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Adoption of Precision Agriculture for  
Cotton in the Southern United States 
 
Shyam Nair, Chenggang Wang, Eduardo Segarra, Eric Belasco, James Larson, 
Margarita Velandia, Dayton Lambert, and Jeanne Reeves 
 

A nested logit model was applied to the 2009 Southern Cotton Precision Farming Survey 
to study the influence of farmer and farm characteristics on the adoption of Variability 
Detection Technologies (VDTs) and Variable Rate Application Technology (VRT). The 
results reveal that farm size, ownership of the land, and exposure to Extension activities 
are important factors affecting the choice of VDTs. Also, the farmers adopting both soil-
based and plant-based VDTs were found to be more likely to adopt VRT. The probability 
of adoption of VRT was found to be lower for Texas cotton farmers compared to those in 
other surveyed states, regardless of the type of VDT adopted.  
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Precision Agriculture (PA) is a management practice that aims at enhancing crop 
productivity by matching resource application and agronomic practices to the spatial and 
temporal variability in field conditions and crop requirements (Whelan and McBratney, 
2000). Site-specific management of crops, at least informally, has been going on since the 
dawn of agriculture. In the past, producers operated smaller farms and did their best to 
match the input application with the crop requirements by applying more fertilizers in 
areas with lower fertility or by resorting to spot application of pesticides only in infested 
areas of the field. But with the advent of mechanization, driven by economies of size, 
producers started operating much larger farms in fields managed with uniform agronomic 
practices. However, these practices generally overlooked the spatial variability within the 
farm-field, potentially reducing the agronomic and economic efficiency of the farm. 
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Recent technological advances such as Differential Global Positioning Systems1 (DGPS) 
and the Real-Time Kinematic2 (RTK) systems along with improvements in Geographical 
Information System (GIS) and remote sensing technologies have enabled farmers to 
identify and quantify the within-field variability and to adjust management practices 
accordingly with considerable precision (Batte and Ehsani, 2006).  

The main components of PA are the collection and processing of field variability 
information, and variable rate application of inputs (Blackmore, Godwin, and Fountas, 
2003). The data collection and processing methods are used to identify and quantify the 
variability in soil fertility or crop growth within a field. In this article, we denominate 
these practices as Variability Detection Technologies (VDTs). Examples of VDTs are 
zone soil sampling, grid soil sampling, electrical conductivity measurements, yield 
monitors, aerial imagery, and satellite imagery. Once field variability data are collected 
and analyzed, the appropriate management responses are provided that may include 
application of inputs at variable rates. After the analysis of field variability data, the field 
is generally delineated into homogeneous management zones, according to the extent and 
spatial distribution of variability, for which a single rate of a specific crop input is 
appropriate (Doerge, 1998). Variable Rate Technology (VRT) refers to a system 
combining a computer capable of controlling input application rates with the application 
equipment to achieve input applications at the prescribed rates in various parts of the field 
(Khanna, Epouhe, and Hornbaker, 1999) 

                                                           
1
 Differential Global Positioning System (DGPS) is an enhancement to GPS to improve its accuracy from about 
15 meters in case of normal GPS to about 10 centimeters in case of DGPS. DGPS uses corrections to the 
satellite GPS signal from a fixed reference station for which the location is known with high accuracy. In some 
regions, networks of such fixed reference stations have been established so that a user of DGPS does not have to 
set up their own reference station. The correction signal from a reference station is typically broadcasted using 
ground-based radio transmitters that serve the local area around the reference station. The DGPS includes a 
radio receiver for these signals, and uses the transmitted information to correct the GPS signal received directly 
from the satellites. This significantly improves the accuracy of position estimates. 

2
 Real Time Kinematic (RTK) systems used in GPS is a type of DGPS that can provide position information for 
moving vehicles with sufficient accuracy and frequency to allow the vehicles to be autonomously guided by the 
GPS signal. RTK GPS makes use of real-time corrections provided by a reference station, resulting in 
centimeter-level position accuracy. Ordinary GPS compares the signal sent from the satellite with an internally 
generated copy of the same signal. Since the signal from the satellite takes time to reach the receiver, the two 
signals are not coherent since the satellite's copy is delayed in relation to the local copy. In RTK GPS, the 
reference station receives the signal from the satellite and re-broadcasts the phase of the carrier that it measured. 
The mobile unit then compares its own phase measurements with the ones received from the reference station. 
Real-time positions can be calculated as fast as 20 times per second to provide centimeter level accuracy. RTK 
GPS has primarily found application in the guiding of agricultural and construction vehicles, such as tractors, 
harvesters, and road construction equipment. 
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This use of spatial information in input application provides several potential 
advantages to managing crop production using PA, including higher crop yields, more 
efficient use of resources like seeds, irrigation water, fertilizers and other agrochemicals, 
and reduction of potential negative environmental impacts of harmful agricultural 
chemicals (Pierce and Nowark, 1990). Besides these benefits, adoption of some 
technologies like yield monitors is also useful for record-keeping and documentation, 
providing detailed information about the location of the crops planted and the 
corresponding yield during each season (Lowenberg-DeBoer and Erickson, 2000).  

