

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Selected Poster/Paper prepared for presentation at the Agricultural & Applied Economics Association's 2017 AAEA Annual Meeting, Chicago, Illinois, July 30-August 1, 2017

Copyright 2017 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

1. Introduction

- Farmers depend on nitrogen(N) additions to cropland to support high yields.
- N losses from these systems have significant ecological consequences, including water pollution and greenhouse gas emissions.
- Conservation Agriculture (CA) practices and tools have been developed to reduce N application and loss, but their adoption rates remain strikingly low among farmers. Subsidies are introduced to encourage adoption of CA practices and tools.

2. Objectives

- Evaluate corn growers Willingness To Accept (WTA) payments to adopt CA practices.
- Test the presence of learning and message effects in decision making.
- Compare the results from preference space and WTA space.
- Predict participation rates of proposed CA combinations.

3. General Design and Treatments' Description

Before the choice tasks, respondents received two information treatments.

	Table 1: Treatme	Table 2. Treatment Groups			
	Message Treatment	Learning Treatment		Positive Message	Delay Option Available
Treatment	e Increasing nitrogen efficiency ناح can save farmers' money, and protect the environment.	If the program is not implemented for now, the respondent can gain → more information and decide one → year later.	Treatment 1 (PD)		V
			Treatment 2 (PN)	\checkmark	×
Control	Solution Nitrogen lost from farming	Arr Provided this year.	Treatment 3 (ND)	*	\checkmark
	Nitrogen lost from farming operations contributes to pollution of the environment.		Treatment 4 (NN) ×	×
F	-lypotheses tests built o	n the four treatments			
. –					

Learning Effect	Mes
Hypothesis 1:	Hypothesis 3:
$H0_1: WTA_{PD} - WTA_{PN} = 0$	$H0_3:WT$
$H1_1: WTA_{PD} - WTPA_{PN} \neq 0$	$H1_3:WT_4$
Hypothesis 2:	Hypothesis 4:
$H0_2: WTA_{ND} - WTA_{NN} = 0$	$H0_4:WTA$
$H1_2: WTA_{ND} - WTA_{NN} \neq 0$	$H1_4:WT$

4. Choice Experiment Model

• Individual *i* 's utility from choice alternative *j* in choice situation *t* in preference space estimation:

 $U_{ijt} = \alpha * Pay_{ijt} + \beta_1 * Winter_{ijt} + \beta_2 * Fall_{ijt} + \beta_3 * Side_{ijt} + \beta_4 * Nitrogen + \beta_5 * SQ_{ijt} + \varepsilon_{ijt}$ (Preference)

- Utility in WTA space to check robustness of preference space estimation:
- $U_{iit} = \alpha (Pay_{iit} + \theta_1 * Winter_{iit} + \theta_2 * Fall_{iit} + \theta_3 * Side_{iit} + \theta_4 * Nitrogen + \theta_5 * SQ_{iit})$
- + $\gamma_1 * (treatdelay * Winter_{ijt}) + \gamma_2 * (treatdelay * Fall_{ijt}) + \gamma_3 * (treatdelay * Side_{ijt}) + \gamma_4 * (treatdelay * Nitrogen) + \gamma_5$ * (treatdelay * SQ_{ijt}) + ε_{ijt} (WTA_Learning)

 $U_{ijt} = \alpha (Pay_{ijt} + \theta_1 * Winter_{ijt} + \theta_2 * Fall_{ijt} + \theta_3 * Side_{ijt} + \theta_4 * Nitrogen + \theta_5 * SQ_{ijt})$ $+\delta_1 * (treat positive * Winter_{ijt}) + \delta_2 * (treat positive * Fall_{ijt}) + \delta_3 * (treat positive * Side_{ijt}) + \delta_4 * (treat positive)$ * Nitrogen) + δ_5 * (treatpositive * SQ_{ijt}) + ε_{ijt} (WTA_Message)

Farmers Decision on Nitrogen Application: the Role of Learning and Message Qi Tian¹, Jinhua Zhao^{1,2}, Adam Reimer³, Frank Lupi¹

