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Stata command for calculating adverse event

and efficacy stopping boundaries for phase II

single-arm trials
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Abstract. Many programs and functions in statistical packages focus on the final
stage of clinical trials, that is, the data analysis. In this article, I aim to assist in the
early stages of clinical trials, specifically, the design of phase II single-arm trials.
I present the new command stopbound, which calculates stopping boundaries and
operating characteristics based on monitoring an adverse event, efficacy, or an
adverse event and efficacy.

Keywords: st0344, stopbound, Bayesian clinical trial design, adverse event, efficacy
rate, futility, simulation, operating characteristic

1 Introduction

A good design is essential for the success of a clinical trial; however, many statistical
packages lack support for the design phases of clinical trials. Thus in this article, I
introduce a command for a widely used method in clinical trial design for calculating
Bayesian decision criteria and stopping boundaries to warrant early termination of a
clinical trial; see Thall, Simon, and Estey (1995), Thall, Simon, and Estey (1996), and
the extension by Thall and Sung (1998). Stopping boundaries are usually implemented
for monitoring a severe adverse event (AE) (for example, toxicity) or efficacy rates for a
new experimental treatment compared with the standard-of-care historical rates. These
rules are put in place to protect the safety of the patients entering the trial: one would
like to stop a trial if the rate of AEs is much higher than anticipated to prevent further
patients from exposure to the high risk of events. One may also stop a trial because of
low efficacy rates to treatment, to protect future patients from receiving an ineffective
therapy.

These trials are typically conducted to test whether an experimental therapy is
safe and sufficiently efficacious to begin larger randomized clinical trials. The methods
compare posterior probabilities of the experimental drug with the historical standard,
where both probabilities are modeled by Beta(α, β) distributions, and the parameters
α and β represent the number of successes and failures, respectively. Alpha and beta
change; at first, they are from the prior, but as the data accumulate, they become the
sum of the assumed prior successes or failures and the observed successes or failures.

c© 2014 StataCorp LP st0344



408 Stopping boundaries

In this article, I introduce a new command to Stata users. The command stopbound

calculates AE or efficacy stopping boundaries and operating characteristics, or both, for
phase II single-arm trials. I present basic methods, general use, syntax, options, and
four examples to illustrate its use.

2 Methods and general use for the stopbound command

2.1 Models

The first design aspect the user must input are the parameters for modeling the prob-
ability of AE or efficacy or both for the standard and the experimental treatment. The
probability for the standard treatment is modeled by a Beta(αT , βT ) distribution, where
α is the number of events observed and β is the number of nonevents. This prior on
the standard treatment is based on historical knowledge and data. Instead of entering
the αT and βT parameters for the historical standard, one can also enter the maximum
(minimum) acceptable AE (efficacy) rate, which will be called the null rate. When en-
tering the null rate, the user is essentially assuming a known mean of the historical
standard treatment. This would be similar to having a large historical population on
which to base the standard treatment prior, such as information on 10,000 patients.
For AE (efficacy), the null rate is the maximum (minimum) allowable rate that the
investigator is willing to accept to consider the therapy safe (efficacious). The differ-
ence between the null rate and the probabilistic definitions of the standard treatment
is that the latter incorporates the sampling uncertainty in the comparator. Using the
probabilistic approach requires simulation and takes a little longer for computation. An
example of both approaches is given in section 4.1.

The prior probability for the experimental treatment is modeled by Beta(αE , βE).
These values can be whatever the user wants; however, it is recommended that αE and
βE are chosen such that their sum is small (as to not overwhelm the observed data)
and such that the two priors have the same mean. The sum αE + βE performs as the
sample size of the prior knowledge of the experimental treatment. A weakly informative
or noninformative prior is used because little information is known about the new ex-
perimental agent; therefore, the prior for it should not be highly informative. A weakly
informative or noninformative prior allows the data to speak. For example, if we have
information on 100 patients on the standard treatment and 30 of them had an AE, the
distribution of the standard treatment should be Beta(30, 70). Knowing the standard
distribution, the user could make the prior distribution on the experimental treatment
∼ Beta(0.60, 1.40), which has a mean of 0.30, the same as a Beta(30, 70). Again this
is only a recommendation. If more information is known about the experimental treat-
ment, the prior could be made as informative as the user would like.
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2.2 Sample size

Other design aspects of the trial that must be entered are the maximum number of
patients to be enrolled, cohort size, and the minimum number of patients accrued before
applying stopping rules. For example, one might want to consider the latter if the
investigator does not want to stop the trial early based on limited data, even if the
stopping criteria suggest the trial should be terminated.