 In spite of these potential advantages, the worldwide adoption of PA is considerably 
low (Daberkow and McBride, 2003; Daberkow, Fernandez-Cornejo, and Padgitt, 2002; 
Lowenberg-DeBoer, 1999; Reichardt et al., 2009; and Reichardt and Jurgens, 2009). The 
adoption rate among U.S. cotton farmers is even lower (Daberkow and McBride, 2000), 
although the United States is a major producer and exporter of cotton with an estimated 
harvested area of 10.4 million acres and production of 18 million bales in 2010 (USDA, 
2010). A nationwide survey conducted in 1998 indicated that 70% of the farmers in the 
United States were not even aware of the existence of precision farming technologies 
(Daberkow and McBride, 2000). Roberts et al. (2002) reported that only 23% of the 
cotton producers who responded to the 2001 Southern Cotton Precision Farming Survey 
adopted at least one of the PA techniques. The Agricultural Resource Management 
Survey (ARMS), U.S. Department of Agriculture (USDA, ARMS, 2011), estimated that 
yield monitor was used in only 4.71% and VRT for application of any kind of fertilizers 
was used only in 4.46% of the planted acres of cotton in the United States in 2007.  

The relatively low level of adoption of PA is attributed to different technological and 
socio-economic factors. First of all, adoption of PA is markedly different from adoption 
of other innovations in agriculture. For example, to adopt a pest-resistant crop variety, the 
farmer simply uses the purchased seeds. But, there is a learning process involved in the 
case of adopting PA (Lowenberg-DeBoer, 2003). Considerable investments in time and 
effort are usually required to learn how to use new technologies. Researchers generally 
agree that the lack of demonstrated evidence for the economic advantages of adopting 
PA, uncertainty in returns from adoption, high fixed cost (Khanna, Epouhe, and 
Hornbaker, 1999), farmers’ lack of awareness of the existing PA technologies in the 
market (Daberkow and McBride, 2000), and difficulty in understanding the technologies 
and interpreting the data (Reichardt and Jurgens, 2009) are the main deterrents of 
widespread adoption of PA.  

Since PA is a response to the within-field spatial variability in soil characteristics or 
crop productivity, the profitability from adopting PA technologies is also largely 
dependent on the extent of variability in soil or topographic characteristics within the 
field (Roberts, English, and Mahajanashetti, 2000). Hence the incentive to adopt PA may 
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vary from farm to farm, which may cause considerable variability in its adoption pattern. 
Considering this difference in adoption patterns, the multitude of bottlenecks in adoption 
of PA, and the potential economic and environmental benefits of PA, it is important to 
study the factors affecting a farmer’s adoption of PA.  

Although the adoption of individual VDTs and VRT has been extensively studied 
(Daberkow and McBride, 2003; Larson et al., 2008; McBride and Daberkow, 2003; 
Walton et al., 2008; and Walton et al., 2010), not much is known about how the adoption 
of one affects that of the other. The few studies dealing with adoption of VRT for farmers 
adopting any VDT (Khanna, 2001; and Roberts et al., 2004) considered a single VDT and 
analyzed the relationship between adoption of that VDT and adoption of VRT. 

 Adoption of VDTs is a prerequisite for adoption of VRT, but it is generally observed 
that the majority of farmers do not adopt VRT even after adopting one or more types of 
VDTs. For example, in Brazil the adoption rate of VRT is very low despite the high 
adoption rate of yield monitors (Lowenberg-DeBoer, 1999). Khanna, Epouhe, and 
Hornbaker (1999) also reported that most of the farmers decide not to adopt VRT even 
after adopting one or more types of VDT, which indicates that different driving forces 
may be responsible for adoption of VDTs and VRT. Moreover, while plant-based VDTs 
are suitable for variable rate application of plant growth regulators or pesticides in cotton, 
soil-based VDTs are more suitable for application of fertilizers or soil amendments at 
variable rates. Hence there may be a difference in the probability of adoption of VRT 
among the farmers who adopt different types of VDTs. The objectives of this study are 1) 
identify the different factors affecting the adoption of VDTs and VRT; 2) identify 
whether the adoption probability of VRT depends on the particular type of VDT chosen; 
and 3) compare the adoption pattern of VDTs and VRT in Texas with that in other 
surveyed U.S. states.  

Objective three is important because, despite being the largest cotton producing state 
in the United States with 48% of the harvested area and 40% of cotton production, Texas 
had not been included in the previous Southern Cotton Precision Farming Surveys. Hence 
this analysis can provide new knowledge of the adoption pattern of PA in Texas and how 
it differs from that in other cotton-producing states. 

Understanding the adoption patterns of various PA technologies can be useful to 
researchers, Extension agents, and agro-industries. It provides insights into the role of 
farm and farmer characteristics that influence the diffusion of these technologies. Such 
information can be used to develop new research initiatives to satisfy the unique needs of 
a farming community, and help design better Extension strategies to disseminate specific 
technologies for the targeted farms and farmers.  
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Econometric Model  
 
As highlighted earlier, the adoption of VDTs and VRT may be influenced by different 
factors and the adoption of VRT may depend on the type of VDT chosen by the decision 
maker. Using the nested logit model, we structure the adoption decision in two levels: the 
first is the choice of the type of VDT, and under each type of VDT adopted is the second 
level of decision on the adoption of VRT. This allows the use of different explanatory 
variables at different levels of decision making and provides a direct estimate of the 
conditional probabilities of adoption of VRT for farmers adopting different groups of 
VDTs. Hence a nested logit model serves as the ideal tool to study the factors influencing 
the choice of a specific group of VDTs and those affecting the adoption of VRT under 
each group of VDT.  

The nested logit model does not rely on the restrictive Independence of Irrelevant 
Alternatives (IIA) assumption, as in the case with more commonly used mixed logit 
models. Further, since the nested logit is a Random Utility Model (RUM), it assumes that 
individuals make choices that maximize utility, which is composed of an observable 
component (expected utility) and an unobservable component (stochastic error term). The 
conceptual framework of the nested logit model is described below (McFadden and 
Manski, 1981; and Train, 2003).  