1 Department of Agricultural, Food, and Resource Economics, Michigan State University **2** Department of Economics, Michigan State University

3 Kellogg Biological Station, Michigan State University

essage Effect

 $TA_{PD} - WTA_{ND} = 0$ $TA_{PD} - WTA_{ND} \neq 0$

 $TA_{PN} - WTA_{NN} = 0$ $TA_{PN} - WTA_{NN} \neq 0$

- The target population: corn growers in Michigan, Iowa, and Indiana Figure 1.
- Mail survey Figure 2, sample drawn from Farm Service Agency (FSA) of USDA.
- Total usable sample: 1294. Sent out 4800 surveys with \$2 incentives in Mar 2016 with a response rate of 31%. After removing incomplete returns, the response rate is 27%.
- D-efficiency design based on priors from pre-test data Table 3.

Figure 1. Research Area Map

- four other attribute coefficients follow normal distributions.
- and the four other attribute coefficients follow normal distributions.
- Estimation was conducted in NLOGIT 5.
- test suggested by Poe, Giraud, and Loomis (2005).

- practices.
- lowest among the three proposed CA practices.
- three proposed CA practices is least favored.
- estimation), but not under delaying decision.

5. Survey and Data

Figure 2. Choice Task Sample

Expected N savings are based on average application rate of 170 lbs/acre with no practice The program chosen by the majority of respondents will be implemented immediately. I

majority of respondents choose "not to participate." no program will be implement

	Program 1	Program 2	Do not participate
Fall application prohibited	No	Yes	
Sidedress application required	Yes	No	- I would not
Winter cover crops required	Yes	No	participate in
Expected Nitrogen savings	40%	10%	these programs
Annual payment level	\$180/acre	\$180/acre	
l would choose (check only one)			

Table 3. Attributes and Levels in the Choice Design					
Attributes	Levels				
Winter Cover Crops Required	Yes, No				
Fall Application Prohibited	Yes, No				
Sidedress Application Required	Yes, No				
Expected Nitrogen Savings %	0, 10, 25, 40, 50				
Annual Payment \$/Acre	0, 5, 20, 40, 100, 180				

6. Estimation

For preference space estimation: Random Parameter Logit (RPL) and Random Parameter Logit with error components (RPL-EC) models. Payment is assumed to be fixed and the

For WTA space estimation: RPL-EC. Payment is assumed to follow triangle distribution

Across samples comparison in preference space is conducted in R using combinatorial

8. Conclusions

Preference for status quo: payment is needed to move farmers away from current

The WTA for **winter cover** crop ranks the highest, while the WTA for sidedress ranks the

The most favored CA combinations are (1) **Saving Nitrogen**, (2) Saving Nitrogen, and Prohibiting Fall Application, (3) Saving Nitrogen, and Applying Sidedress. Adopting all

Delay option raises WTA under positive message, but not under negative message. **Positive message lowers WTA** under immediate decision (in preference space

Predictions from preference space and WTA space are generally consistent.

H	
Н0 ₁ : И	
Н0 ₂ : И	
110 21 11	
Н0 ₃ : И	Ì
Н0 ₄ : И	/
a P-va	
b P-va	
Le	ć
H0 ₁ : <i>WT</i>	
	(
H0 ₂ : WT	(
Me	Ś
$UO \cdot WT$,
H0 ₃ : WT	
H0 ₄ : <i>WT</i>	
	(
c As th	
F	
35	
30	
25	
20	
15	
10	
10 7.48	
5 — –	
0	
None	

