cow might 

consider a technology investment as a way to avoid sources of costly diseases by minimising 

the effects of human labor. In a working AM system, the animals are treated in the same way 

at each milking and the routines are predictable for the cows which increases milk production 

(SAMUELSON et al. 1993). This is consistent with findings that automatic milking does not 

increase the incidence of udder infections and SCC (SVENNERSTEN-SJAUNJA and PETTERSSON 

2008), findings that cow stress was not observed during automatic milking (HAGEN et al. 

2005), and findings that the milk cortisol level was not increased in an automatic compared to 

a conventional system (GYGAX et al. 2006). Contrary to prior reasoning by more technical 

studies on automatic milking (see e.g. DEKONING et al. 2003), the level of labor used per cow 

showed not to be of significance for the adoption decision. This could possibly be explained 

by the fact that farmers and other labor already operating on a relatively high level of labor 

productivity are those most interested in a further increase of their labor productivity by 

adopting such labor saving technology. 

With respect to the farmers’ risk perceptions our analysis revelead the following: The first 

moment – expected profit – effects the technology adoption decision significantly positive, 

i.e. the higher the expected profit the higher the probability of AMS adoption. The second 

moment – profit variablility – showed to have a significant negative influence on the adoption 

probability, i.e. the higher the probability of facing extreme profit gains or losses the lower 

the probability of AMS adoption. For the third moment – skewness of profit – again a 

significantly negative effect on the adoption decision has been found, i.e. the higher the 

downside profit risk the lower the probability of adopting the new milking technology. The 

fourth moment – kurtosis of profit – finally effects the probability of technology adoption also 

negative and this effect has been found to be significant. A higher kurtosis of the profit 

distribution means more of the variance is due to infrequent extreme deviations from the 

mean profit, as opposed to frequent modestly-sized milk profit deviations. These findings are 

generally in line with theoretical reasoning and previous empirical studies: Given the farmers’ 

general risk aversion and the uncertainty related to the profit developmeent after adoption 

KIM and CHAVAS (2003) and KOUNDORI et al (2006) both conclude that the farmers’ decision 

to adopt a new technology is significantly effected by risk considerations. In addition to these 

results we found that the cross-effect of these risk proxies with farmers’ experience showed to 

significantly influence the farmers’ AMS adoption decision. We found that the experience of 

the farmer with the operation of the current business helped to adjust extreme profit 

expectations (first moment). This confirms findings by MEIJERING et al. (2002) on the 

importance of realistic expectations with respet to AMS adoption. On the other hand, the 

farmer’s experience are found to decrease the farmer’s response to changes in the second to 

forth moment. These findings indicate that the more experienced the farmer is in terms of 

running the current milk business the less responsive he/she is to milk profit variance and 

infrequent milk profit deviations. Hence, the farmer’s probability of adopting a new milking 

technology to hedge against profit outlier activity increases (see also KOUNDORI et al. 2006). 

Time showed to have mixed but rather positive effects on the milking technology adoption 

decision for the farms in the sample. This could reflect the role of information accumulation 

and positive learning-by-doing effects in the relevant dairy farming community over time. 

The proxy for neighboring/peer-group effects showed to be positive and significant with 

respect to the AMS adoption decision. In addition the cross effects with the risk proxis 

(second to fourth moment) were found to be also significantly positive, i.e. a decreasing 

negative effect of on farmer’s response to changes in milk profit variance, skewness and 

kurtosis. Hence, our results reveal that such social interaction effects decrease the individual 
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farmer’s responsiveness to risk exposure and consequently increase the probability of new 

technology adoption. In our second modelling approach random effects were used to model 

unobservable factors related to such peer-group influences, but also to control for individual 

farm, time, or soil/climatic related effects. The estimates show a significant positive effect on 

the probability of adopting automatic milking technology by the neighbouring/peer-group 

based farm grouping and a significant positive effect by the time based farm grouping. Hence, 

we are able to empirically approximate such neighboring/peer-group effects based on social 

interaction and learning-by-doing in the wider peer-group. These findings are in line with, and 

even enforce, the findings by BAERENKLAU (2005) and others: Peer-group based spillover 