 Let  � � ��������	  be the set of indices denoting the first level of choices. Let 
the bottom level choices, which are the mutually exclusive set of integers representing the 
available choice set, be  
�, where � � �. Following the RUM, let  ��� � ��� � ���, where  
� � 
�. Then the error term   has a Gumbel distribution as illustrated below in equation 
(1). 
 

����� � ��� ��� �� ��� � !"#$" %�&'" ($"�&) %             (1) 
 

where  *� � +� � ,-../���� ��01�  is the scale parameter (Cameron and Trivedi, 2005). 

The linear predictor  ���  is assumed to be decomposed into the sum of the product of 
coefficients and explanatory variable vectors in the two levels as shown in equation (2). 
 
��� � 2�3� � 4��5�                                     (2) 
  
where  2�  and  4��   are the row vectors of explanatory variables in the first and bottom 
level respectively, and  3�, and  5�   are the corresponding column vectors of regression 
coefficients. 
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The probability of level 1 choice  �,6�  and level 2 choice  �,7  can be written as 
equation (3) and (4) respectively. 

 

89�,6 � � � :;<�=">"?@"A"�
� :;<�=">"?@"A"�"BC                    (3) 

 

�89�,7 � �D,6 � � � :;<EF"#G#H" I
� :;<EF"#G#H" I#BJ"

         (4) 

  
where  K�  is called the inclusive values or log-sums for the first level given by equation 
(5). 
 

�K� � LMN� ��� EO"#P#$# I�&'"                             (5) 

  
Let index  Q � ��R � S  (where N is the sample size) indicates individual farmers, so 

that  TU��   indicates that individual  Q  has chosen the  �V  alternative in the first level, and  
��V  in the second level. The estimation of a nested logit model is conducted using the 
following log likelihood function: 

 
WW � � � � TU���&'"�&)XUY6 �2U�3� � *�KU� � LMN�� ����2U�3� � *�KU���&) �	                     (6) 

 

�4U��5�D*� � LMN� ��� 4U��5�0D*��&'"   
 
Data and Empirical Model 
 
The data for this study was extracted from the 2009 Southern Cotton Precision Farming 
Survey. A detailed description of the methods adopted and general findings of this survey 
can be found in Mooney et al. (2010). A total of 1, 692 surveys were returned for a 
response rate of 12.5% from cotton farmers in 12 southern U.S. states (Alabama, 
Arkansas, Florida, Georgia, Louisiana, Missouri, Mississippi, North Carolina, South 
Carolina, Tennessee, Texas, and Virginia). Apart from questions related to the status of 
adoption of PA practices, the survey respondents provided information about themselves, 
the characteristics of their farms, and the farming practices adopted on the farms. This is 
the first time that the survey included Texas, which may have a different adoption pattern 
compared to other southern states owing to the table-top topography of its major cotton-
producing region (Texas High Plains). The large number of responses from Texas 
permits comparison of the adoption pattern between Texas and other surveyed states.  
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The responses to questions concerning the VDTs adopted by the farmers in the survey 
were used to group the VDT adoption into four mutually exclusive and exhaustive 
groups. The first group consists of the adopters of only soil-based VDTs such as grid soil 
sampling, zone soil sampling, use of electrical conductivity maps, and use of soil survey 
maps. The adopters of only plant-based VDTs such as yield monitor, aircraft imagery, 
and satellite imagery are included in the second group. The third group represents the 
adopters of both soil-based and plant-based VDTs. Those who did not adopt any of these 
VDTs constituted the fourth group. These four groups were designated as soil, plant, 
both, and none, respectively, in the nested logit model. The farmers adopting VRT for 
application of any inputs (fertilizers, lime, water, growth regulators, etc.) were considered 
as adopters of VRT and were designated as y in the nested logit model and the non-
adopters of VRT were designated as n.  

After rearranging the respondents from the survey into four groups based on adoption 
of VDTs and two groups based on the adoption of VRT, the resulting data was analyzed 
using a nested logit model with two levels. The first level divides VDT adoption into four 
groups, namely soil, plant, both, and none. The second level divides the farmers who 
chose each of these groups into adopters and non-adopters of VRT (y and n). The tree 
structure of the nested logit model used in the study is presented in Figure 1.  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Tree structure of the nested logit model used in the study. 
 
Note that the tree structure does not necessarily imply sequential decision-making by 

the farmer. The farmer chooses one alternative from the set of available choices, which is 
also known as the bottom alternative set, and the choices are grouped to arrive at the tree 
structure. The structuring of the decision-making sequence is by construction of the tree 
structure of the model to analyze the conditional probabilities of decisions in the second 
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level given that the farmer already made a decision in the first level. The choice set with 
the description of choices is provided in Table 1. 

 

Table 1. Definition of the choice set in the nested logit analysis 
No. Choice Definition 

1 noney The farmer adopted none of the given VDT & adopted VRT 

2 nonen The farmer adopted none of the given VDT & did not adopt VRT 

3 soily The farmer maker adopted soil-based VDT & adopted VRT 

4 soiln The farmer maker used soil-based VDT & did not  adopt VRT 

5 planty The farmer maker used soil-based VDT & adopted VRT 

6 plantn The farmer maker used soil-based VDT & did not adopt VRT 

7 bothy The farmer used both plant and soil-based VDT & adopted VRT 

8 bothn The farmer adopted both plant and soil-based VDT& did not  adopt VRT 

 
The survey responses provided information on the farm and farmer characteristics. 

This information, together with the farm’s location, provides the data used as independent 
variables that may influence the adoption of VDT, VRT or both.  

