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A Model of Overconfidence in Subjective Probabilities 
Clayton P. Michaud, Thomas W. Sproul and Calum G. Turvey 

 
Abstract 
We develop a model of probabilistic forecasts to examine evidence of systematic 
overconfidence among Chinese wheat and corn farmers (Turvey et al. 2013). We depart 
from the familiar probability weights approach of cumulative prospect theory (Kahneman 
and Tversky 1992) by explicitly modeling forecasts as shifting and scaling the historical 
distribution, with parameters that may incorporate a reference point. We find that 
forecasts are anchored to historical positive experience, and that forecasts are 
systematically overconfident. However, like Sproul and Michaud (2017), we find 
evidence of multi-modal heterogeneity such that population average parameter estimates 
do not represent individuals well. We estimate a finite Gaussian mixture model using 
expectation-maximization (Dempster, Laird and Rubin 1977) and find strong evidence 
for three basic forecast types: optimistic (about two thirds), realistic or neutral (about 
20%), and pessimistic (the remainder). We find further clustering within the optimistic 
group, without about half highly optimistic and about half mildly so. The group-wise 
means and mixture weights are robust to inclusion of additional elicited data, and also to 
inclusion of a shape parameter in the forecast model. We also find evidence that forecast 
classifications do not perfectly map to a classification of the person making it. Instead, 
recent severe loss experience appears to be the strongest single predictor of pessimism, 
though we do find statistically significant gender differences. Our results have important 
implications regarding the need for crop insurance subsidies to induce participation. 
Future research should focus on discovering potential ways to reduce the discrepancy 
between subjective and objective risk.  
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“Perhaps the most robust finding in the psychology of judgment is that people are 
overconfident” -De Bondt and Thaler (1995, pg. 389) 

 
Evidence of overconfidence is rampant in the behavioral literature (see Sandroni and 

Squintani (2007), Slovic (2016), De Bondt and Thaler (1995), and Weinstein (1980) for 

overviews), and it is now generally accepted in the insurance literature that (consumers’) 

risk misperceptions play a significant role in contributing to (demand) frictions in 

insurance markets, specifically the historic finding that large subsidies are often required 

to induce insurance participation (Barseghyan et al. (2013); Chiappori et al. (2006); 

Cutler and Zeckhauser (2004); Sandroni and Squintani (2007, 2013); Slovic (2016); 

Spinnewijn (2013, 2015, 2017); Turvey et al. (2013)). With the federal government 

currently subsidizing crop insurance premiums to the tune of 6 billion dollars a year 

(USDA ERS), a more complete understanding of the disconnect between perceived 

(subjective) risk, which governs demand, and actual (objective) risk, which governs 

supply, is crucial to designing more (cost) effective tools and policies.  

This research will rigorously examine the relationship between the perceived 

future yield distribution and the distribution of historic yield outcomes at the farm(-crop) 

level (specifically with regard to location and scale) using self-reported expert elicitations 

of historic and expected yields from rural Chinese farmers. To that end, we have four 

specific objectives: 

1. Develop a model of subjective forecasting based on historic outcomes. 

2. Estimate the parameters of this model at the individual forecast level (not just per 

farm, but also per crop per farm) 

3. Examine the population-level distribution of these parameters and identify 

potential clustering of forecasts into ‘types’, i.e. optimistic, realistic, pessimistic.  
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4. Examine potential factors influencing the parameters of our model. 

We begin by developing a simple 2-parameter model for estimating subjective 

future yield forecasts based on transforming the location and scale of a historic 

(objective) yield distribution. We go on to use linear regression to compare the goodness-

of-fit of potential functional forms (absolute vs. relative location change), as well as 

various potential location specifications for our model.  

We estimate the parameters of our candidate model at the forecast level using 

self-reported elicitations regarding minimum, maximum, and most likely expected yields 

in the upcoming season, in combination with self-reported minimum, maximum, and 

most likely historic yield outcomes obtained from rural Chinese farmers. We then use the 

Expectation-Maximization (EM) algorithm to fit a finite Gaussian mixture model (GMM) 

over different numbers of components for our forecast level parameter estimates in order 

to identify potential heterogeneity/clustering in the distribution of these parameters at the 

population level. 

We go on to use regression analysis to estimate potential factors influencing these 

parameters, such a demographics, farm tenure, and yield outcomes history (e.g. recency 

of historic minimum and maximum yields, including cross-crop outcomes). 

Our data is sourced from Turvey et al. (2013) who used a survey method to 

directly elicit risk perceptions from rural farmers across three counties (25 villages) in 

Shaanxi Province in October and November 2010. Our final data set contains 879 

observations and is comprised of 442 corn forecasts and 437 wheat forecasts. 

When modeling future yield expectations as a function of historic outcomes, we 

find that location changes are best modeled via a relative, rather than an absolute, change 
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in location. We also find that defining the location parameter in terms of an upper-bound 

(in our case, maximum historic yield) provided the best fit given our data and model. We 

find that, on average, the maximum yield value is relatively stable across the subjective 

and objective yield distributions, with farmers generally underestimating the extent of 

their downside risk. This is an important finding given that crop insurance is explicitly 

designed to help mitigate downside risk and can help explain why historically farmer’s 

willingness-to-pay for crop insurance has historically fallen far below its actuarial cost. 

We find strong evidence of distinct ‘types’ or forecasts, namely ‘optimistic’, 

‘realistic’, and ‘pessimistic’ with 65% of forecasts classified as optimistic, 20% as 

’realistic’, and 15% classified as ‘pessimists’. On average, optimistic forecasts had half 

the range (standard deviation) of their objective yield distribution, while pessimistic 

forecasts had twice the range of their objective distribution. Expanding our analysis to 

consider more classes, we find that the optimistic group cleanly separates into mildly and 

strongly optimistic groups of roughly equal size. In addition, we find that adding a third 

parameter to account for changes in shape did not produce significantly different results, 

and the mixture values provided little additional information in terms of heterogeneity. 

We conclude that transformations of the third moment are marginal enough to justify the 

more parsimonious, 2-parameter transformation model for future applied work. 

Our regression analysis of factors influencing optimism provides us with three 

important results. Firstly, we see significant differences in the relative range of future 

forecasts by gender. Specifically, women appear to be much more optimistic with regard 

to yield risk than their male counterparts. On average, male forecasters expect future 

yields to have 80% the scale of their historic yield distribution, while female forecasters 
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expect future yields to come from a distribution with roughly only 71% the scale of their 

historic distribution. 

The second, and perhaps most important, finding is that a farmer’s degree of 

optimism with regard to forecasting a specific crop is dramatically influenced by the 

recency of historic losses (i.e. years since a historic minimum yield), with each additional 

year since a historic loss predicting a 1% decrease in the scale of their forecasted yield 

distribution. In contrast, we do not find that historic gains have a significant impact on a 

farmer’s forecast. In addition, we find no evidence of a cross-crop effect, i.e. wheat 

forecasts do not seem effected by historic losses for corn, and vice versa. These results 

are an important first step in better understanding the ways in which farmers might 

subscribe to the fallacy of the law of small numbers (LSN) when making yield forecasts, 

suggesting that farmers overweigh the statistical importance of recent ‘losses’ when 

estimating their perceived risk. 

Lastly, we find that the length of a farmer’s tenure (i.e. number of years farming) 

does not play a significant role in predicting his or her degree of optimism. This is an 

important finding because it tells us that the phenomenon we observe (that farmer’s 

expect their future yields to come from a more favorable distribution than their historic 

yields) cannot be explained by technological advances over time causing more recent 

yields to outperform less recent ones. This supports our hypothesis that farmers are 

indeed being irrational in their expectation of more favorable future yields.  

This paper is organized as follows: Section II provides a background of the 

relevant literature pertaining to overconfident beliefs and behavior. In addition, we 

discuss work looking at how such an effect influences demand for insurance. We 
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conclude by discussing preliminary evidence of overconfidence with regard to future 

yield expectations. Section III introduces our model. Section IV presents and discusses 

our data set both in terms of how it was collected, as well as general summary statistics. 