effects as well as “bandwagon” effects generated by early adopters have an impact on the 

individual adoption decision. Studies on AMS concluded that automatic milking is not only a 

new milking system, but rather a completely new management system,  noneconomic factors 

such as lifestyle choices are at least as important as economic factors for the decision to adopt 

an automatic milking system (HYDE et al. 2007).  Neighborhood /Peer-group effects play an 

important role with respect to the social diffusion of such lifestyle changes which can be 

considered as “social network externalities” and as a function of the total number of 

technology users. Such effects can be also due to pure “conformity preferences” by the dairy 

farmers producing ancillary benefits from social acceptance (BAERENKLAU 2005). Our 

findings correspond to these conclusions by adding current empirical evidence on the 

importance of such “soft” factors for the adoption decision. 

Finally, previous innovation experiences proxied by the adoption of organic farming practices 

in previous years showed to have a significant positive influence on the probability of 

adopting AMS technology. Further the cross-effects of such previous adoption experiences 

with overall milk farming experience as well as with neighboring/peer-group externalities 

showed to have a positive impact on the adoption probability in the sample. Such cross 

fertilization significantly increases the probability of adopting the new milking technology. 

Such a significant positive effect on the probability of adopting AMS has been finally also 

found for the cross-terms of previous innovation experiences and the different risk proxies in 

the form of profit moments: Previous experiences with a successful technology adoption lead 

to an additional adjustment of extreme profit expectations (first moment) and, on the other 

hand, to an additional decrease in responsiveness to milk profit variance and infrequent profit 

deviations (second to fourth moment). Hence, the farmer’s probability of adopting a new 

milking technology to hedge against profit outlier activity increases as he/she has previous 

experiences with a successful technology adoption. These results somehow confirm previous 

studies on other livestock and dairy related technologies concluding in a higher adoption 

probability for farms having adopted complementary technologies before (BARHAM et al. 

2004). Such experiences likely contribute to realistic expectations with respect to the adoption 

of AMS named by MEIJERING et al. (2002) as a key factor for a successful implementation of 

this new milking technology. 

7 Conclusions 

Using different quality response models this empirical study investigates factors for the 

adoption of a new milking technology at the farm level accounting for problems of sequential 

selection and behaviour identification. The results suggest the importance of the farmer’s risk 

perception, significant effects of peer-group behaviour, and a positive impact of previous 

innovation experiences. These findings are relevant for policy or technology suppliers aiming 

to efficiently set incentives for an effective technology adoption. Neglecting to account for 

these effects can change the estimated subjective beliefs of possible adopters and thus the 

incentive to adopt the technology, as well. On the other hand, using relevant peer-groups to 

spread adoption related information can induce a faster technology diffusion. In addition, 
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policy makers should consider the importance of the farmer’s risk perception when designing 

economic instruments to foster technology adoption in order to adequately reflect risk 

reducing benefits by adopting the technology. Future research should focus on disentangling 

such unobservable effects based on social interaction by using large balanced panels to track 

individual farm behaviour before and after technology adoption. 
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Appendix 
 

Table A1  Estimates 

 
decision to adopt automatic milking technology (logit 2)

 
decision to adopt automatic milking technology (me logistic regression)

 

(n = 1000) coefficient
1 

robust se (n = 1000) coefficient
1 

robust se 

farm size farm size 

milkquota 0.012*** 0.002 milkquota 4.21e-04** 1.87e-04 

milkquota x milkquota -2.53e-06 6.03e-07 milkquota x milkquota -4.44e-08*** 1.58e-08 

farmer characteristics farmer characteristics   

age -0.129** 0.058 age -0.004*** 8.84e--4 

experience 0.132*** 0.045 experience 0.004** 0.002 

farm characteristics farm characteristics 

debt of farm (estimate)
2 

-0.851*** 0.231 debt of farm (estimate)
2 

-0.024** 0.011 

off-farm income (estimate) -0.011** 0.005 off-farm income (estimate) -4.67e-04** 2.10e-04 

private consumption (estimate) 0.611*** 0.242 private consumption (estimate) 0.042* 0.016 