There are a number of previous studies that reports the negative impact of age of the 
farmer (Akridge and Whipker, 1999;  Batte and Johnson, 1993; Fernandez-Cornejo, 
Beach, and Huang, 1994; Larson et al., 2008 ; Sevier and Lee, 2004; and Walton et al., 
2010) and ownership of the farm (Daberkow and McBride, 2003) and positive impact of 
the level of education of the farmer (Akridge and Whipker, 1999; Fernandez-Cornejo, 
Beach, and Huang, 1994; Larson et al., 2008; and McBride and Daberkow, 2003), 
exposure to computers (Daberkow and McBride, 2003; and Walton et al., 2010), 
awareness about the existence of new technologies (Daberkow and McBride, 2003), and 
farm size (Daberkow and McBride, 2003; Just, Zilberman, and Rausser, 1980; Larson et 
al., 2008; Reichardt and Jurgens, 2009; and Walton et al., 2010) on the adoption of 
different PA technologies. The differences in adoption of PA among different 
geographical locations were also recognized by several previous researchers (Daberkow 
and McBride, 2000; Daberkow and McBride, 2003; and Lowenberg-DeBoer, 1999). 

Considering the possible influence of these important variables on the adoption of PA, 
we used the age of each farmer (age), number of years of formal education (edu), use of 
computers for farming operations (comp), exposure to Extension publications (ext), farm 
size (area), and percent of the farm owned by the farmer (perown), and a dummy 
variable (texas) to distinguish the farms located in Texas from those in other surveyed 
states as the independent variables in this study. All the explanatory variables used in the 
study and their definitions are provided in Table 2.  
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Table 2. The definition of the explanatory variables analyzed. 

Variable Name Definition 

age Age of the decision maker in years 

edu 
Number of years of formal education of the decision maker discarding 
the kindergarten (preschool) education. 

comp 
Dummy variable that assumes the value of 1 if the farmer uses computers 
for farming operations and 0 otherwise 

ext 
Dummy variable that assumes the value of 1 for the farmer who attended 
Extension seminars or uses Extension publications and 0 otherwise 

area The average area planted to cotton during 2007 and 2008 in acres 

perown1 
Percentage of the area cultivated that is owned by the farmer is less than 
33.33 % 

perown2 
Percentage of the area cultivated that is owned by the farmer is between 
33.33 and 66.66 % 

perown3 
Percentage of the area cultivated that is owned by the farmer is less than 
66.66 % 

texas 
Dummy variable that assumes the value of 1 if the farm is located in 
Texas and 0 otherwise 

 
The nested logit model requires a unique set of explanatory variables to influence the 

decision making at different levels of the nest. The major plant-based VDTs are more 
responsive to farm size than the soil-based VDTs. For example, cotton yield monitor is 
highly capital intensive and, hence, the non-divisibility of the technology makes the 
adoption profitable for farmers having farm size greater than a critical limit (Just, 
Zilberman, and Rausser, 1980). The other two technologies in this group—satellite 
imagery and aircraft imagery—are also more suitable for farmers operating larger farms. 
Similarly, Extension publications are generally regarded as the instruments to increase 
the awareness of farmers and, hence, are more likely to influence choice of VDTs that are 
less technologically intensive than VRTs, which require higher technological and capital 
inputs (Daberkow and McBride, 2003). The farmers operating rented farms are generally 
full-time farmers who are more aware of the technological innovations (Daberkow and 
McBride, 2003), but are likely to adopt technologies that are less capital intensive. 
Hence, area, ext, and perown are hypothesized to influence the choice of VDT from the 
available groups. The remaining variables—age, edu, comp, and texas—were 
hypothesized to influence the adoption of VRT for farmers in each group of VDT 
adoption because our objective was to estimate the impact of these important factors on 
adoption of VRT for farmers adopting different groups of VDTs.  
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The nested logit model was estimated in STATA®, which also was used to estimate 
the predicted probabilities of adoption at each level of the model, and the conditional 
probabilities for adoption of VRT for farmers adopting each group of VDT. 

The low response rate of the survey resulted in a bias in data towards larger farms 
(Jenkins et al., 2011). Missing values in some explanatory variables resulted in further 
removal of about 13% of the total of 1,692 observations. This suggests the sample may 
not be representative of the population of cotton farmers in the region. Post-stratification 
weights, based on the 2007 agricultural census, were used to address this issue. The 
observations were grouped into 72 classes corresponding to the 12 states and six acreage 
classes. The acreage classes were based on the area planted to cotton during 2007 and the 
classes were 1-99; 100-249; 250-499; 500-999; 1,000-1,999; and 2,000 or more. After 
grouping the observations to these strata, the weights were estimated using two different 
methods discussed in more detail by Harper et al. (2010) and Jenkins et al. (2011). In the 
first method, weights were estimated by adjusting the observations in the sample in each 
group with that in the census. The raking procedure suggested by Brackstone and Rao 
(1976) was the second method used to estimate the weights. The estimation of the model 
was done using data with these two types of weights and without weights.  
 
Results and Discussion 
 
The frequency analysis of the adoption percentages in the data showed that 2.87% of the 
farmers adopted only plant-based VDTs, 21.71% adopted only soil-based VDTs, and 
7.37% adopted both soil-based and plant-based VDT. The average predicted probabilities 
for adoption of plant-based, soil-based, and both plant-based and soil-based VDTs were 
0.0290, 0.2171, and 0.0741, respectively, which are close to the values indicated by the 
frequency analysis of the data demonstrating a good fit of the model. Among the farmers 
who adopted both soil-based and plant-based VDT, 67.59% adopted VRT, whereas the 
adoption percentage of VRT was 35.85% and 28.67%, respectively, for farmers adopting 
soil-based and plant-based VDT. The predicted probability of adoption of VRT were 
58.21, 40.32, and 33.73 for the farmers who adopted both soil- and plant-based VDTs, 
soil-based VDTs and plant-based VDTs, respectively.  