Section V revisits our model and fits our data to it. This section includes the selection of 

the final form of our forecasting model. Section VI begins by motivation and outlining 

the Expectation Maximization procedure for fitting a (finite) Gaussian Mixture Model 

(GMM) to our data. The latter half of this section presents and discusses the results of our 

mixture model. Section VII examines potential influences of optimism bias, including 

demographic variables and yield outcome history. Section VIII concludes our paper with 

a discussion of our findings, potential areas of future research, and how our findings 

might be used to improve policy design.  

 

Background 

Overconfident Beliefs 

There is a vast body of widely replicated experimental studies showing that individuals 

are systematically overly optimistic in the face of risk- by and large, individuals believe 

that they are more likely than average to experience positive future events, while being 

less likely to experience negative events (see Sandroni and Squintani (2007), Slovic 

(2016), De Bondt and Thaler (1995), and Weinstein (1980) for overviews). 

Hoch (1985) found that MBA students overestimate the number of job offers they 

will receive and the magnitude of their salary. In a similar study, 258 college students 

estimated how their own chances of experiencing 42 events differed from the chances of 
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their classmates. Overall, students rated their own chances as above average for positive 

events, and below average for negative events (Weinstein, 1980). 

Statman and Tyebjee (1985) find widespread evidence of strong optimism bias 

when comparing forecasted and actual construction costs in a range of industries 

including energy, military hardware, pharmaceutical, chemical and other development 

projects. 

Overconfidence is also not strictly an economic bias. For example, there is 

evidence that people underestimate their health risks in relation to medical exams 

(Kreuter and Strecher, 1995; Robb et al., 2004). Likewise, evidence of overconfidence 

has been widely reported among automobile drivers. Svenson (1981) finds that 82% of a 

sample of students placed themselves among the top 30% safest drivers. Similar results 

are found in Groeger and Grande (1996) who compare drivers’ self-assessments skills 

with those assessed by an instructor. There is also strong specific evidence that 

overconfidence does not vanish with learning nor with experience. For example, Dalziel 

and Job (1997) find that even professional drivers underestimate their risk of automobile 

accident. 

With regard to how overconfidence might be distributed at the population-level, 

in a study measuring optimism-pessimism from beliefs about future events, Wenglert and 

Rosén (2000) find that 72% of their subjects were classified as being overly optimistic 

about their personal future.  Cooper, Woo, and Dunkelberg (1988) find that 68% of 

entrepreneurs think that their startup is more likely to succeed than comparable 

enterprises and that furthermore, only 5% believe that their odds of success are worse 

than their competitors, while a third of entrepreneurs believe their success is all but 
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guaranteed (similar findings are reported in a survey of French entrepreneurs by Landier 

and Thesmar (2009). These results are consistent with this paper’s finding that 67% of 

farmer’s are overly optimistic with regard to future yield expectations, as well as the 

finding that there are both moderate and extreme optimists.  

 

Overconfident Behavior 

Additionally, there is evidence that individuals are not only optimistic with regard to 

beliefs about personal risk, but more importantly that they act upon these biased beliefs 

as well. For instance, there is evidence that overconfidence can lead to poor financial 

planning and economic decision-making. In an experiment about business entry Camerer 

and Lovallo (1999) find that much of the decision to start a new business is due to an 

innate appreciation of personal skills relative to compatriots. Entrepreneurs entering into 

a competitive market (over entry) believe that they have positive profits while other 

entrants will have negative profits. Optimists neglect to consider that the reference group 

views their opinions in the same way and will act accordingly. Another important finding 

of this study is that subjects are more likely to act with overconfidence when they were 

betting on their own skills rather than a random device. 

Malmendier and Tate (2006, 2008) provide convincing evidence that 

overconfident CEOs are unambiguously more likely to overpay, to undertake value-

destroying acquisitions, and to make acquisitions when their firm has abundant internal 

resources. Compared with their unbiased counterparts, optimistic CEOs are 65% more 

likely to complete mergers, are more likely to overpay for those target companies, and are 

more likely to undertake value-destroying mergers. A survey by Benartzi (2001) found 
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that individuals are optimistic and/or overconfident about future returns to their 

employers stock relative to other firms. Only 16.4% percent of respondents believed that 

their company’s stock was riskier than the stock market as a whole. This finding is used 

to help explain why employees often unwisely concentrate their portfolios with company 

stock.  

There is also experimental evidence that parties involved in legal disputes are 

overly reluctant to settle out of court because they are overly optimistic about the 

outcome of their case (see Babcock, Loewenstein, and Issacharoff (1997)). 

Overconfidence is not just bad for consumer’s wallets. Just as economic biases 

lead to sub-optimal economic decision making, overconfidence has become recognized 

as both a major barrier preventing health behavior (Hoorens, 1994), and a major 

determinant of traffic safety (Hatakka et al., 2002;  Bartl, 2000).  

Lastly, perhaps the most famous treatise on overconfidence is Robert Shiller’s 

best-selling book Irrational Exuberance (2000). Named for Alan Greenspan’s imfamous 

caution against “unduly escalated asset values” (Greenspan, 1996), Shiller’s work details 

the “wishful thinking… that blinds us to the truth of our situation”. He discusses how 

overconfidence effects not only investment behavior, but can have serious macro-level 

effects, arguing that such beliefs and behavior have contributed greatly to the financial 

bubbles that have wreaked havoc on not just the U.S., but the global economy.  

 

Overconfidence and the Demand for Insurance 

A number of studies have looked at the impact of optimism bias and demand for 

insurance products. Cebulla (1999) conducted surveys on the perception of the risk of 
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becoming unemployed and the willingness to purchase unemployment insurance 

concluding that risk underestimation reduced the willingness to buy insurance. As part of 

a study on secondary life-insurance markets, Bhattacharya et al. (2004) find evidence that 

patients who underestimate their risk of death are unwilling to hold insurance coverage. 

Barseghyan et al. (2013) estimate a structural model of insurance deductible 

choices that incorporates standard risk aversion and probability distortions and find that 

probability distortions play an important role in explaining deductible choices. 

Specific to the field of agricultural economics, Shaik et al. (2008) compare the 

cross-elasticity for crop revenue and crop yield demand using a subjective probability 

framework and find a clear tendency for farms with great perceived risk (either in yield 

or price) to prefer revenue insurance over yield insurance. Similarly, they find that the 

elasticity of demand for revenue insurance to be (relatively) greater then the elasticity of 

yield insurance.  

Not surprisingly, farming risk has been shown to be positively correlated with the 

decision to purchase insurance. (Horowitz and Lichtenberg, 1993; Enjolras and Sentis, 

2011; Wang et al., 2016). 

Expanding the above finding to include subjective or perceived risk, both Sherrick 

et al. (2004) and Egelkraut et al. (2006) identify perceived yield risk as an important 

factor influencing farmers’ crop insurance decisions. They find that producers who 

viewed their yields as better than average were less likely to buy crop insurance, while 

producers who perceived their yield variability to be larger than average are more likely 

to insurance.  
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None of these studies, however, compared subjective yield risk to objective yield 

risk at the farm level, nor how such a potential discrepancy might influences the 

necessary level of subsidies to induce participation.  

 

Evidence of Overconfidence in Agriculture 

Pease (1992) is the first study we are aware of to statistically compare subjective and 

historical crop yield probability distributions. His results indicated that in many 

individuals, there exist large differences in the moments of the subjective and historical 

distribution. Pease compared historical yields and subjective expectations for 1987 

expected crop yields for 90 Western Kentucky grain farmers. Using this relatively small 

sample, he found that subjective forecasts tended to underestimate forecasting derived 

from corn yields, while conversely overestimating soybean forecasts. However, Pease 

also found that recent regional experiences seemed to play a more important role than the 

crop itself, suggesting that within-subject variation in forecasting bias results from crop-

specific historic (specifically recent) outcomes. This result is consistent with our 

regression results from section VII. 