2.3 Stopping criteria

The next step is to generate the rules to monitor the trial so that stopping boundaries can
be calculated and used to terminate the trial in case of an unacceptable number of AEs
or a lack of efficacy. The stopping rule for AEs is Pr(θE > θS |data, n) > pU . This means
the trial will stop if the posterior probability that the experimental treatment AE rate
is greater than the standard-of-care AE rate is greater than the upper bound pU , which
typically ranges from 0.95–0.99. Generally speaking, after viewing the data, there is
greater than pU chance that the experimental treatment AE rate will be higher than the
standard-of-care AE rate. The stopping rule for efficacy is Pr(θE > θS |data, n) < pL.
This means the trial will stop if the posterior probability that the experimental treat-
ment is more efficacious than the standard of care is less than the lower bound pL, which
is typically ≤ 0.10. Likewise, after viewing the data, there is less than pL chance that
the experimental treatment will have an event rate greater than the standard of care.
This is known as a futility stopping rule.

2.4 Operating characteristics

The next step is to supply a list of true or hypothetical adverse event (or efficacious)
rates for the experimental treatment. This allows for operating characteristics to be
calculated from simulation to estimate the probability of trial termination, the average
number of events, and the average number of patients treated under each scenario. It
is recommended that the probability of stopping the trial when the true rate is equal to
the standard-of-care rate be kept as close to 0.10 as possible.

3 The stopbound command

3.1 Syntax

stopbound, type(#) nMAX(#)
[
dist nMIN(#) cohort(#) mcmc(#) sims(#)

aT0(#) bT0(#) pT0(#) aT(#) bT(#) pU(#) aR0(#) bR0(#) pR0(#)

aR(#) bR(#) pL(#) truepT(numlist) truepR(numlist) pNN(numlist)

pNY(numlist) pYN(numlist) pYY(numlist)
]
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3.2 Options

Main options

type(#) specifies which stopping boundary to calculate, where 0 = AE; 1 = efficacy;
2 = independent AE and efficacy; and 3 = dependent AE and efficacy. type() is
required because at least one boundary must be specified.

nMAX(#) specifies the maximum number of patients to accrue. nMAX() is required.

dist specifies that experimental treatment be compared with standard of care using
distributions. Without this option, the experimental treatment is compared with a
constant.

nMIN(#) specifies the minimum number of patients at first interim look. The default
is nMIN(1).

cohort(#) specifies the cohort size. The default is cohort(1).

mcmc(#) specifies the number of Markov chain Monte Carlo replications to perform
when calculating the posterior probability for comparing the experimental distribu-
tion with the standard distribution. The default is mcmc(1000000).

sims(#) specifies the number of simulations to be performed for calculating operating
characteristics. The default is sims(10000).

AE boundary options

aT0(#) specifies alpha for prior beta distribution on AE for the standard therapy. This
option is required when dist is specified and type(0), type(2), or type(3) is
specified.

bT0(#) specifies beta for prior beta distribution on AE for the standard therapy. This
option is required when dist is specified and type(0), type(2), or type(3) is
specified.

pT0(#) specifies the maximum acceptable AE rate. This option is required if type(0),
type(2), or type(3) is specified without the dist option.

aT(#) specifies alpha for prior beta distribution on AE for the experimental therapy.
This option is required if type(0), type(2), or type(3) is specified without the
dist option.

bT(#) specifies beta for prior beta distribution on AE for the experimental therapy.
This option is required if type(0), type(2), or type(3) is specified without the
dist option.

pU(#) specifies stopping criteria for AE. This option is required if type(0), type(2),
or type(3) is specified.