These results indicate two different features of the adoption process. The first feature 
is that the majority of the farmers did not adopt VRT even after adopting some form of 
VDT. Such limited adoption behavior was observed by several other researchers. 
Khanna, Epouhe, and Hornbaker (1999) observed this limited adoption behavior among 
cash grain farmers in Iowa, Illinois, Indiana, and Wisconsin where the farmers chose to 
adopt VDT but preferred to wait further before adopting VRT. Lowenberg-DeBoer 
(1999) reported that the adoption rate of VRT is very low in Brazil despite the high 
adoption rate of yield monitors. Grenadier and Weiss (1997) showed the uncertainties 
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about the accuracy of the technology and anticipation about possible advances in the 
technology to be the major reasons for this limited adoption behavior. Moreover, since 
the benefits of adoption of PA depend on the within-field variability of the farm, the 
potential benefits for a particular farm is uncertain. Leathers and Smale (1991) 
demonstrated that this uncertainty can be a reason for farmers to adopt only some parts of 
the PA technology instead of adoption of PA in its entirety. 

The second feature is the differences in the adoption rate of VRT among farmers who 
adopted different groups of VDTs. The data indicated higher levels of adoption of VRT 
for farmers adopting both soil- and plant-based VDTs and lower levels of adoption for 
those adopting only plant-based VDTs. Different soil properties interact in a complex 
way, which manifest in the variability of the crop yield. Plant-based VDTs provide 
information only about the variability in plant growth or crop yield, but do not provide 
any information about underlying yield-limiting factors. The yield in different parts of the 
field may be limited by different factors, which may create difficulty in making VRT 
decisions based solely on plant-based VDTs. This may be a possible reason for lower 
adoption of VRT among farmers adopting only plant-based VDT. Soil-based VDTs can 
provide information on soil factors and their variability, which substantiate the increased 
percentage of adoption of VRT among adaptors of soil-based VDT. However, the yield-
limiting factor may vary within and between the growing seasons (Plant, 2001). The use 
of both soil- and plant-based VDT provide the information on both soil characteristics 
and plant growth and, thereby, provide a reasonably accurate indication of the input to 
which the crop is responding. This explains the higher observed use of both soil- and 
plant-based VDTs by the adopters of VRT.  

 
Adoption of VDTs 

 
The coefficient estimates for the variables hypothesized to influence the adoption of 

VDTs are presented in Table 3. As expected, farm size had a positive and significant 
impact on the adoption of plant-based VDT. This positive effect of the farm size on the 
adoption of yield monitors was reported by several researchers (Daberkow and McBride, 
2003; Just, Zilberman, and Rausser, 1980; and Reichardt and Jurgens, 2009). A cotton 
yield monitor is the major plant-based VDT, which is a capital-intensive technology and 
hence can be efficiently adopted only by producers operating larger farms. The non-
divisibility of the technology is likely to discourage adoption by decision makers having 
farm sizes below a critical limit since adoption requires equipment that may be profitable 
to use only in farms larger than the critical limit (Just, Zilberman, and Rausser, 1980). 
Moreover, the other two VDTs grouped as plant-based VDT (aircraft imagery and  
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satellite imagery) are also more ideal to farmers operating larger farms. Specifically, the 
adoption of aircraft imagery requires capturing the image of the field with a modified 
aircraft (service often provided by consultants), where economies of scale is very 
important. Another argument in favor of the higher likelihood of adoption in larger farms 
is that the larger farms are agronomically more inefficient compared to smaller farms 
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because they may have higher within-field variability (Kramer, 1987); hence, the benefits 
from adoption of PA will also be higher in larger farms. 

However, it is important to note that farm size did not significantly influence the 
adoption of soil-based VDT. The major VDTs included in this group were grid soil 
sampling, zone soil sampling, and electrical conductivity measurements. The adoption of 
these VDTs may not depend on the size of the farm because the number of soil samples 
taken is generally decided on a per-acre basis taking into account the within-field 
variability. Hence, the cost of data collection increases with an increase in farm size and 
the extent of variability within the field. This result contradicts the findings of Walton et 
al. (2010) that farm size is a significant factor influencing the adoption of soil grid 
sampling. One reason for the deviation of our results from that of Walton et al. (2010) 
may be the inclusion of Texas data in our study, which has a significant number of less 
intensively managed, large cotton farms with considerably low within-field variability.  

The choice to adopt both soil- and plant-based VDT was positively and significantly 
influenced by farm size, evidently because of the economies of scale and the potential 
relationship of the benefits of adoption of PA with farm size and within-field variability.  

The exposure of farmers to university Extension activities was found to have a 
positive impact on the adoption of soil-based VDT, and both soil- and plant-based VDT. 
Even though the analysis of the data without weights indicated the impact of exposure to 
university Extension activities on the adoption of plant-based VDT to be not statistically 
significant at 5% alpha level (p >|z|= 0.89), the analysis with both proportional weights 
and weights derived using the raking procedure showed a significant effect for farmers 
adopting plant-based VDT also. The soil-based VDTs do not require a large initial 
investment, as is the case of plant-based VDTs like yield monitors, and are not influenced 
much by farm size. This may be the reason for Extension activities to significantly 
influence the adoption of soil-based VDT, while having no impact on the adoption of 
plant-based VDTs. As suggested by Daberkow and McBride (2003), exposure to 
Extension activities influenced the adoption of PA technologies by increasing the 
awareness about the existence of that technology.  