In addition, the finding that corn farmers tended to be pessimistic with regard to 

future yield expectations (for the 1987 harvest) is not necessarily inconsistent with our 

overall findings due to the fact that drought conditions caused extremely low corn yields 

in 1980 and 1983. Given our result that the most significant factor mitigating a farmer’s 

degree of optimism is the presence of recent historical losses, the finding that farmer’s 

were more optimistic about soybean yields (which had suffered fewer recent losses) 

relative to corn yields actually supports our findings. 
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Egelkraut et al. (2006) asked farmers to asses their individual yields and yield 

variability relative to those of a typical farmer in their county. The majority of 

participants perceived their yields to be higher (46.1%) or similar (42.3%) relative to 

other farms in their county and only 11.6% believed they experienced lower yields. 

Likewise, most farmers viewed their yields as less variable (41.5) or similar (38.45) and 

only 20.1% reported that they experienced greater variability than was typical in their 

county.  

In a similar study, Sherrick (2002) finds that farmer’s subjective probability 

beliefs about important weather variables are systematically miscalibrated and 

demonstrate that significant errors in farmers’ risk assessments and insurance valuation 

arise as a consequence of farmers’ systematically inaccurate probability beliefs. 

Turvey et al. (2013), the original source of our data, is the first paper we are 

aware of to explicitly argue that the need for subsidizing crop insurance premiums is a 

consequence of the dissonance between subjective and historical risks. They also 

conclude that the perception of downside risk is largely dictated by perceived mean and 

standard deviation. We expand upon these findings by explicitly modeling future 

forecasts as an affine transformation of the location and scale of a farmer’s historic yield 

distribution. We then use our estimates of these transformation parameters to examine 

how optimism is distributed at the population level, identifying distinct ‘types’ of 

forecasts (specifically extremely optimistic, moderately optimistic, realistic, pessimistic).  

We go on to examine exogenous factors that may play a role in this forecasting process, 

such as demographic information and outcomes history. 
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A Location-Scale Model of Forecasts from Historical Data 

In contrast to much of the established prospect theory literature, we explicitly model the 

forecast as being a transformation of historical experience. Specifically, we model the 

forecast distribution as an affine, “shift and scale” transformation of the historical 

distribution of the form: 

Y =α + βX .     (1) 

In the above equation, X and Y are random variables representing the historical 

distribution and forecast distribution, respectively, α  is a shift parameter, and β  is a 

scale parameter. We select this specification because it is a priori reasonable and 

consistent with basic statistical intuition, and because it applies broadly across the 

location-scale family of probability distributions. It’s simplicity does come with the 

downside that higher moments of the distribution are not considered (e.g., a shape 

parameter), though we will show in what follows that allowing a skewness adjustment 

from historical to forecast does not meaningfully change our results.  

The benefits of this simple specification appear to dramatically outweigh its 

downside: i) the model requires only the weak assumption that the historical and forecast 

distributions come from the same family, ii) it does not impose any directional bias on the 

nature of forecasts, and iii) it includes as a special case a normalization step, in which the 

historical X might be adjusted to have zero mean and unit variance before shifting and 

scaling. Past research has tended to find that forecasts deviate systematically from 

average, or typical, experience, and that they usually do so in an optimistic fashion for the 

majority of the population. Lack of directional bias is important in a model precisely 

because what is optimistic may change sign depending on the application: an optimistic 
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earning forecast might include an upward shift, whereas an optimistic forecast of 

commute time might include a downward shift.  

The generality of our model with respect to normalizing X is demonstrated as 

follows. First, assume that X has known mean and standard deviation, µ  and σ , so the 

normalized forecast would be constructed with parameters a and b according to: 

Y = a + b ⋅ X − µ
σ

⎛
⎝⎜

⎞
⎠⎟ = a − bµ

σ
⎛
⎝⎜

⎞
⎠⎟ +

b
σ
X.     (2) 

This is a special case of our model obtained by setting α  equal to the parenthetical term 

and by setting β = b σ . In fact, our model substantially generalizes this approach by the 

simple fact that µ  and σ  need not be known in order to make progress.  

Rather, estimating the model’s parameters requires only a minimum of two pairs 

of matching points from the support of each distribution. The pairs can be specific points 

in the support of the distribution, as well as the mean (even if it is not in the support, as 

for a categorical random variable), or they might be elicited according to specific 

percentiles (min, max, median, IQR, or endpoints of a confidence interval). The two 

modeling parameters, α  and β , can be solved exactly from two such pairs of data 

points, or they can be estimated by regression in cases where more data are available and 

the system of equations is treated as over-identified with attendant errors. The 

specification in Equation 1 lends itself naturally to a regression approach. 

The basic model can be extended in a behavioral economics setting to include a 

reference point. In this setting, the shift parameter is applied to a reference point, r, which 

might be a point in the support of X or a summary statistic derived from the historical 

distribution. This transformation takes the form: 
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Y =αr + βX ,     (3) 

where X is not adjusted for r by the same reasoning as in the normalization discussion 

above. In practice, r might be the mean or median, or some other salient point that serves 

to anchor the forecast. In our application, we apply goodness-of-fit testing to determine 

that including a reference point outperforms a raw shift parameter, and to select a model 

in which forecasts are anchored to the reported historical maximum value.  

 

IV. Data 

Our data set was originally published in Turvey et al. (2013), in an effort to identify 

whether crop insurance could be rated and introduced in a setting with limited yield 

history available. The authors used a survey method to elicit information from corn and 

wheat farmers across three counties (25 villages) in Shaanxi Province, China, in October 

and November, 2010. Surveys were administered by 20 Chinese graduate students of the 

Northwest Agriculture and Forestry University (supervised by faculty researchers), who 

visited 780 households and collected 731 questionnaires. The completion rate was 

93.72%. The validity rates are 78.11% and 98.93% for corn and wheat respectively. 

The survey had 9 sections with 117 total questions, which were primarily devoted 

to understanding financial well-being of, and financial risk-taking by, the farmers. These 

questions included many potential sources of debt, corresponding interest rates, attitudes 

toward borrowing, different types of assets, percentage of off-farm income, etc. Basic 

demographic information was also collected, including gender, education and years of 

farming experience for the head of household. About 55% of respondents were male, 

with an average age of 48.72 years, and at least high school completion. On average, 
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respondents had farmed for about 27 years but this ranged from first year farmers to 

about 60 years. Income averaged 23,796 Yuan per year (about $3,500 at the time) from 

all sources with the highest being 248,000 Yuan ($37,200). Summary statistics for the 

demographic information are included in table 1. 

[ Table 1 about here ] 

 A small section of the survey was dedication to eliciting forecasts of crop yield 

distributions in the coming year (the 2011 crop year). Each farmer was asked for the 

minimum and maximum yield that might be achieved in the coming year, as well as the 

most likely yield outcome. Farmers were asked to make forecasts for both corn and 

wheat, so the data set contains a forecast for each crop in cases where the farmer was a 

grower of both. All yield questions were asked in Chinese units of Jin (1.102 lbs.) per Mu 

(about 0.165 acres, or 0.067 hectares), where one Jin/Mu is equivalent to 0.119 bushels 

per acre for corn, or 0.112 bushels per acre for wheat. The two key survey questions for 

eliciting the crop yield distributions are presented in figure 1.  

 To avoid inducing the farmers to anchor their forecasts to historic experience, the 

questions about historic experience were administered only after the forward-looking 

forecast information was collected. In this manner, the forecasts are intended to capture 

farmers’ true risk assessments, which still would be based on historical experience, but 

would not be explicitly anchored to their reported historical experience in the same 

survey. The historical yield information collected from each farmer (for each crop, if 

applicable) included the lowest ever and highest ever yields in his/her memory, the years 

when those yields occurred, and the average yield in their experience. We eliminate 

incomplete questionnaires, farmers who do not grow corn or wheat, and also farmers with 
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a degenerate distribution (minimum equal to maximum) reported for either their 

historical experience or their future forecast. Our final tally is 388 data records for corn 

and 374 data records for wheat, coming from 332 farmers growing both crops, 57 

growing only corn, and 45 growing only wheat.  