7. Selected Results

ginal WTA V	alues (\$/ac	re) across 1	reatments	
Winter	Fall	Sidedress	Nitrogen	Status Quo
162(0.000) ^a	15(0.185)	46(0.042)	-398(0.005)	-131(0.000)
94(0.000)	14(0.141)	3(0.438)	-56(0.291)	-80(0.000)
0.02065	0.47713 ≽	0.09816 >	0.02508	0.09979
112(0.000)	-2(0.462)	20(0.184)	-244(0.009)	-84(0.000)
131(0.000)	-1(0.444)	53(0.005)	-334(0.000)	-135(0.000)
0.29163	0.48586	0.13941	0.28291	0.08153
162(0.000)	15(0.185)	46(0.042)	-398(0.005)	-131(0.000)
112(0.000)	-2(0.462)	20(0.184)	-244(0.009)	-84(0.000)
0.08596	0.21459	0.23073	0.20004	0.1334
94(0.000)	14(0.141)	3(0.438)	-56(0.291)	-80(0.000)
131(0.000)	-1(0.444)	53(0.005)	-334(0.000)	-135(0.000)
0.09706	0.20023 ≽	0.03755	0.02785	0.04883
	Winter 162(0.000) ^a 94(0.000) 0.02065 112(0.000) 131(0.000) 162(0.000) 112(0.000) 194(0.000) 94(0.000) 131(0.000)	Winter Fall 162(0.000)a 15(0.185) 94(0.000) 14(0.141) 0.02065 0.47713 112(0.000) -2(0.462) 131(0.000) -1(0.444) 0.29163 0.48586 162(0.000) 15(0.185) 162(0.000) -2(0.462) 94(0.000) 14(0.145) 94(0.000) 14(0.141) 131(0.000) -1(0.444)	Winter Fall Sidedress 162(0.000) ^a 15(0.185) 46(0.042) 94(0.000) 14(0.141) 3(0.438) 0.02065 0.47713 > 0.12(0.000) -2(0.462) 20(0.184) 112(0.000) -2(0.462) 20(0.184) 131(0.000) -1(0.444) 53(0.005) 0.29163 0.48586 0.13941 162(0.000) 15(0.185) 46(0.042) 112(0.000) -2(0.462) 20(0.184) 0.08596 0.21459 0.23073 94(0.000) 14(0.141) 3(0.438) 131(0.000) -1(0.444) 53(0.005)	162(0.000) ^a 15(0.185) 46(0.042) -398(0.005) 94(0.000) 14(0.141) 3(0.438) -56(0.291) 0.02065 0.47713 0.09816 0.02508 112(0.000) -2(0.462) 20(0.184) -244(0.009) 131(0.000) -1(0.444) 53(0.005) -334(0.000) 0.29163 0.48586 0.13941 0.28291 162(0.000) 15(0.185) 46(0.042) -398(0.005) 112(0.000) -2(0.462) 20(0.184) -244(0.009) 0.28291 0.28291 0.28291 0.28291 162(0.000) 15(0.185) 46(0.042) -398(0.005) 112(0.000) -2(0.462) 20(0.184) -244(0.009) 0.20004 0.21459 0.23073 0.20004 94(0.000) 14(0.141) 3(0.438) -56(0.291) 131(0.000) -1(0.444) 53(0.005) -334(0.000)

alue of the WTA estimation in the bracket.

alue estimated using combinational method of Poe (2005).

Table 5. Robustness Tests in WTA Spaces (\$/acre)								
earning Effect	Winter*	Fall*	Sidedress*	Nitrogen*	SQ*			
	treatdelay	treatdelay	treatdelay	treatdelay	treatdelay			
$TTA_{PD} - WTA_{PN} = 0$								
Coefficient	-0.88391°	-0.05409	27925	1.52099	0.09029			
P-value	0.0288	0.6658	0.0873	°0.0576	0.6428			
$TA_{ND} - WTA_{NN} = 0$								
Coefficient	35958	0.33937	-0.07973	4.41489	-0.05505			
P-value	0.5835	0.4211	0.8991	0.1596	0.9368			
lessage Effect	Winter*	Fall*	Sidedress*	Nitrogen*	SQ*			
	treatpositive	treatpositive	treatpositive	treatpositive	treatpositive			
$VTA_{PD} - WTA_{ND} = 0$								
Coefficient	-0.91217	-0.01507	-0.20922	1.61338	0.44582			
P-value	0.0797	0.9613	0.6748	0.5040	0.4285			
$TA_{PN} - WTA_{NN} = 0$								
Coefficient	-0.61164	-0.19031	0.13432	-1.65572	0.08143			
P-value	0.2627	0.5722	0.7810	0.4816	0.8807			

he coefficient for each CA practice is negative, negative estimation here indicates higher WTA.