The results also indicate that the percentage of cropped area owned by the farmer 
significantly and negatively influence the choice of the VDT. However, the impact of the 
percentage of cultivated area owned by the farmer did not significantly influence the 
adoption of soil-based VDT. The producers who farm leased land are generally identified 
to be full-time farmers who are ready to spend more time farming to make it profitable, 
and who are generally perceived to be adopters of technologies that enhance profit. This 
substantiates the observed higher level of adoption of VDTs by farmers who own a lower 
fraction of the farmed area. Daberkow and McBride (2003) reported a similar finding that 
most of the adopters of PA are full-time producers who farmed mostly rented lands.  
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Table 4. Average marginal impact of variables on adoption of VDTs 

VDT Variable 
Average Marginal Impact 

No weights Proportional weights Raking weights 

Both 

area 4.56E-05 4.82E-05 4.97E-05 

ext 0.052 0.045 0.047 

perown2 -0.007 -0.021 -0.020 

perown3 -0.054 -0.050 -0.054 

Soil 

area 1.91E-05 1.69E-05 2.06E-05 

ext 0.128 0.148 0.143 

perown2 -0.013 -0.033 -0.025 

perown3 -0.027 -0.046 -0.072 

plant 

area 9.62E-06 1.06E-05 1.03E-05 

ext 0.015 0.027 0.020 

perown2 -0.024 -0.032 -0.028 

perown3 -0.028 -0.034 -0.031 

None Base 

 
The estimated average marginal impacts of the variables on the probability of 

different groups of the VDT are provided in Table 4. These results show that the average 
marginal impact of the farm size on the adoption of all groups of VDTs is very small. A 
hundred-acre increase in farm size is predicted to increase the probability of adoption of 
plant-based VDT by 0.00096 and that of both soil- and plant-based VDT by 0.0045 only. 
The probabilities of adoption of soil-based VDT, plant-based VDT, and both soil- and 
plant-based VDT are respectively 0.128, 0.015, and 0.052 higher for the farmers utilizing 
university Extension activities. The farmers who own more than 66.66% of the land they 
are farming have a 0.024 lesser probability of adopting soil-based VDT and a 0.054 lesser 
probability adopting both soil- and plant-based VDT compared to farmers who own less 
than one-third of the total area farmed. 

 
Adoption of VRT 
 
The coefficient estimates for the adoption of VRT for famers choosing each group of 
VDT is provided in Table 5. The age of the decision maker has a significant and negative 
impact on the adoption of VRT for farmers choosing only soil-based VDT and both soil- 
and plant-based VDT. The higher probability of adoption of PA technologies by younger 
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farmers was found by several other researchers (Daberkow and McBride, 2000; 
Daberkow and McBride, 2003; Larson et al., 2008; and Walton et al., 2010). The higher 
level of adoption of new technologies by younger farmers can be attributed to the 
availability of a longer planning horizon that lead to a lower level of risk aversion for 
younger farmers (Batte and Johnson, 1993; and Sevier and Lee, 2004). Moreover, 
younger farmers generally have less experience and familiarity with conventional 
technologies and hence are more likely to adopt PA technologies.  

The education of the decision maker is another factor that was found to significantly 
influence the adoption of VRT. The impact of education on the adoption of VRT was 
significant only for farmers adopting both soil- and plant-based VDT. This shows that 
more educated farmers resort to more than one type of technology to assess the within-
field variability. Most of the technology adoption studies have reported the decision 
makers’ education to be an important factor influencing adoption of PA (Akridge and 
Whipker, 1999; Batte and Johnson, 1993; and Sevier and Lee, 2004). This positive 
impact of education is likely to be due to the educated farmers’ better awareness about 
the existence of newer technologies (Daberkow and McBride, 2003). Another factor that 
can be responsible for this result is that the higher knowledge level of the educated 
farmers may result in better understanding of new technologies. Moreover, higher 
education levels also indicate the possibility of having better learning skills and so will 
help farmers learn new practices with ease.  
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Even though the use of computers for farming operations significantly influenced the 
adoption of VRT for farmers adopting soil-based VDT at 5% alpha level, computer use 
for farming operations have a significant impact on the adoption of VRT for farmers 
adopting soil-based VDT and both soil- and plant-based VDT at 10% alpha level. The 
use of computers in farming operations was found to be a significant determinant of the 
adoption of PA by several other researchers (Daberkow and McBride, 2003; and Walton 
et al., 2010). Since VDTs require the use of computers for analyzing the data and arriving 
at variable rate application maps, computer-savvy farmers could find it easier to acquire 
the necessary skills to use VDTs, thus leading to a higher likelihood of adoption. 

The results presented in Table 3 also indicate that the Texas cotton farmers who 
adopted either soil-based VDT or both soil- and plant-based VDT are less likely to adopt 
VRT compared to the cotton farmers in other surveyed southern U.S. states. The possible 
reason for lower adoption of VRT in Texas may be the lower inherent within-field 
variability in the Texas High Plains, which accounts for 69% of the cotton acreage and 
75% of production in Texas (USDA, National Agricultural Statistics Service, 2010) and 
the presence of a large number of dryland cotton farms in Texas that are less intensively 
managed. The difference in the adoption rate of PA among geographical locations was 
reported by several other researchers (Lowenberg-DeBoer, 1999; Daberkow and 
McBride, 2000; and Walton et al., 2010).  