[ Figure 1 about here ] 

  The nature of the forecast and historical information elicited was determined by 

the authors’ choice of the well-known Beta-PERT expert elicitation procedure to estimate 

the forecast and historical distributions (Malcolm et al., 1959; Bewley et al., 2010). The 

Beta-PERT procedure, originally developed for estimating project completion times, 

operates by asking experts for the upper bound, lower bound and most likely (modal) 

outcome. These estimates are then incorporated as parameters of a Beta distribution, 

resulting in something close to a Normal distribution when the minimum and maximum 

are symmetric about the modal value, but allowing for skewness otherwise. For more 

information on the advantages of the PERT method in estimating agricultural yields, see 

Turvey et al. (2013). 

 We selected this data set because the elicitation of future and historical minima 

and maxima are consistent with the data requirements of our model, and because many 

farmers gave multiple forecasts. The presence of multiple forecasts gives us the 

opportunity to test whether classifications of forecasts map to classifications of the people 

making them; in other words, are optimistic forecasts made only by optimistic people and 

vice versa, or do people make forecasts in different modes according to domain-specific 

information, such as historical experience?  
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There are also a number of potential downsides of the data collection method that 

we try to rule out empirically: i) the elicitation of future mode versus historical mean, ii) 

the lack of incentive compatibility, and iii) the potential for technological change 

affecting yields over time. First, the elicitation of the future distribution includes the 

mode but not the mean, whereas the elicitation of the historical distribution includes only 

the mean. We are confident this was not due to translation error since the survey was 

prepared in English, translated into Chinese, and then back-translated into English by two 

independent bilinguals. All students were trained prior to the survey, and were debriefed 

twice daily by attending faculty while in the field. Rather, the modal value was chosen 

for the forecast because it is specified in the Beta-PERT methodology, and it is likely the 

mean was chosen for the historical data because of relevance. With yields averaging 800-

1,000 Jin/Mu for many farmers, the historical values might all have been unique (farmers 

were asked to round values to the nearest 10 Jin/Mu), rendering a request for the 

historical mode ambiguous. In the remainder of this article, we test inclusion of the 

mode/mean pair as a data point for regression fitting of our basic two parameter model, 

and find that it does not materially change the results. We also test a 3-parameter model 

that includes an adjustment for skewness net of the shift and scale parameters. While we 

find that subjects report, on average, a forecast mean about 5% higher than their historic 

mode (after accounting for the shift and scale adjustments), we find no meaningful 

change in goodness of fit or in the number of mixture components selected. 

A key criticism of the elicitation method for these data is the lack of incentive 

compatibility. Namely, farmers were not incentivized to report truthfully and may have 

been ambivalent over multiple different values they might report. However, to the extent 
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that farmers might have recognized they were being asked in order to estimate crop 

insurance premiums, they did not respond systematically to that incentive. A reasonable 

approach for a policy maker considering a new crop insurance program would be to use 

historical data to price the insurance (in the absence of trends due to technological 

change, which we will address momentarily), and to use farmers’ forecasts to estimate 

insurance demand. As noted above, Turvey et al. (2013) were the first to explicitly note 

that forecast disparities from historical experience implied subsidies were needed, and 

their article was published after the survey data collection took place (it’s their data). If 

farmers were systematically trying to influence crop insurance premiums in their favor 

(i.e., to make premiums cheaper), then they would have underreported their historic risks, 

and if they were trying to increase the likelihood that insurance would be offered, then 

they would have over-reported forward-looking risks. Instead, in our data set, the 

majority of farmers reported higher yields and lower risk in their forecasts than their own 

historical experience would imply. It is unlikely that these features of the data are 

attributable to perceived incentives, since in combination they are likely to lead to both a 

lower probability of crop insurance being offered, as well as higher premiums for them 

insurance when it is made available. We also point out that the Beta-PERT method has 

not been historically applied in an incentive compatible setting; the farmers are generally 

perceived as having expert knowledge in this domain, and standard practice expects them 

to reveal that knowledge truthfully. For these reasons, once trends from technological 

change can be ruled out, we expect that the lack of incentive compatibility might result in 

more noisy elicitations but not biased elicitations. 
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When modeling crop yields in the United States, it is common knowledge that 

technological improvements have played a role in dramatically increasing yield per acre 

over time. In the case of corn, national average yields per acre have increased by more 

than 7x in the last 100 years, in a manner that distinctly resembles a linear trend line. 

Simulated yield distributions often feature a detrended component (e.g., as in Cooper 

2010), and crop insurance policies are available with a “trend adjustment” for similar 

reasons (RMA 2011). However, crop yields in China have not responded nearly as 

aggressively to technological change over time as their American counterparts. A further 

mitigating factor in our data set is the relatively high proportion of economically 

disadvantaged smallholder farmers, many of which do not report on-farm income as their 

primary income source. It is unlikely that these farmers have easy access to the latest 

seed, capital equipment and planting technologies that might be available to more 

commercialized operations.  

Given this ambiguity, we are fortunate that an explicit statistical test is available:  

we can use the estimated parameters from each forecast, α̂  and β̂ , as dependent 

variables, and regress them (separately) on years farming and other covariates. This test 

is valid, in part, because we have already observed that farmers are optimistic on average, 

in the sense of predicting future yields that are higher and less variable. If the apparent 

optimism is simply due to yield trends arising from technological change, then we would 

expect that either α̂  or β̂ , or both, would vary systematically with the number of years 

spent farming (all farmers were currently engaged in farming at the time of the survey). 

In other words, more experience farming means both more time for extreme events to 

occur, and also more time for average yields to differ materially from the present. The 
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details of these tests and their associated robustness checks are found in table 9 of our 

section on Factors Influencing Forecasts: we find no evidence that a farmer’s estimated 

optimism is a function of time. Thus, we conclude that technological change is not a 

material factor affecting the measurement of optimism in our data set. 

 

Model Selection 

To identify whether a raw shift and scale model (Equation 1) or one incorporating a 

reference point (Equation 3) is more appropriate, we test regression fits for each and 

compare them using the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC). In particular, we test the model from Equation 1 alongside 

several variants of the model from Equation 3, considering that the reference point might 

be any of the reported values from the historic distribution (the minimum, maximum, or 

mean), as well as the midpoint between the historic minimum and maximum. The 

regression results are presented in table 2. Both goodness of fit criteria unambiguously 

selected Model 2, indicating that the best fit is achieved using the reported historical 

maximum as a reference point. This is, in and of itself, a finding of optimism in the sense 

that forecasts are apparently anchored to the upside of historical experience. 

[ Table 2 about here ] 

 As discussed above, there were three data points elicited from each farmer for 

each of their historical and forecast distribution. They were asked for the historical 

minimum, maximum and mean yields, and they were asked for minimum, maximum and 

modal yields in the upcoming year. The results in table 2 use only the minimum and 

maximum, reported for both future and historic, since they are clearly representative of 
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the same points in the distribution. In fact, even if farmers were only reporting endpoints 

of a confidence interval (e.g., the 2.5th and 97.5th percentiles), the data are still valid for 

our approach. The same validity does not apply when comparing the historical mean 

against the forecast mode: we have no reasonable assurance that one will map to the other 

according to our basic shift and scale model. Nonetheless, we find some evidence that 

they are not far off, and that the subjects may not be differentiating between the two. To 

show this, and as a robustness check, we re-estimated the results in table 2 using all three 

data points per forecast in the regression. The new model results are shown in table 3: it 

is clear that the results are materially unchanged by the addition of mean/mode reporting. 

[ Table 3 about here ] 

 

Identifying Heterogeneity with a Gaussian Mixture Model 

An examination of the empirical densities over the population of forecasts for estimates 

of α  and β  reveals substantial heterogeneity. Of particular interest, the empirical 

marginal densities appear to be multi-peaked and a joint plot indicates that the peaks may 

coincide. This is shown in figure 2, which is a bivariate hex-plot of the joint density, with 

marginal kernel densities along each edge. Accompanying summary statistics for forecast 

parameters by crop and by gender are presented in table 4. Together, these features give 

reason for concern that heterogeneity in the form of clustering may be present, which 

could be better represented by a mixture distribution over types or “classes” of forecasts. 