B. M. Fellman 411

Efficacy boundary options

aR0(#) specifies alpha for prior beta distribution on efficacy for the standard therapy.
This option is required when dist is specified and type(1), type(2), or type(3) is
specified.

bR0(#) specifies beta for prior beta distribution on efficacy for the standard therapy.
This option is required when dist is specified and type(1), type(2), or type(3) is
specified.

pR0(#) specifies the minimal acceptable efficacy rate. pR0() is required if type(1),
type(2), or type(3) is specified without the dist option.

aR(#) specifies alpha for prior beta distribution on efficacy for the experimental therapy.
This option is required if type(1), type(2), or type(3) is specified without the dist
option.

bR(#) specifies beta for prior beta distribution on efficacy for the experimental therapy.
This option is required if type(1), type(2), or type(3) is specified without the dist
option.

pL(#) specifies stopping criteria for efficacy. This option is required if type(1),
type(2), or type(3) is specified.

Independent AE and efficacy options

truepT(numlist) specifies a list of hypothetical toxicity rates.

truepR(numlist) specifies a list of hypothetical response rates.

Dependent AE and efficacy options

pNN(numlist) specifies the probability of having no efficacy and no AE.

pNY(numlist) specifies the probability of having no efficacy and having AE.

pYN(numlist) specifies the probability of having efficacy and having no AE.

pYY(numlist) specifies the probability of having efficacy and AE.

4 Examples

4.1 Monitoring AE only

Suppose a single-arm phase II trial is being designed to test a new therapeutic agent T
to fight a type of cancer, and we want to make sure it is less toxic when compared with
standard treatment S. We want to monitor toxicities for the new agent, so the purpose
of the following design is to ensure that treatment T is not more toxic than treatment
S. The method will compare the posterior probabilities of toxicity for patients in the
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trial on treatment T with historical data on treatment S. Suppose we have searched
historical data and found that 100 patients similar to those entering this trial have
received standard treatment. Of those 100 patients, 25 experienced toxicity; therefore,
the prior for θS should be Beta(25, 75). Recall the example in section 2.1; the prior for
T will be Beta(0.5, 1.5). We decide to stop the trial if, based on the data, the posterior
probability of the toxicity rate for T is going to be more than S is greater than 0.95,
that is, Pr(θT > θS |data, n) > 0.95. Additionally, the trial is limited to a maximum of
36 patients, and patients will be entered in cohorts of size 3.

Now that we have all the information on the trial design, the stopping boundaries
are calculated as follows:

. stopbound, type(0) dist nMIN(1) cohort(3) nMAX(36) aT0(25) bT0(75) aT(0.5)
> bT(1.5) pU(0.95) truepT(0.05 0.15 0.25 0.35 0.45)

Toxicity Stopping Boundaries:
-----------------------------
The following are greater-than-or-equal boundaries:
T/N means to stop if the number of toxicities after
treating N patients is greater than or equal to T.

STOP post prob
-----------------------
3/3 .981757
4/6 .963045
5/9 .951541
7/12 .982698
8/15 .978032
9/18 .974453
10/21 .971091
11/24 .968677
12/27 .966731
13/30 .965193
14/33 .963867
15/36 .962854

P(true) P(stop) p10 p25 p50 p75 p90 Avg # pts Avg # toxicities
-------------------------------------------------------------------------
.05 .0002 36 36 36 36 36 35.994 1.8119
.15 .0111 36 36 36 36 36 35.6667 5.3227
.25 .0962 36 36 36 36 36 33.5868 8.3966
.35 .386 6 18 36 36 36 27.5874 9.6624
.45 .78 6 6 18 33 36 18.7224 8.4273

So for any given number of patients N entered into the trial, if there are T toxicities
or more at that point, the trial will terminate. For instance, if we have enrolled 18
patients and have observed 9 or more toxicities, the trial would terminate because of
excessive toxicity. The chances of stopping the trial for different true rates of toxicity
for T are also presented. If the true rate of toxicity is 0.45, there is a 78% chance we
would stop the trial early. If the true rate was equal to the 0.25 rate (mean of the
standard treatment), then the probability of stopping the trial early is 0.0962, which
approximates to a 10% chance; see section 2.4.
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Below is an example of the same study design as above except the null rate approach
is used. Here the maximum acceptable toxicity rate is set at 0.25, which is the mean of
the prior for θS in the probabilistic approach.