The estimated average marginal impacts of the variables on the probability of 
adoption of VRT for farmers choosing different groups of VDTs are provided in Table 6. 
A one-year increase in the age of the farmer is predicted to decrease the probability of 
adoption of VRT by 0.013, 0.020, and 0.012 for farmers adopting plant-based, soil-based, 
and both soil- and plant-based VDTs, respectively. For farmers who adopted both soil- 
and plant-based VDT, one more year of formal education is predicted to result in a 0.052 
increase in the probability of adoption of VRT. Farmers using computers for farming 
operations are predicted to have 0.598, 0.563, and 0.418 higher probability of adoption of 
VRT when they adopt plant-based, soil-based, and both soil- and plant-based VDT 
respectively. The probability of adoption of VRT is lower by 1.586 for Texas cotton 
farmers who adopted soil-based VDT, and by 1.311 for those who adopted both soil- and 
plant-based VDT. 
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Table 6. Average marginal impact of variables on adoption of VRT 

VDT VRT Variable 
Average Marginal Impact 

No weights Proportional weights Raking weights 

Both 
yes 

age -0.012 -0.012 -0.010 

edu 0.052 0.041 0.039 

comp 0.418 0.542 0.394 

texas -1.311 -1.207 -1.037 

no Base 

Soil 
yes 

age -0.020 -0.016 -0.013 

edu 0.033 0.004 0.004 

comp 0.563 0.827 0.670 

texas -1.586 -1.391 -1.379 

no Base 

Plant 
yes 

age -0.013 -0.014 -0.008 

edu 0.031 0.047 0.021 

comp 0.598 0.517 0.416 

texas -0.536 -0.633 -0.333 

no Base 

 
Conclusions 
 
Technological breakthrough is a major driver of economic growth and competitiveness. 
Since any technology is of value only if it is put into practice by the end user, technology 
adoption is as important as technology development. Once prospective users are 
convinced about the advantages of the new technology—such as the ease, speed, 
economy, and efficiency of performing a task—they will adopt the technology after 
acquiring the necessary skills to use the technology or to modify the technology itself.  

The adoption patterns, therefore, depend on factors such as awareness of the 
technology, existing skill set and machinery, exposure to the technology, adoption by 
peers, risk associated with changing to a new technology, and characteristics of the end 
user and the technologies. Understanding technology adoption patterns provides 
invaluable insights into the type of technologies most likely to be adopted and 
characteristics of the decision makers who are most likely to adopt new technologies. 
Understanding the mechanism of adoption helps to streamline Extension activities by 
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enabling more informed decision-making on technology development, upgrading, and 
marketing. 

PA is an important new technology that enhances input efficiency and reduces 
potential negative environmental impacts of agricultural chemicals by adjusting input 
applications to the crop requirements under temporal and spatial dimensions. Detection of 
the existence and extent of variability in the field with VDT and application of inputs at 
variable rates to match the variability by using VRT are two main aspects of PA. This 
study examined the adoption of both VDT and VRT, and analyzed the inter-relationship 
between their adoption patterns. 

The results revealed that the most widely adopted type of VDT is the soil-based one, 
primarily due to its relatively lower cost and fewer required technical skills. Another 
interesting finding is the prevalence of partial adoption of PA technology, which is 
evident from the fact that most of the surveyed farmers chose not to adopt VRT even 
after adopting some type of VDT. The partial adoption decision by farmers may be due to 
the fact that some farmers who adopted VDT did not find enough variability within their 
field to justify the adoption of VRT. Further, it was found that the farmers who have 
adopted both soil- and plant-based VDTs were most likely to adopt VRT. The higher rate 
of joint adoption of both soil- and plant-based VDTs and VRT indicates that PA adopters 
tend to use site-specific information on both soil fertility and plant growth to decide on 
variable rate input applications. The significance of such information is further supported 
by the fact that acquiring variability data using both soil- and plant-based VDT leads to a 
higher adoption rate of VRT.  

Farm size, exposure to Extension activities, and percentage of land owned by a farmer 
were found to have significant impacts on the choice of the VDT. The age-education 
complex appears to have a significant impact on the adoption of VRT. In particular, 
younger and more educated farmers were more likely to adopt VRT. Cotton farmers in 
Texas were found to be less likely to adopt VRT compared to farmers in the other 
surveyed, southern states of the United States. This finding is consistent with the low 
within-field variability in the cotton-producing regions of Texas, which are largely 
located in the northern plains, and with the presence of a large number of dryland farms 
therein that are not intensively managed.  

 
References  
 
Akridge, J.T. and L.D. Whipker. (1999). “Precision agricultural services and enhanced seed 

dealership survey results, 1999.” Staff paper No. 99:6.Center for agricultural business, Purdue 
University. West Lafayette, Ind. 

Batte, M., and M. R. Ehsani. (2006). “The economics of precision guidance with auto-boom control 
for farmer-owned agricultural sprays.” Computers and Electronics in Agriculture. 53: 28-44. 



 

 

 

 

 

 

240 Fall 2011                                                                              Journal of Agribusiness 

 

Batte, M., and R. Johnson. (1993). “Technology and its impact on American agriculture.” In 
Hallum, A. (ed.), Size structure and the changing face of American agriculture. CO: Westview 
Press Inc.  

Blackmore, S., R. Godwin, and S. Fountas. (2003). “The analysis of spatial and temporal trends in 
yield map data over six years.” Biosystems Engineering. 84(4): 455-466. 

Brackstone, G.J., and J. N. K. Rao. (1976). “Survey methodology: raking ratio estimators”. 
Statistics Canada. 2(1): 63-69. 

Cameron, A.C., and P.K. Trivedi. (2005). Microeconometrics: Methods and Applications. New 
York: Cambridge University Press. 

Cameron, A.C, and P. K. Trivedi. (2009). Microenonometrics Using Stata. College Station. Texas: 
Stata Press. 