If so, simply reporting the population-mean values (implicitly as the center point of a 

single-peaked distribution) may result in estimates that do not represent any one peak in 

the distribution (e.g., as noted in Sproul and Michaud, 2017). To conduct an explicit test 
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of whether the observed phenomenon is statistically meaningful, we compare goodness-

of-fit statistics from a set of (Finite) Gaussian Mixture Models (GMMs) fitted with 

different numbers of components.  

[ Table 4 about here ] 

[ Figure 2 about here ] 

Each GMM is fit using the well-known expectation-maximization (EM) algorithm 

of Dempster, Laird and Rubin (1977), a Bayesian procedure comprised of two steps. In 

the expectation step (“E-step”), the likelihood function is used to calculate so-called 

‘membership probabilities,’ , denoting the probability that each individual i belongs to 

each type (or ‘class’) c. The average of these membership probabilities becomes the 

updated mixture probability for each class, . In the maximization step (“M-step”), the 

updated mixture probabilities are held fixed while the log likelihood is maximized by 

varying the parameters for each class, collectively referred to as the vector, . After the 

M-step, the algorithm repeats until suitable convergence is achieved.  

Formally, let t denote an iteration of the algorithm. In the E-step, the updated 

membership probabilities for step t + 1, for each individual, i, and each class, c, are given 

according to: 

 .    (4) 

Here,  are the data for individual i,  are the most recent maximum likelihood 

estimates for the parameters describing type c (from the previous step), and f denotes the 

likelihood of the data given the estimated parameters. The updated mixture probabilities 

τ ic

π c

θc

τ ic
t+1 = π c

t ⋅ f (xi | θ̂c
t )

π j
t ⋅ f (xi | θ̂ j

t )
j=1

C∑

xi θ̂c
t
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for each type (at the population level) are then simply the averages of the membership 

probabilities: 

.    (5) 

The M-step then maximizes the log-likelihood function, holding the mixture 

probabilities constant. The updated estimate, , solves 

 (6) 

Recall that the vector  represents the parameters collectively describing the 

multivariate normal for each type, c. Since our forecasting model is a 2-parameter model, 

each vector  contains two mean parameters, as well as two additional parameters to 

populate the covariance matrix, which we assume to be diagonal following Bruhin, Fehr-

Duda and Epper (2010).  

A known shortcoming of applying expectation-maximization to fit a mixture 

model is the researcher must specify ex ante the number of mixture components (types). 

The algorithm does have some capacity to “zero out” redundancies by giving near-zero 

weights (the mixture probabilities, π c ) to extraneous classes as it endogenously 

determines the classification of data points. In practice, however, specification of too 

many mixture components can lead to over-fitting, exhibited by ambiguous membership 

probabilities (e.g., τ ic  close to 0.5).  

Information criteria such as the corrected Akaike information criterion (AICc), 

BIC, or comparable cross-validation approaches, are often used for model selection but 

may be inadequate in mixture model applications due to insufficient penalization of extra 

π c
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I
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parameters (Celeux and Soromenho, 1996; Biernacki et al., 2000). The latter authors 

introduce the integrated completed likelihood (ICL) criterion, a modification of BIC with 

an additional penalty for entropy with the goal of achieving better out-of-sample 

classification. More entropy means more ambiguous assignments to the various classes, 

corresponding to τic values that are far from both 0 and 1, an indication that the fitted 

mixture model is not effectively classifying the data into distinct types. In effect, ICL 

adjusts BIC for the ambiguity of classifications, and this ambiguity is conveniently 

measured by the posterior membership probabilities estimated in the course of the EM 

procedure. As an additional check on the robustness of classification, Sproul and 

Michaud (2017) also report percentages of individuals with at least one posterior 

membership probability greater than 0.90, 0.95 and 0.99, respectively. 

Our estimation results for GMMs with up to 6 mixture components are presented 

below in table 5. We present results separately for corn forecasts (N=442), for wheat 

forecasts (N=437) and pooled (N=879), with boldface indicating model selection for 

each criterion. A number of features of the model selection process are apparent, 

including i) the selection by ICL of more parsimonious models with fewer components, 

ii) the ability of the EM algorithm to “zero out” extraneous outlier groups, iii) the 

“preference” of AICc and BIC for more components due to increases in the likelihood 

function, and iv) the consistent “preference” of ICL for models with high rates of 

unambiguous classifications, as evidenced by the percentage of individuals classified 

with τ ic  close to 1. Across data sets, each criterion selects C > 1 components, providing 

empirical justification of our mixture model approach to examine heterogeneity. 

[ Table 5 about here ] 
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For each data set, ICL is minimized with a 4-component mixture, comprised of 

three main groups/classes and one small outlier group. The three larger classes are 

roughly the same size in each of the corn, wheat, and pooled data sets, and as will be seen 

below, they correspond to roughly identical model parameters as well. These classes 

correspond to optimistic forecasts (67%), neutral forecasts (20%) and pessimistic 

forecasts (11%), for which the interpretation of parameters into labels will be discussed 

momentarily. The final outlier group (2%) includes extremely pessimistic forecasts that 

dramatically differed from their peers. Because of the consistent small size of the outlier 

group, we will treat these results as representative of a 3-component mixture with outliers 

in what follows. The class breakdowns, indicated by the fitted mixture weights, are 

presented by crop and by number of components in table 6. 

[ Table 6 about here ] 

It can also be seen across the data sets that AICc and BIC are almost perfectly 

monotonically decreasing in the number of components. This is the very observation that 

led to the development of ICL by Biernacki et al. (2000), who, like others, observed that 

these criteria will very often select the maximum number of components in a given 

choice set. In fact, we tested up to 8 components and found that AICc and BIC would 

select the maximum number of components if it were 7 or 8, as well. Those extra tests are 

omitted because they are otherwise uninformative, and to save space. 

In their 2010 article, Bruhin et al. indicate that a desirable feature of mixture 

model classification is the reliable “splitting” of classes into economically meaningful 

subgroups as the number of model components increases. In other words, it is an 

indicator of model quality if more model components, whether chosen by AICc, BIC, 
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ICL or some other criterion, tend to subdivide the space of individuals being classified 

instead of adding new classes which adopt members out of multiple existing groups.  

We observe this feature here. When increasing from a single component to a 2-

component mixture, the pessimistic group is split off from the rest in each data set. For 

the corn forecasts, increasing from 2 to 3 components gives us our three main groupings 

of optimistic, pessimistic and neutral, whereas in wheat and in the pooled data, adding a 

third component results in splitting off the outliers (extremely pessimistic) from the 

pessimistic group. Adding a fourth component in corn splits off outliers from the 

pessimistic group, while in wheat and pooled we observe non-pessimists splitting into the 

optimistic and neutral groups. Across data sets, adding a fifth component results in a 

further split of the already-tiny outlier group, and adding a sixth component results in 

division of the optimistic group into mildly optimistic and extremely optimistic.  

In each case described here, the parameter estimates for α  and β  support our 

characterizations of the groups in a manner indicative of consistent subdivisions when the 

number of components is increased. Of particular interest are the mixture models with 

four and six components respectively, which are best characterized as a 3-component 

mixture without outliers (due to the 4th outlier group), and a 4-component mixture with 

outliers (due to the outlier group being subdivided into two smaller outlier groups). We 

now explore the parameters of these two models in detail. Contour plots visualizing our 

mixture results are shown in figure 3.  

[ Figure 3 about here ] 

[ Table 7 about here ] 
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Table 7 describes the 3-component mixture of optimistic, neutral (or “realistic”) 

and pessimistic forecasts with the outlier group discarded. The optimistic group gets its 

label because it is characterized by α ,β( )  parameters of approximately (0.45, 0.54) 

across the data sets, indicating an upward shift of 45% of the reference point (the historic 

max) and reduction of range (risk) to 54% of historic. This group, comprising 

approximately 67% of forecasts, is therefore anticipating higher yields with less risk than 

historical experience dictates. The neutral, or realistic, group has mean α ,β( )  parameters 

of approximately (0.02, 1.00) across the data sets, indicating that approximately 20% of 

forecasts are almost perfectly in line with historical experience. Finally, the pessimistic 

group represents approximately 11% of forecasts with estimated parameters of (-0.43, 

1.56) on average across the population, indicating expectations of lower and more 

variable yields than historical experience implies.  