. stopbound, type(0) nMIN(1) cohort(3) nMAX(36) pT0(0.25) aT(0.5) bT(1.5)
> pU(0.95) truepT(0.05 0.15 0.25 0.35 0.45)

Toxicity Stopping Boundaries:
-----------------------------
The following are greater-than-or-equal boundaries:
T/N means to stop if the number of toxicities after
treating N patients is greater than or equal to T.

STOP post prob
-----------------------
3/3 .98368078
4/6 .96792853
5/9 .95906788
6/12 .95442069
7/15 .95230486
8/18 .95174547
9/21 .95216136
10/24 .95319298
11/27 .95461051
12/30 .95626317
13/33 .95805007
14/36 .95990275

P(true) P(stop) p10 p25 p50 p75 p90 Avg # pts Avg # toxicities
-------------------------------------------------------------------------
.05 .0003 36 36 36 36 36 35.991 1.778
.15 .0142 36 36 36 36 36 35.6229 5.3439
.25 .1559 15 36 36 36 36 32.5827 8.1833
.35 .5186 6 12 33 36 36 25.0395 8.7635
.45 .8714 6 6 12 24 36 15.9651 7.1962

The stopping boundaries are slightly different because of the sampling uncertainty used
when comparing with the standard prior for θS in the first approach.

4.2 Monitoring efficacy only

Suppose we are designing a similar trial but now we want to apply a stopping rule for
the case of a nonresponsive agent T . In this example, we will compare T to a constant.
We want the response rate to be better than 0.40. With the null rate at 0.40, the prior
on T could be Beta(0.8, 1.2). We decide to stop the trial if, based on the data, the
posterior probability of the response rate for T is going to be higher than 0.40 is less
than 0.10, that is, Pr(θT > 0.40|data, n) < 0.10. The following Stata code would be
used:
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. stopbound, type(1) nMIN(1) cohort(3) nMAX(36) pR0(0.40) aR(0.8) bR(1.2)
> pL(0.10) truepR(0.20 0.30 0.40 0.50 0.60)

Response Stopping Boundaries:
-----------------------------
The following are less-than-or-equal boundaries:
R/N means to stop if the number of responses after
treating N patients is less than or equal to R.

STOP post prob
-----------------------
0/3 .08485245
1/9 .03328467
2/12 .04452425
3/15 .05205239
4/18 .05702922
5/21 .06023106
6/24 .06217455
7/27 .06321036
8/30 .06358214
9/33 .06346308
10/36 .06297874

P(true) P(stop) p10 p25 p50 p75 p90 Avg # pts Avg # responses
------------------------------------------------------------------------
.2 .9474 3 3 3 15 27 10.4283 2.0774
.3 .6747 3 3 18 36 36 19.0146 5.7229
.4 .345 3 12 36 36 36 26.5134 10.5992
.5 .1554 3 36 36 36 36 31.17 15.5528
.6 .0648 36 36 36 36 36 33.909 20.3172

Thus for any given number of patients N entered into the trial, if there are R
responses or fewer at that point, the trial will terminate. If we have enrolled 18 patients
and have seen only 4 or fewer responses, the trial would terminate for futility. This
design would stop 35% of the time if the true response rate was 0.40. This would be
extremely high in most trials, so changing parameters such as pL() might lower the
probability of stopping early if the true rate was equal to the null rate and yield better
operating characteristics for the trial design.

4.3 Monitoring AE and efficacy

Independent case

Now suppose we design a trial that has both a stopping rule for toxicity and a stopping
rule for response, and we assume the two are independent of one another. We will use a
Beta(25, 75) on θS,T and a Beta(80, 120) on θS,R, so our priors on θT,T and θT,R could
be Beta(0.5, 1.5) and Beta(0.8, 1.2), respectively. We will use an upper bound of 0.95 for
monitoring toxicity and a lower bound of 0.05 for monitoring response. The following
Stata code would be used:
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. stopbound, type(2) dist nMIN(1) cohort(3) nMAX(36) aT0(25) bT0(75) aT(0.5)
> bT(1.5) pU(0.95) truepT(0.05 0.15 0.25 0.35 0.45) aR0(80) bR0(120) aR(0.8)
> bR(1.2) pL(0.05) truepR(0.60 0.30 0.40 0.30 0.20)

Toxicity Stopping Boundaries:
-----------------------------
The following are greater-than-or-equal boundaries:
T/N means to stop if the number of toxicities after
treating N patients is greater than or equal to T.