Daberkow, S., J. Fernandez-Cornejo, and M. Padgitt. (2002). “Precision agriculture adoption 
continues to grow.” Economic Research Service/USDA. Agricultural outlook. November 2002. 
35-39. 

Daberkow, S.G. and W.D. McBride. (2000). “Adoption of precision agriculture technologies by 
U.S. farmers.” 5th international conference on precision agriculture, Bloomington, Minn., USA.  

Daberkow, S.G., and W.D. McBride. (2003, June). “Farm and operator characteristics affecting the 
awareness and adoption of precision agriculture technology.” Precision Agriculture. 4(2): 163-
177. 

Doerge, T. (1998). “Defining management zones for precision farming.” Crop Insights 8(21). 
Pioneer Hi-Bred International Inc. Iowa, USA. 

Fernandez-Cornejo, J., E.D. Beach, and W.Y. Huang. (1994). “The adoption of IPM technologies 
by vegetable growers in Florida, Michigan, and Texas.” Journal of Agricultural and Applied 
Economics. 26: 158-172. 

Green, W.H. (2008). Econometric Analysis. 6th ed. Upper Saddle River, N.J.: Prentice Hall. 
Grenadier, S.R., and A.M. Weiss. (1997). “Investment in technological innovations: an option 

pricing approach.” Journal of Financial Economics. 44:397-416. 
Harper, D.C., D.M. Lambert, B.C. English, M. Velandia, D C. Mooney, J.A. Larson, S.L. Larkin, 

and J.M. Reeves. 2010. “Adoption and perceived usefulness of precision soil sampling 
information in cotton production.” Proceedings of the 10th international conference on precision 
agriculture, Denver, Colo., USA, July 18-21, 2010.  

Jenkins, A., M. Velandia, D.M. Lambert, R.K. Roberts, J.A. Larson, B.C. English, S.W. Martin. 
2011. “Factors influencing selection of precision farming information sources by cotton 
producers. Agricultural and Resource Economics Review. Forthcoming. 

Just, R., D. Zilberman, and G. Rausser. (1980). “A putty-clay approach to the distributional effect 
of new technologies under risk.” In Yaron, D., and C. Tapiero (eds.), Operations Research in 
Agriculture and Water Resources. NY: North Holland Publishing Company 

Khanna, M. (2001, February). “Sequential adoption of site specific technologies and its 
implications for nitrogen productivity: A double selectivity model.” American Journal of 
Agricultural Economics. 83(1): 35-51. 

Khanna, M., O.F. Epouhe, and R. Hornbaker. (1999, Fall/Winter). “Site-specific crop management: 
adoption patterns and incentives.” Review of Agricultural Economics. 21 (2), 455-472. 



 

 

 

 

 

 

 

Nair et al.                Adoption of PA for Cotton in Southern United States 241 

 

Kramer, M. (1987). Three farms: Making Milk, Meat, and Money from the American Soil. 
Cambridge, Mass.: Harvard University Press,  

Larson, J.A., R.K. Chambers, B.C. English, S.L. Larkin, M.C. Marra, S.W. Martin, K.W. Paxton, 
and J.M. Reeves. (2008, August). “Factors affecting farmer adoption of remotely sensed 
imagery for precision management in cotton production.” Precision Agriculture. 9(4): 195-208. 

Leathers, H.D., and M. Smale. (1991, August). “Bayesian Approach to Explaining Sequential 
Adoption of Components of a Technological Package.” American Journal of Agricultural 
Economics. 73(3): 734-742. 

Lowenberg-DeBoer, J. (1999). “Precision agriculture in Argentina.” Modern Agriculture. 2(2):13-
15. 

Lowenberg-DeBoer, J. (2003). “Precision Farming or Convenience Agriculture.” Proceedings of 
the 11th Australian Agronomy Conference, February 2-6, 2003, Geelong, Victoria. Available at 
http://www.regional.org.au/au/asa/2003/i/6/lowenberg.htm 

McBride, W.S., and S.G. Daberkow. (2003, Spring). “Information and the adoption of precision 
farming technologies.” Journal of Agribusiness. 21(1): 21-38. 

McFadden, D. and C.F. Manski, eds. (1981). “Structural Analysis of Discrete Data with 
Econometric Applications.” Cambridge, Mass.: MIT Press. 

Mooney, D.F., R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, M. Velandia, S.L. Larkin, 
M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, E. Segarra, C. Wang, and J.M. 
Reeves. (2010). “Status of cotton precision farming in twelve southern states.” Proceedings of 
the 2010 Beltwide Cotton Conference, New Orleans, La., January 5-8, 2010. 

Pierce, F., and P. Nowak. (1999). “Aspects of precision agriculture.” Advances in Agronomy. 67:1-
85. 

Plant, R.E. (2001). “Site-specific management: the application of information technology to crop 
production.” Computers and Electronics in Agriculture. 30:9-29. 

Reichardt, M., and C. Jurgens. (2009, February). “Adoption and future perspective of precision 
farming in Germany: results of several surveys among different agricultural target groups.” 
Precision Agriculture. 10(1): 73-94. 

United States Department of Agriculture, Agricultural Resource Management Survey (ARMS). 
(2011). Crop production practices: tailored report for cotton: precision agriculture practices. 
Available at http://www.ers.usda.gov/Data/ARMS/app/default.aspx?survey_abb=CROP . 
(Retrieved August 2011) 

United States Department of Agriculture, National Agricultural Statistics Service (NASS). (2010). 
Statistics by state. Accessed October 2010. Available at 
http://www.nass.usda.gov/Data_and_Statistics/Quick_Stats_1.0/index.asp#top 



 

 

 

 

 

 

242 Fall 2011                                                                              Journal of Agribusiness 

 

 