 [ Table 8 about here ] 

Table 8 describes the 4-component mixture of highly optimistic, mildly 

optimistic, realistic and pessimistic forecasts with two small outlier groups discarded (this 

was the fitted 6-component mixture from table 6). The key distinction between 

information presented in table 7 versus table 8 is the subdivision of the optimistic group 

into two groups, highly optimistic and mildly optimistic, for which the splits are 

relatively stable across corn, wheat and pooled forecasts. The highly optimistic group 

comprises about 35% of forecasts overall, with central α ,β( )  parameter estimates of 

(0.58, 0.40) indicating expected yields even higher and even less risky than those 

indicated by the mean estimates of the consolidated optimistic group from the 3-

component model. The mildly optimistic group, on the other hand, exhibits parameter 
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estimates of (0.31, 0.70) indicating a more neutral or realistic outlook but still clearly 

optimistic (30% reduction in risk over neutral). The mildly optimistic group also has 

consistent parameters across the data sets, and comprises 31% of forecasts overall. 

 

Factors Influencing Forecasts 

Having identified distinct types of forecasts, it is worthwhile to examine how these 

differing biases (or lack thereof) might arise. There are two key questions. First, are 

forecast types actually revealing types of the people making them? That is, must an 

optimistic forecast necessarily come from an optimistic person? Second, to the extent that 

forecast types might differ within individuals, what are the key sources of variation? 

 One reason for choosing our data set was the presence of multiple forecasts for 

many subjects interviewed, which gives the opportunity to test whether forecast 

classifications are generally consistent within individuals. A review of the available 

evidence makes it appear that they are not consistent, at least in one sense. If we take the 

view that the posterior membership probabilities, τ ic , arising from the EM procedure 

represent a posteriori  classification probabilities, then the forecast types cannot represent 

types of subjects. Simply put, nearly 20% of subjects growing both crops gave forecasts 

with distinct types, which is nearly impossible given the results in Table 5 (Pooled Data, 

C=4), where 95% of forecasts had τ ic ≥ 0.99  and 99% had τ ic ≥ 0.95 . We are forced to 

conclude that variation in forecast type, while it may be influenced by individual factors, 

might also be affected by crop specific factors. To test for key sources of variation in 

forecast types, we conducted a number of regression tests depicted in table 9. 
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 [ Table 9 about here ] 

 

The Effect of Historic Yield Outcomes 

Perhaps our most important finding pertains to the effect of historic outcomes on a 

farmer’s level of optimism (in terms of the scale factor, β ). The results show that for 

each year that a farmer goes without suffering a historic loss (i.e. their reported minimum 

historic yield), he or she becomes increasingly optimistic. For each year that passes since 

a historic loss, the average farmer reduces the relative scale (β ) of their future yield risk 

by 1% (in the optimistic direction). Effects for the shift parameter (α ) are in the opposite 

direction nominally, but also optimistic.  

While these numbers may appear small, the effect can be dramatic. As shown in 

Table 1, the average time since a historic loss is 8.56 years (σ=8.48), with 3 years as the 

lower bound of the interquartile range (IQR), and 11 years as the upper bound. All else 

equal, the relative scale (compared to their own historic distribution) for the future yield 

forecast of a farmer at the top of the IQR for historic losses will be eight percentage 

points below that of a farmer who suffered a historic loss 3 years ago (eight percentage 

points is equivalent to a 13% deviation of β  below the mean). 

In contrast, future forecasts were not significantly affected by recent events in the 

gains domain (i.e. recent maximum historic yields). This suggests a finding similar to the 

perspective pervasive in prospect theory, that losses are more salient that gains. Explicitly 

testing this hypothesis, however, is beyond the scope of both our data and this paper. 
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We tested a number of history-related features of the data set, including cross-

crop experience, but did not find statistically significant prediction from any of them, 

apart from recent severe losses in the crop being forecast. We also tested crop-level fixed 

effects and found no significant variation, implying that recent loss history is likely the 

dominant crop-specific factor in determining differential forecasts in our data set. At least 

in the case of cross-crop experiences, it is possible that effects are not identifiable due to 

correlation induced by weather. Naturally, strong positive correlation due to weather 

would result in collinearity in our regression tests; this is shown in figure 4, which plots 

the years since a historic loss in corn versus in wheat for those farmers growing both. 

[ Figure 4 about here ] 

 

Gender Differences in Forecasts 

In addition to crop-specific effects arising from loss history, we also observe subject-

specific effects in the form of statistically significant differences in parameter estimates 

by gender. Our regression results show that on average, women appear to be even more 

optimistic with regard to yield risk than their male counterparts. While male forecasters 

expect future yields to have 80% the scale of their historic yield distribution (i.e., 

β̂ = 0.80 ), female forecasters expect future yields to come from a distribution with 

roughly only 71% the scale of their historic distribution (i.e., β̂ = 0.71 ). This finding is 

consistent across both crops, despite the presence of within-subject heterogeneity in 

beliefs between crops. Our results regarding gender differences in forecast tend to stand 

somewhat in contrast with the literature on risk perceptions. Namely, the consensus is 

that on average, risk tends to be judged as lower by men than by women (see, for 
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example, Gutteling and Wiegman, 1993; Stern et al., 1993; Flynn et al., 1994; Slovic et 

al., 1997; Finucane et al., 2000). 

Flynn et al. (1994) and Finucane et al. (2000), in particular, find that both gender 

and race plays a critical role in making judgments about risk. In Flynn et al. (1994), 1,512 

Americans were asked to rate their level of perceived risk for 25 (environmental) hazards. 

For all 25 hazards, white males’ risk perception ratings were consistently much lower 

than the means of non-white males, and females, with non-white males and females 

generally being relatively similar in their perceptions of risk. In addition, this so-called 

`white male’ effect appeared due to a group of roughly 30% of the white male sample 

who judged risks to be extremely low. 

Finucane et al. (2000) expanded Flynn et al.’s analysis using data collected as part 

of a national telephone survey designed to test hypotheses about risk perceptions over a 

range of hazards. The survey contained questions about worldviews, trust, and a range of 

demographic variables. In addition to a ‘white’ dummy, they included three additional 

racial/ethnic groups: African-American, Hispanic, and Asian. They replicated the 

findings of Flynn (1994), and also found that risk perceptions varied considerably across 

African-American, Asian, and Hispanic males and females, implying that risk 

perceptions depend importantly on the characteristics of the individuals facing the risk. 

Their findings support the view that differences cannot be explained entirely from a 

biological perspective but rather that risk is a social construct that depends largely on the 

characteristics of the individuals facing the risk. 

From the prospect theory literature, there has also been evidence of gender 

differences in risk preferences (as opposed to risk perception) and in probability weights. 
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For example, Fehr-Duda, de Gennaro and Schubert (2006) and Bruhin, Fehr-Duda and 

Epper (2010) both find that female subjects statistically differ in their application of 

probability weights from male subjects. Namely, the female subjects tended to show a 

substantially lower slope of the probability weighting function, indicating less “rational” 

probability weights in the sense of their elicited prospect values being relatively 

insensitive to marginal changes in probability of payment. Tanaka, Camerer and Nguyen 

(2010) do not find significant gender differences in risk or time preferences, but Liu 

(2013) does find that females were significantly more risk averse, in the sense of the 

curvature (exponent) of the prospect theory value function using the same methodology 

and a larger data set.  

To summarize this discussion, our results indicate that women tend to forecast 

less risk than men, all else equal, but the literature on risk perception suggests that they 

generally perceive risks to be more severe. At the same time, research on prospect theory 

suggests that women are more averse to risk than men, but that they are insensitive to 

marginal changes in risk for probabilities that are not close to certain. Clearly, further 

research is needed to determine whether these associations are unified by some 

underlying mechanism or model. 