subsidies received (estimate) 1.89e-04 0.005 subsidies received (estimate) 9.75e-05 9.41e-05 

hired labor/total labor  -1.121 1.292  

herd characteristics herd characteristics 

breed -0.493** 0.217 breed -0.019** 0.008 

fodder -0.002*** 8.33e-04 fodder -7.53e-05*** 3.01e-05 

veterinary expenses per cow 0.002** 7.81e-04 veterinary expenses per cow 6.77e-05** 3.11e-05 

 
yield per cow -1.41e-05 1.01e-05 

labor per cow -3.38e-04 0.001 

neighborhood/peer-group effect neighborhood/peer-group effect 

weighted neighborhood adoption 

proxy 
7.142*** 1.394 weighted neighborhood adoption proxy 0.413*** 0.167 
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Table A1  Estimates (continued) 

 
yearly effects yearly effects 

2003 -17.709*** 1.841 2003 -0.001 0.184 

2004 0.148 1.212 2004 0.126*** 0.028 

2005 -1.091* 0.624 2005 0.031 0.032 

2006 18.289*** 1.401 2006 0.091* 0.037 

risk effects risk effects 

1st profit moment (mean) 2.447*** 0.702 1st profit moment (mean) 0.034*** 0.003 

x experience -0.173*** 0.044 x experience -0.008*** 0.001 

x weighted neighborhood adoption 

proxy 
-3.181 2.485 x weighted neighborhood adoption proxy -0.012 0.041 

2nd profit moment (variance) -2.403*** 0.691 2nd profit moment (variance) -0.021*** 0.006 

x experience 0.123*** 0.042 x experience 0.090*** 0.003 

x weighted neighborhood adoption 

proxy 
17.329*** 2.938 x weighted neighborhood adoption proxy 0.009*** 0.004 

3rd profit moment (skewness) -1.136*** 0.301 3rd profit moment (skewness) -0.003** 0.001 

x experience 0.053*** 0.013 x experience 1.12e-05*** 7.95e-05 

x weighted neighborhood adoption 

proxy 
4.043*** 1.534 x weighted neighborhood adoption proxy 0.059*** 0.023 

4th profit moment (kurtosis) -0.147*** 0.444 4th profit moment (kurtosis) -5.90e-05*** 3.10e-06 

x experience 0.003*** 8.52e-04 x experience 3.72e-06** 1.62e-06 

x weighted neighborhood adoption 

proxy 
1.399*** 0.326 x weighted neighborhood adoption proxy 0.009*** 0.003 

previous innovation experience/organic farming adoption previous innovation experience/organic farming adoption 

organic farming (1-yes, 0-no) 3.569*** 0.896 organic farming (1-yes, 0-no) 0.064** 0.031 

x experience 1.804*** 0.427 x experience 0.003*** 0.001 

x 1st profit moment -4.622*** 1.364 x 1st profit moment -0.103*** 0.016 

x 2nd profit moment 4.016*** 1.198 x 2nd profit moment 0.004*** 0.001 

x 3rd profit moment 0.429*** 0.141 x 3rd profit moment 0.009*** 0.001 

x 4th profit moment 0.059** 0.027 x 4th profit moment 0.002*** 2.66e-04 

 

x weighted neighborhood adoption proxy 0.134*** 0.024 

soil/climatic cluster effects 

cluster 2 -3.34e-04 0.052 

cluster 3 0.049 0.046 

cluster 4 0.031 0.034 

cluster 5 0.006 0.034 

cluster 6 0.030 0.042 

cluster 7 0.011 0.034 

random effects 

weighted neighborhood adoption proxy 

(28 groups) 
1.501*** 0.466 

farms (241 groups) 1.38e-05 0.566 

time (5 groups) 1.835** 0.950 

soil/climatic clusters (8 groups) 0.194 0.307 

 

inverse Mill’s ratio (sample selection) 0.034*** 0.002 

constant -68.349*** 19.397 constant 0.088 0.092 

1: * - 10%-, ** - 5%-, *** - 1%-level of significance. 

2: due to likley endogeneity the estimates for those variables based on a instrumental variables regression procedure (IV) are used. 
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