STOP post prob
-----------------------
3/3 .981583
4/6 .96311
5/9 .951417
7/12 .98248
8/15 .977937
9/18 .974392
10/21 .97146
11/24 .969048
12/27 .966809
13/30 .965265
14/33 .963777
15/36 .962792

Response Stopping Boundaries:
-----------------------------
The following are less-than-or-equal boundaries:
R/N means to stop if the number of responses after
treating N patients is less than or equal to R.

STOP post prob
-----------------------
0/6 .018148
1/9 .036685
2/12 .049564
3/18 .021876
4/21 .026949
5/24 .031057
6/27 .034286
7/30 .037125
8/33 .039044
9/36 .041023

P(true)
T R P(stop) p10 p25 p50 p75 p90 Avg # pts Avg # toxicities Avg # responses

-------------------------------------------------------------------------------
.05 .6 .009 36 36 36 36 36 35.7522 1.815 21.4191
.15 .3 .4764 6 12 36 36 36 25.7277 3.8608 7.719
.25 .4 .2343 9 36 36 36 36 30.2988 7.5811 12.1412
.35 .3 .6784 6 9 18 36 36 20.5539 7.2164 6.2027
.45 .2 .9718 6 6 9 12 24 11.0037 4.9521 2.2043

If both the true toxicity and response rates are at the mean of the standard, then
the trial would stop 23% of the time. If there are very good response and toxicity rates,
then the trial would stop only 1% of time. On the other hand, if there are very poor
rates for both, then the trial would stop 97% of the time.
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Dependent case

Suppose that we do not assume independence of toxicity and response. In this case,
there are four possible probabilities—λ1, λ2, λ3, and λ4—which can be presented in the
2× 2 table below, where λ1, λ2, λ3, and λ4 must sum to 1:

Toxicity
Response No Yes

No λ1 λ2

Yes λ3 λ4

Therefore, the probability of toxicity is πT = λ2 + λ4, and the probability of response
is πR = λ3 + λ4.

Now suppose we design a trial that includes a stopping rule for toxicity and a rule
for response; however, now we assume the two are dependent of each other. The same
design parameters are used as in the independent example. The table below includes
five possible scenarios of interest. For example, scenario 3 would be the best scenario,
resulting in a high response rate (0.55+0.05 = 0.60) and low toxicity rate (0.05+0.05 =
0.10). Scenario 1 would be the most undesirable case with high rates of toxicity and low
rates of response, while scenario 2 has toxicity and response rates equal to the standard
rates.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
↓ R ↑ T Null ↑ R ↓ T ↑ R ↑ T ↓ R ↓ T

Toxicity
No Yes No Yes No Yes No Yes No Yes

Response
No 0.55 0.25 0.55 0.05 0.35 0.05 0.40 0.10 0.75 0.05
Yes 0.05 0.15 0.20 0.20 0.55 0.05 0.20 0.30 0.15 0.05
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The following Stata code would be used to produce the operating characteristics for
this design:

. stopbound, type(3) dist nMIN(1) cohort(3) nMAX(36)
> aT0(25) bT0(75) aT(0.5) bT(1.5) pU(0.95) aR0(80)
> bR0(120) aR(0.8) bR(1.2) pL(0.10) pNN(0.55 0.55 0.35 0.40 0.75)
> pNY(0.25 0.05 0.05 0.10 0.05) pYN(0.05 0.20 0.55 0.20 0.15)
> pYY(0.15 0.20 0.05 0.30 0.05)

(output omitted )

P(true) Average
------------------------------- -----------------------
(-R,-T) (-R,+T) (+R,-T) (+R,+T) P(stop) p10 p25 p50 p75 p90 # pts # tox´s # resp´s
-----------------------------------------------------------------------------------
.55 .25 .05 .15 .9793 3 3 3 12 21 8.3106 3.3252 1.6541
.55 .05 .2 .2 .4046 3 6 36 36 36 24.9606 6.2398 9.9475
.35 .05 .55 .05 .0662 36 36 36 36 36 33.846 3.4011 20.331
.4 .1 .2 .3 .6555 3 6 21 36 36 20.4144 8.139 10.2412
.75 .05 .15 .05 .9482 3 3 3 15 27 10.5459 1.0674 2.1133
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