 

Extending the Model to Include a Shape Parameter 

While we have shown our basic shift-and-scale model to be fairly robust, we have not 

thus far tackled the question of whether the model might include a meaningful shape 

parameter to account for changes in higher moments. In particular, it might be the case 

the forecasts are not only classified according to optimistic, realistic or pessimistic 



Page 34 of 56 

shifting and scaling, but also that these classifications vary meaningfully with respect to 

shape changes in the transformation from the historical distribution to the forecast. To 

address this concern, we extend the model from a 2-parameter shift and scale form to a 3-

parameter shift-scale-and-shape form. Specifically, we include a third parameter, γ , 

mapping the historic mean into the future mode, net of changes already induced by the 

shift and scale parameters, α  and β . In terms of our regression specification, the shape 

parameter is interacted with a dummy, 1mid , equal to one for rows in which central points 

of the historic and forecast distribution are matched: 

Y =αr + βX +1mid ⋅γ X  .    (7) 

 It is worth repeating that any results obtained with this model on our current data 

are exploratory in nature: our data set is based on an elicitation method that does not 

match mean-to-mean or mode-to-mode for the historical and forecast distributions, but 

only allows (potentially) matching historic mean to forecast mode. That said, our earlier 

results are remarkably robust to this extension of our model. Table 10 details the 

goodness of fit evaluation and the mixture weights in Panel A, and presents the mixture 

means in Panel B. The only meaningful difference between fitting our model with the 

shape parameter, versus without, is that there are no longer small outlier groups in the 3-

component and 4-component models selected respectively by ICL and AICc/BIC. The 

group weights and their central parameter estimates remain virtually unchanged. In all 

cases, it can be clearly seen that the shape parameter is near zero, reaching its maximum 

of about a 3% increase (from mean to mode) in the pessimistic group.  

[ Table 10 about here ] 
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Conclusion 

In this article we develop a simple model of probabilistic forecasts to examine 

overconfidence. We use an explicit location-scale model of forecasts acting as 

transformations of historic experience, with parameters that may incorporate a reference 

point. We find that forecasts are anchored to historical positive experience, and that 

forecasts are systematically overconfident. However, like Sproul and Michaud (2017), we 

find evidence of multi-modal heterogeneity such that population average parameter 

estimates do not represent individuals well. We estimate a finite Gaussian mixture model 

using expectation-maximization (Dempster, Laird and Rubin 1977) and find strong 

evidence for three basic forecast types: optimistic (about two thirds), realistic or neutral 

(about 20%), and pessimistic (the remainder). We find further clustering within the 

optimistic group, without about half highly optimistic and about half mildly so. The 

group-wise means and mixture weights are robust to inclusion of additional elicited data, 

and also to inclusion of a shape parameter in the forecast model. We also find evidence 

that forecast classifications do not perfectly map to a classification of the person making 

it. Instead, recent severe loss experience appears to be the strongest single predictor of 

pessimism, though we do find statistically significant gender differences. Our results 

have important implications regarding the need for crop insurance subsidies to induce 

participation. Future research should focus on discovering potential ways to reduce the 

discrepancy between subjective and objective risk.  
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Figures 
 

Figure 1: Turvey et al. (2013) survey questions 
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Figure 2: Hex plot with marginal densities 
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Figure 3: Contour plots for Fitted 3-Mixture (Panel A) and 4-Mixture (Panel B) 
Panel A 

 
 
Panel B 
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Figure 4: Years since worst yield, by crop, for farmers of both corn and wheat 
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Tables 
 

Table 1: Summary Statistics (N=762) 

 
Mean Std. Dev. Min. 25% 50% 75% Max. 

Years since Min Yield 8.56 8.48 1 3 6 11 42 

Years since Min Corn Yield (N=388) 8.21 8.41 1 3 5 10.25 42 

Years since Min Wheat Yield (N=374) 8.92 8.55 1 3 6 12.75 42 

Years since Max Yield 1.97 1.54 1 1 2 2 14 

Years since Max Corn Yield (N=388) 1.90 1.53 1 1 1 2 14 

Years since Max Wheat Yield (N=374) 2.03 1.54 1 1 2 2 14 

Gender (1=Male) 0.55 0.50 0 0 1 1 1 

Age 48.09 10.90 20 40 50 56 72 

Education 4.34 1.77 0 3 5 5 8 

Years Farming 27.16 12.93 0 18.0 30.0 37.0 65 
Percent Farm Income 41.74 26.40 0 20.0 36.7 59.6 100 
Household Income (Yuan/year) 22924 20101 1000 10000 20000 30000 248000 
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Table 2: Model Selection for Candidate Forecasting Models 

 
Model 1 Model 2 Model 3 Model 4 

Scale 0.6673*** 0.6144*** 0.8421*** 0.6309*** 

 
(0.011) (0.011) (0.014) (0.012) 

     Constant 315.38*** 
   

 
(8.321) 

   r = 
      Historic Max 
 

0.3791*** 
  

  
(0.009) 

    Historic Min 
  

0.2943*** 
 

   
(0.018) 

   Historic Mode 
   

0.4405*** 

    
(0.012) 

     Adj. R-sqaured 0.708 0.986 0.976 0.985 
Log-Likelihood -9794 -9752 -10188 -9819 
AIC 19590 19510 20380 19640 
BIC 19600 19520 20390 19650 
Notes: *** Signifies statistical significance at the 99.9% level. N=812.  
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Table 3: Model Selection (2-params, 3 obs) 

 
Model 1 Model 2 Model 3 Model 4 

Scale 0.6717*** 0.6029*** 0.8886*** 0.6301*** 

 
(0.01) (0.01) (0.012) (0.012) 

     Constant 310.94*** 
   

 
(7.535) 

   r = 
      Historic Max 0.3877*** 

  
  

(0.009) 
    Historic Min 

 
0.233*** 

 
   

(0.015) 
   Historic Mode 

  
0.4394*** 

    
(0.012) 

     Adj. R-sqaured 0.665 0.987 0.979 0.985 
Log-Likelihood -14597 -14516 -15134 -14694 
AIC 29200 29040 30270 29390 
BIC 29210 29050 30280 29400 
Notes: *** Signifies statistical significance at the 99.9% level. N=812.  
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Table 4: Summary of α and β by Gender and by Crop 
Corn Farmers (N=389) 

 
Males (N=210) 

 
Females (N=179) 

 
α β 

 
α β 

Mean 0.207 0.806 
 

0.298 0.716 
Std 0.336 0.401 

 
0.294 0.334 

      Wheat Farmers (N=377) 

 
Males (N=210) 

 
Females (N=167) 

 
α β 

 
α β 

Mean 0.217 0.800 
 

0.309 0.716 
Std 0.363 0.397 

 
0.290 0.322 

Note: Of the male farmers, 183 grow both corn and wheat. Of the 
female farmers, 149 grow both.  
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Table 5: Model Selection Criteria by Number of Components, C  

  C N   AICc BIC ICL   τ > .99 τ > .95 τ > .90   
Corn           

 
1 442 

 
1348.85 1365.19 682.59 

 
1 1 1 

 
 

2 442 
 

570.12 606.85 431.47 
 

0.78 0.95 0.96 
 

 
3 442 

 
-627.26 -570.17 92.82 

 
0.88 0.96 0.98 

 
 

4 442 
 

-763.51 -686.11 54.1 
 

0.94 0.97 0.99 
 

 
5 442 

 
-773.64 -675.96 60.24 

 
0.93 0.97 0.98 

 
 

6 442 
 

-987.73 -869.81 173.88 
 

0.7 0.76 0.9 
 

            Wheat 
          

 
1 437 

 
1397.04 1413.34 706.67 

 
1 1 1 

 
 

2 437 
 

618.85 655.48 475.9 
 

0.77 0.96 0.97 
 

 
3 437 

 
521.05 577.97 472.19 

 
0.94 0.97 0.97 

 
 

4 437 
 

-801.41 -724.22 53.34 
 

0.96 0.98 1 
 

 
5 437 

 
-809.6 -712.2 68.22 

 
0.97 0.99 1 

 
 

6 437 
 

-1084.49 -966.91 141 
 

0.77 0.9 0.93 
 

            Pooled 
          

 
1 879 

 
2739.49 2758.59 1379.29 

 
1 1 1 

 
 

2 879 
 

1175.42 1218.38 889.89 
 

0.77 0.95 0.96 
 

 
3 879 

 
961.83 1028.64 869.77 

 
0.78 0.96 0.97 

 
 

4 879 
 

-1586.72 -1496.09 58.34 
 

0.95 0.99 0.99 
 

 
5 879 

 
-2077.98 -1963.54 236.21 

 
0.73 0.88 0.91 

   6 879   -2095.77 -1957.55 252.44   0.74 0.88 0.91   
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Table 6: Mixture Weights by Number of Components, C  

  C   Weights 
Corn  C1 C2 C3 C4 C5 C6 

 
1 

 
1 

     
 

2 
 

0.911 0.090 
    

 
3 

 
0.670 0.131 0.199 

   
 

4 
 

0.674 0.115 0.199 0.011 
  

 
5 

 
0.673 0.122 0.199 0.005 0.002 

 
 

6 
 

0.336 0.337 0.122 0.199 0.005 0.002 

         Wheat 
       

 
1 

 
1 

     
 

2 
 

0.890 0.110 
    

 
3 

 
0.888 0.087 0.025 

   
 

4 
 

0.659 0.103 0.213 0.026 
  

 
5 

 
0.659 0.104 0.213 0.018 0.007 

 
 

6 
 

0.370 0.289 0.104 0.213 0.018 0.007 

         Pooled 
       

 
1 

 
1 

     
 

2 
 

0.899 0.102 
    

 
3 

 
0.887 0.095 0.018 

   
 

4 
 

0.667 0.109 0.206 0.018 
  

 
5 

 
0.352 0.314 0.109 0.206 0.018 

   6   0.352 0.314 0.110 0.206 0.011 0.007 
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Table 7: 3-Component Mixture Model (with outliers omitted) 

Corn Forecasts (N=442) 

 
Optimistic Realistic Pessimistic 

 
α β α β α β 

Mean 0.439 0.542 0.027 1.000 -0.404 1.555 
Std. Dev. 0.176 0.182 0.055 0.001 0.324 3.622 
Weight 0.674 0.199 0.115 

       Wheat Forecasts (N=437) 

 
Optimistic Realistic Pessimistic 

 
α β α β α β 

Mean 0.460 0.538 0.022 1.000 -0.444 1.564 
Std. Dev. 0.175 0.182 0.056 0.001 0.303 0.288 
Weight 0.659 0.213 0.104 

       Pooled Forecasts (N=879) 

 
Optimists Realists Pessimists 

 
α β α β α β 

Mean 0.449 0.540 0.024 1.000 -0.428 1.564 
Std. Dev. 0.176 0.182 0.055 0.001 0.318 0.331 
Weight 0.667 0.206 0.109 
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Table 8: 4-Component Mixture Model (with outliers omitted) 

Corn Forecasts (N=442) 

 
Highly Optimistic Mildly Optimistic Realistic Pessimistic 

 
α β α β α β α β 

Mean 0.572 0.396 0.308 0.686 0.027 1.000 -0.443 1.590 
Std. Dev. 0.122 0.112 0.109 0.104 0.055 0.001 0.402 0.427 
Weight 0.336 0.337 0.199 0.122 

         Wheat Forecasts (N=437) 

 
Highly Optimistic Mildly Optimistic Realistic Pessimistic 

 
α β α β α β α β 

Mean 0.584 0.406 0.303 0.707 0.022 1.000 -0.445 1.565 
Std. Dev. 0.111 0.117 0.175 0.182 0.056 0.001 0.303 0.290 
Weight 0.370 0.289 0.213 0.104 

         Pooled Forecasts (N=879) 

 
Highly Optimistic Mildly Optimistic Realistic Pessimistic 

 
α β α β α β α β 

Mean 0.578 0.400 0.306 0.697 0.024 1.000 -0.425 1.562 
Std. Dev. 0.117 0.114 0.105 0.095 0.055 0.001 0.318 0.332 
Weight 0.352 0.314 0.206 0.110 
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Table 9: Regression Results 

 
β 

 
α 

 
Model 1 Model 2 Model 3 

 
Model 1 Model 2 Model 3 

Intercept 0.600*** 0.603*** 0.629*** 
 

0.405*** 0.406*** 0.392*** 

 
(0.101) (0.102) (0.118) 

 
(0.089) (0.089) (0.104) 

Crop Dummy (Corn=1) 
 

-0.006 -0.016 
  

-0.002 0.004 

  
(0.026) (0.027) 

  
(0.023) (0.023) 

Sex (Male=1) 0.091*** 0.091*** 0.101*** 
 

-0.094*** -0.094*** -0.099*** 

 
(0.029) (0.029) (0.029) 

 
(0.025) (0.025) (0.026) 

Age (Years) 0.002 0.002 0.002 
 

-0.002 -0.002 -0.002 

 
(0.002) (0.002) (0.002) 

 
(0.002) (0.002) (0.002) 

Education 0.012 0.013 0.013 
 

-0.012* -0.012 -0.012 

 
(0.008) (0.008) (0.008) 

 
(0.007) (0.007) (0.007) 

Years Farming 0.001 0.001 -0.004 
 

-0.001 -0.001 0.002 

 
(0.002) (0.002) (0.004) 

 
(0.001) (0.001) (0.003) 

Years Farming^2 
  

0.000 
   

-0.000 

   
(0.000) 

   
(0.000) 

Years since Min Yield -0.010*** -0.010*** -0.012*** 
 

0.010*** 0.010*** 0.010*** 

 
(0.002) (0.002) (0.004) 

 
(0.001) (0.001) (0.003) 

Min Yield Last Year Dummy 
  

0.035 
   

-0.035 

   
(0.047) 

   
(0.041) 

Years since Max Yield 0.006 0.006 0.005 
 

-0.006 -0.006 -0.001 

 
(0.009) (0.009) (0.014) 

 
(0.007) (0.008) (0.012) 

Max Yield Last Year Dummy 
  

-0.003 
   

0.003 

   
(0.045) 

   
(0.039) 

Min Yield Year > Max Yield Year 
  

-0.069 
   

0.011 

   
(0.066) 

   
(0.058) 

Years since Min Yield, Other Crop 
 

0.002 
   

-0.001 

   
(.003) 

   
(0.003) 

Years since Max Yield, Other Crop 
 

0.013 
   

-0.010 

   
(0.010) 

   
(0.009) 

        Adj. R^2 0.07 0.06 0.06 
 

0.08 0.08 0.08 
N 762 762 759   762 762 759 

Notes: Standard errors in parentheses. * p<.1, ** p<.05, ***p<.01 
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Table 10: Classification Results for the 3-parameter Model (Pooled Data) 
 
Panel A: Model Selection 

  
   

     C   AICc BIC ICL τ>.99 τ>.95 τ>.90 Weights   
 

 
1 

 
-386.43 -358.24 -179.12 1 1 1 1   

 

 
2 

 
-1369.95 -1308.91 -100.88 0.66 0.82 0.86 0.578 0.422  

 

 
3 

 
-3599.37 -3505.49 -1062.27 0.94 0.98 0.99 0.670 0.114 0.217 

 

 
4 

 
-4087.35 -3960.64 -909.62 0.74 0.89 0.92 0.336 0.335 0.112 0.217 

 
 

Panel B: 3-Class Mixture Model with Shape Parameter 

Pooled Forecasts (N=879) 
 

 
Optimistic 

 
α β γ 

Mean 0.44 0.55 -0.01 
Std. Dev. 0.166 0.171 0.087 
Weight 0.669 
  

 
Realistic 

 
α β γ 

Mean 0.02 1.00 0.01 
Std. Dev. 0.062 0.035 0.090 
Weight 0.221 
  

 
Pessimistic 

 
α β γ 

Mean -0.37 1.51 0.03 
Std. Dev. 0.290 0.327 0.156 
Weight 0.111 
 
 


